首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylocella spp. are facultative methanotrophs, which are able to grow not only on methane but also on multicarbon substrates such as acetate, pyruvate or malate. Methylocella spp. were previously thought to be restricted to acidic soils such as peatlands, in which they may have a key role in methane oxidation. There is little information on the abundance and distribution of Methylocella spp. in the environment. New primers were designed, and a real-time quantitative PCR method was developed and validated targeting Methylocella mmoX (encoding the α-subunit of the soluble methane monooxygenase) that allowed the quantification of Methylocella spp. in environmental samples. We also developed and validated specific PCR assays, which target 16S rRNA genes of known Methylocella spp. These were used to investigate the distribution of Methylocella spp. in a variety of environmental samples. It was revealed that Methylocella species are widely distributed in nature and not restricted to acidic environments.  相似文献   

