首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The relations of plasma concentrations of substances claimed to influence brain tryptophan concentration (total tryptophan, free tryptophan, large neutral amino acids) with the concentrations of tryptophan, 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the forebrain were investigated in rats of different ages (from 8 days to 16 months after birth). In brain, tryptophan fell by 46%, whereas 5-HT rose by 20% between 8 and 40/42 days after birth. Thereafter, the levels of both tryptophan and 5-HT remained essentially constant. Brain 5-HIAA showed a more complex pattern, rising by 63% between 8 and 19 days, falling between 19 and 40/42 days, and then gradually rising until values at 16 months were significantly higher than those at 40/42 days. In plasma, the concentrations of free fatty acids, free and total tryptophan, and large neutral amino acids all decreased between 8 and 19 days and thereafter either remained constant or increased slowly, the exception being total tryptophan values, which showed large increases between 28/30 and 60/70 days. Also, the unidirectional uptake of tryptophan from blood to brain was determined using a carotid artery injection technique. Uptake values obtained using a tracer concentration of tryptophan in the injection solution decreased progressively with age. Kinetic analysis of the data in terms of the Michaelis-Menten equation for carrier-mediated transport indicated significantly lower values for Vmax and KD (a component for nonsaturable transport) in 6-month-old rats as compared to 19-day-old suckling rats, whereas Km values were the same at both ages. Detailed analysis of these results indicated that the age-related changes in brain tryptophan were largely explicable in terms of plasma free tryptophan in association with blood-brain transport characteristics; moderate differences in concentration of amino acids competing for transport were without apparent effect between 19 days and 16 months. The larger differences between 8 and 19 days after birth could be important.  相似文献   

2.
Following a study of oxidative tryptophan metabolism to kynurenines, we have now analysed the blood of patients with either Huntington's disease or traumatic brain injury for levels of 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and melatonin. There were no differences in the baseline levels of these compounds between patients and healthy controls. Tryptophan depletion did not reduce 5-HT levels in either the controls or in the patients with Huntington's disease, but it increased 5-HT levels in patients with brain injury and lowered 5-HIAA in the control and Huntington's disease groups. An oral tryptophan load did not modify 5-HT levels in the patients but increased 5-HT in control subjects. The tryptophan load restored 5-HIAA to baseline levels in controls and patients with brain injury, but not in those with Huntington's disease, in whom 5-HIAA remained significantly depressed. Melatonin levels increased on tryptophan loading in all subjects, with levels in patients with brain injury increasing significantly more than in controls. Baseline levels of neopterin and lipid peroxidation products were higher in patients than in controls. It is concluded that both groups of patients exhibit abnormalities in tryptophan metabolism, which may be related to increased inflammatory status and oxidative stress. Interactions between the kynurenine, 5-HT and melatonin pathways should be considered when interpreting changes of tryptophan metabolism.  相似文献   

3.
《Life sciences》1995,57(19):PL285-PL292
Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with sahne daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day sahne injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with sahne on the 6th day. Plasma total and free tryptophan were not altered hi these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day sahne injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.  相似文献   

4.
The effects of 1 h/day restraint in plastic tubes for 24 days on the levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), tryptophan (TP), and noradrenaline (NA) in six regions of rat brain 20 h after the last restraint period were investigated. The levels of 5-HT, 5-HIAA, and NA but not TP increased in several regions. The effects of 1 h of immobilization on both control and chronically restrained rats were also studied. Immobilization per se did not alter brain 5-HT, 5-HIAA, and TP levels, but decreased NA in the pons plus medulla oblongata and hypothalamus. However, immobilization after chronic restraint decreased 5-HT, increased 5-HIAA, and decreased NA in most brain regions in comparison with values for the chronically restrained rats. We suggest that chronic restraint leads to compensatory increases of brain 5-HT and NA synthesis and sensitizes both monoaminergic systems to an additional acute stress. These changes may affect coping with stress demands.  相似文献   

5.
It was shown previously that focal cortical freezing lesions in rats cause widespread depression of local cerebral glucose utilization (LCGU) in cortical areas of the lesioned hemisphere. This was interpreted as reflecting functional depression. The underlying mechanisms were postulated to involve alterations of biogenic amine systems. Accordingly, levels of serotonin (5-HT), its metabolite 5-hydroxyindoleacetic acid (5-HIAA), and its precursor tryptophan were determined by an HPLC method with electrochemical detection in frontoparietal cortical areas of both hemispheres at 4 h and 1, 3, 6, 8, and 10 days after a unilateral cortical freezing lesion. The 5-HT content was significantly lower than normal in the lesioned hemisphere only at 24 h, whereas the 5-HIAA level peaked at 24 h but was significantly elevated above normal values between 4 h and 6 days after lesioning. No changes were noted in 5-HT and 5-HIAA contents in the hemisphere contralateral to the lesion. These results indicate that cortical 5-HT metabolism is increased throughout the lesioned hemisphere of a focally injured brain. The increase in tryptophan content of the lesioned brain appeared to have a time course more closely related to previously demonstrated changes in cortical LCGU than to the increase in 5-HIAA content.  相似文献   

6.
The effects of L-tryptophan (50 mg/kg i.p.) on extracellular concentrations of tryptophan and the 5-hydroxytryptamine (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) were determined in the rat striatum and cerebellum, regions with rich and poor 5-HT innervation, respectively. Determinations were on perfusates from dialysis probes in the brains of conscious, freely moving rats. The pharmacokinetic profiles of dialysate tryptophan after tryptophan load (peak concentration, time to peak concentration, area under curve, and half-life) in the two regions did not differ significantly. The dialysate 5-HIAA concentration in the striatum rose two- to threefold after the administration of tryptophan. Therefore, as 5-HIAA was undetectable in the cerebellum either before or after the administration of tryptophan, the increase of 5-HIAA in the striatum is unlikely to depend appreciably on its production within the cerebral vasculature or outside the brain or on its entering the striatum through a blood-brain barrier damaged by placement of the dialysis probe. Overall, the findings strengthen previous evidence that extracellular 5-HIAA concentrations determined by cerebral dialysis are a valid measure of the metabolism of 5-HT of brain neuronal origin.  相似文献   

7.

Background  

The blood hyperserotonemia of autism is one of the most consistent biological findings in autism research, but its causes remain unclear. A major difficulty in understanding this phenomenon is the lack of information on fundamental interactions among the developing brain, gut, and blood in the mammalian body. We therefore investigated relationships among the body mass, the brain mass, the volume of the hippocampal complex, the gut length, and the whole-blood levels of tryptophan and 5-hydroxytryptamine (5-HT, serotonin) in young, sexually immature wild-type mice.  相似文献   

8.
—The injection of ethanol in mice produced a transient rise in 5-hydroxyindoleacetic acid (5-HIAA) levels in brain. However, no concomitant changes in serotonin (5-HT) levels were noted. In an attempt to explain the biochemical mechanism by which ethanol produced this effect, uptake of tryptophan by brain, serotonin turnover in brain, and transport of 5-HIAA from brain were investigated. No changes in tryptophan levels or uptake into brain of ethanol-treated mice were noted. Ethanol 3 g/kg was found to decrease serotonin turnover. Ethanol was also demonstrated to inhibit the removal of 5-HIAA from the central nervous system, and was found to be an inhibitor of 5-HIAA uptake by isolated choroid plexus. The inhibition of biogenic acid transport was noted even at sub-hypnotic levels of ethanol.  相似文献   

9.
Abstract— Streptozotocin-induced diabetes in rats reduces brain tryptophan but is without effect on the central levels of 5-hydroxytryptamine (5-HT) or 5-hydroxyindoleacetic acid (5-HIAA). The present work investigates the effect of diabetes on the accumulation of brain tryptophan, 5-HT and 5-HIAA in various brain regions following a systemic tryptophan load. The results indicate that diabetes severely restricts the uptake of tryptophan by brain but that the tryptophan that is accumulated is normally converted to 5-HT and 5-HIAA. Possible mechanisms which might explain the apparent resistance of 5-HT metabolism to decreased precursor levels in diabetics are discussed.  相似文献   

10.
Systemic administration of parachlorophenylalanine (PCPA, 100 mg/kg sc on alternate days X two times), a blocker of serotonin (5-HT) synthesis, considerably decreased brain 5-HT and plasma prolactin (PRL) levels in young male rats. Intraventricular (IVT) administration of 5,7-dihydroxytryptamine (5,7-DHT, 200 mug/20 mul), a neurotoxic drug which destroys 5-HT nerve terminals, induced, 3, 12, and 30 days after treatment, a marked depletion of brain 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) and considerably reduced plasma PRL levels at each time interval. Feeding of rat for up to 4 days with a tryptophan (TP)-deficient diet, caused a depletion of brain 5-HT and 5-HIAA contents and did not modify plasma PRL levels. Addition of TP (2 g/kg of diet) to the TP-deficient diet resulted in increased brain 5-HT and 5-HIAA contents and significantly increased PRL levels. These data provide evidence for the role of the 5-HT system in the maintenance of tonic PRL secretion.  相似文献   

11.
Previous morphological studies reported that serotonergic neurons appear in rats in the second half of prenatal life. Initially the biochemical differentiation of these neurons before birth was studied. Both serotonin (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) was detected in the fetal brain on day 15 of gestation. During prenatal development an increase was detected in the brain levels of 5-HT (200% higher on day 19 than on day 15) and 5-HIAA (700% higher on day 19 than on day 15). Oral administration of tryptophan to pregnant rats induced a dose-related increase of tryptophan concentration in different fetal tissues, including brain. The increase in tryptophan tissue concentration was detected for low doses (50 mg/kg) and remained unsaturated after administration of high doses (1000 mg/kg). This observation suggests that the placental barrier is not effective to block the influx of high levels of tryptophan to the fetus. Tryptophan concentration in the brain is 300% higher than in the carcass and 600% higher than in the placenta. These data suggest a mechanism to assume a role in concentrating of tryptophan in the brain. Finally, it was found that an increase in brain tryptophan induced changes in both serotonin and 5-HIAA brain levels, but did not modify tyrosine, dopamine or norepinephrine levels. Thus, under physiological conditions, tryptophan hydroxylase activity in prenatal brain is probably not saturated by its substrate tryptophan.  相似文献   

12.
The concentration of tryptophan in serum, and the levels of tryptophan, serotonin (5-HT), and 5-hydroxyindole-acetic acid (5-HIAA) in brain are substantially reduced in rats that consume for 6 weeks a diet in which corn is the only source of protein. Single injections of L-tryptophan (25, 50, or 100 mg/kg) cause dose-related increases in brain tryptophan, 5-HT, and 5-HIAA in corn-fed animals. At each dose, brain tryptophan content rises to a proportionately greater extent in corn-fed rats than in well-nourished controls, even though serum tryptophan concentrations attain higher levels in controls. This difference may reflect the greatly reduced serum concentrations in corn-fed rats of other large neutral amino acids that compete with tryptophan for uptake into the brain (tyrosine, phenylalanine, leucine, isoleucine, and valine). However, the substantial decrease in serum albumin levels also diminishes the binding of tryptophan to serum albumin; thus it is not yet possible to state which of these changes is responsible for the much greater increments in brain tryptophan observed in corn-fed rats after tryptophan injection. The fact that tryptophan administration rapidly restores brain 5-hydroxyindole levels in corn-fed animals suggests that the reductions in 5-HT and 5-HIAA levels associated with this type of malnutrition may be largely caused by inadequate availability of substrate.  相似文献   

13.
Stenfors C  Ross SB 《Life sciences》2002,71(24):2867-2880
The effect of repeated treatment with the selective serotonin reuptake inhibitor fluoxetine on synthesis and turnover of 5-hydroxytryptamine (5-HT) was studied in the mouse brain in vivo. The concentration of 5-hydroxytryptophan (5-HTP), 5-hydroxyindoleacetic acid (5-HIAA) and 5-HT was measured in hypothalamus, hippocampus and frontal cortex after inhibition of the aromatic amino acid decarboxylase activity with m-hydroxybenzylhydrazine (NSD 1015). Fluoxetine 6.9 mg/kg s.c. was injected once daily for three weeks. Three days after the final daily injection of fluoxetine 5-HT synthesis (5-HTP accumulation) and turnover (5-HIAA/5-HT ratio) were significantly enhanced compared with saline-treated mice. The 5-HIAA/5-HT ratio was already significantly elevated after 3 days of fluoxetine treatment and continued to increase during treatment for 2-3 weeks. The increase in 5-HIAA/5-HT ratio was considerably larger (150-200% of controls) than the increase in 5-HTP accumulation (110-120%), which reached significance only after 3 weeks of treatment. The increase in 5-HT synthesis may be secondary to that of the turnover. The 5-HIAA/5-HT ratio returned to control values after a 14 days washout period. Simultaneous treatment with the long-acting 5-HT(1B)-receptor antagonist, SB 224289 for 14 days counteracted the fluoxetine-induced increase in 5-HIAA/5-HT ratio that indicates involvement of 5-HT(1B) autoreceptors in the development of this increase. It is proposed that the fluoxetine-induced enhancement of 5-HT turnover was evoked by the long-lasting stimulation of 5-HT(1B) autoreceptors that resulted in an intraneuronal compensatory adaptation of the basal 5-HT release.  相似文献   

14.
The effects of social stress caused by experience of defeats in mice during 3 or 10 consecutive days of intermale confrontations on serotonergic brain activity (5-HT, 5-HIAA levels and 5-HIAA/5-HT ratio) in some brain regions of CBA/Lac (CBA) and C57BL/6J (C57) inbred mice have been studied. It was revealed the significant changes in 5-HT methabolism in the brain regions of defeated mice (losers) of CBA strain after 3 intermale confrontations. However, after 10 days of social stress these changes (excluded amygdala) turned to the control measures testifying to the adaptive mechanisms of serotonergic system in CBA losers. In C57 strain, the three-day social stress produced the mild changes in the brain serotonergic activity both quantitatively as well as qualitatively. Nevertheless, losers subjected to ten-day intermale confrontations had more expressed changes in 5-HT, 5-HIAA levels of 5-HIAA/5-HT ratios in the brain regions studied. It seems that long lasting social stress induced the development of disbalance of the brain serotonergic activity in C57 losers: it was shown the hyperactivity in the hypothalamus and hypoactivity in the amygdala and nucl. accumbens. Apparently, this cause leads to the development of the pronounced anxiety shown earlier in this mouse strain.  相似文献   

15.
Using a specific and sensitive high pressure liquid chromatographic technique for the measurement of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and tryptophan (TRP), we found that there were no changes in 5-HT or 5-HIAA in the rat cortex when left in situ for 6 h at room temperature or 24 h at 4 degrees C. Only a minimal 14% increase in 5-HT was observed after 24 h at 4 degrees C in the striatum of the same animals. Concentrations of TRP, however, were increased significantly in both brain regions by these postmortem delay procedures. A second study revealed that there were significant regional 5-HT and 5-HIAA concentration differences within the cerebral cortex. The frontal cortex was shown to have the highest concentrations of 5-HT and 5-HIAA. Further, within the frontal cortex, 5-HIAA levels varied, showing apparent progressive rostral to caudal increases. 5-HT concentrations, however, remained constant within the frontal cortex. These results are discussed in reference to the conflicting reports of the previous human suicide and postmortem studies.  相似文献   

16.
Acute tryptophan depletion (ATD) is a method of lowering brain serotonin (5-HT). Administration of large neutral amino acids (LNAA) limits the transport of endogenous tryptophan (TRP) across the blood brain barrier by competition with other LNAAs and subsequently decreases serotonergic neurotransmission. A recent discussion on the specificity and efficacy of the ATD paradigm for inhibition of central nervous 5-HT has arisen. Moreover, side effects such as vomiting and nausea after intake of amino acids (AA) still limit its use. ATD Moja-De is a revised mixture of AAs which is less nauseating than conventional protocols. It has been used in preliminary clinical studies but its effects on central 5-HT mechanisms and other neurotransmitter systems have not been validated in an animal model. We tested ATD Moja-De (TRP-) in two strains of mice: C57BL/6J, and BALB/cJ, which are reported to have impaired 5-HT synthesis and a more anxious phenotype relative to other strains of mice. ATD Moja-De lowered brain TRP, significantly decreased 5-HT synthesis as indexed by 5-HTP levels after decarboxlyase inhibition, and lowered 5-HT and 5-HIAA in both strains of mice, however more so in C57BL/6J than in BALB/cJ. Dopamine and its metabolites as well as norepinephrine were not affected. A balanced (TRP+) control mixture did not raise 5-HT or 5-HIAA. The present findings suggest that ATD Moja-De effectively and specifically suppresses central serotonergic function. These results also demonstrate a strain-specific effect of ATD Moja-De on anxiety-like behavior.  相似文献   

17.
1. The effect was examined of a single bout of nonexhaustive endurance exercise on tryptophan (Try), serotonin (5-HT), 5-hydroxyindolacetic acid (5-HIAA), and tryptophan hydroxylase (TpH) levels in different parts of rat brain (brain cortex, cerebellum, hypothalamus, midbrain striatum, medulla) on the last day of endurance training and 48 h later (detraining period).2. Female rats were subjected to a 6-week endurance training programme. The effectiveness of the training was evaluated by measuring anaerobic threshold (AT). High performance liquid chromatography (HPLC) was used to determine regional Try, 5-HT, and 5-HIAA contents in the brain, and thin layer chromatography followed by gas-liquid chromatography was used to determine blood levels of free fatty acids. Regional TpH levels were measured by Western blot analysis.3. In the two rat groups subjected to endurance training, in all brain regions studied but cerebellum, 5-HT content was significantly lower after the last bout of nonexhaustive endurance exercise than in resting control rats that were not subjected to the training. Similarly, the cortical and striatal, but not cerebellar, 5-HT/Try ratios were significantly lower in the trained rats at the end of the last training session and at the end of a single bout of nonexhaustive exercise administered after a 48-h detraining period than in the controls. TpH protein level was decreased by 15–25% after the last bout of exercise either during the training process or after the and 1 h bout of endurance exercise performed 48 h after cessation of endurance training in brain cortex and striatum but not cerebellar.4. These results indicate that the reduction in 5-HT level was the adaptive response to endurance training. The lowered 5-HT/Try ratio and lowered TpH protein level attained after the training process suggests and that this change may be, at least partially, attributed to downregulation of TpH activity.  相似文献   

18.
Abstract: The relationship between plasma and brain tryptophan (TRP) concentrations and brain 5-hydroxytryptamine (5-HT) metabolism was studied in weanling rats fed diets containing either 0.4 g or 1.45 g TRP/ 100 g casein hydrolysate. Both groups gained weight comparably though food intakes were generally higher in the low-TRP group. Severe depletion of plasma total and free TRP and of brain TRP, 5-HT, and 5-hydrox-yindoleacetic acid (5-HIAA) occurred within 1 day of feeding the 0.4% TRP diet. Levels became stable after 7 days. The decreased brain TRP concentration of the rats on the 0.4% TRP diet did not cause a compensatory rise of the tryptophan hydroxylase (TRP OHase) activity in vitro. In the low-TRP group, neither plasma free TRP nor total TRP correlated significantly with brain TRP and although plasma TRP/large neutral amino acid (NAA) ratios (TRP/NAA) correlated significantly ( P < 0.05) with the time course of brain TRP, this statistical relationship depended almost completely on the variation of the TRP values alone. In the higher TRP group none of these correlations were significant. A plot of mean plasma free TRP versus brain TRP gave two distinct regression lines with similar slopes and corresponding to values before and after 7 days on the diet. The time course of brain 5-hydroxyindole concentrations did not parallel those of brain TRP and suggested that changes of TRP OHase activity also had an influence on 5-HT synthesis.  相似文献   

19.
The effects of valproic acid (500 mg/kg, ip, 1 h prior to testing) on indole amine metabolism were studied in rats by measurement of the contents of tryptophan, 5-hydroxytryptophan (5-HTP), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the cerebral hemisphere. Tryptophan and 5-HIAA levels were increased, whereas 5-HTP and 5-HT remained unchanged. Furthermore, valproic acid failed to alter the levels of 5-HTP and DOPA, 5-HT and DA, and 5-HIAA in animals pretreated, respectively, with 3-hydroxybenzyl hydrazine (a decarboxylase inhibitor), pargyline (a monoamine oxidase inhibitor), or probenecid (a compound which blocks 5-HIAA transport out of the brain and cerebrospinal fluid). These results militate against the possibility that valproic acid alters the rate of tryptophan hydroxylation or the synthesis of 5-HT. However they do support the concept that valproic acid increases brain 5-HIAA by inhibition of the transport mechanism which removes 5-HIAA from the brain.  相似文献   

20.
μ-Opioid receptors (μ-ORs) modulate methamphetamine (MA)-induced behavioral responses, increased locomotor activity and stereotyped behavior in the mouse model. We investigated the changes in dopamine (DA) and serotonin (5-HT) metabolism in the striatum following either acute or repeated MA treatment using in vivo microdialysis. We also studied the role of μ-ORs in the modulation of MA-induced DA and 5-HT metabolism within μ-OR knockout mice. Subsequent to either acute or repeated intraperitoneal administration of MA, wild-type mice revealed decreases in extracellular concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in a dose-dependent manner. Moreover, wild-type mice had reductions in basal concentrations of DOPAC and HVA following repeated MA treatment with a higher dose. The effects of acute, repeated or challenge MA administration upon extracellular levels of DOPAC and HVA within μ-OR knockout mice significantly differed from the wild-type controls. The duration of recovery to the basal levels of extracellular DA and 5-HT metabolites induced by MA were much longer in wild-type mice than for μ-OR knockout mice. These findings suggest that μ-ORs play a modulatory role in MA-induced DA and 5-HT metabolism in the mouse striatum. This possible mechanism of MA-induced behavioral change as modulated by μ-OR merits further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号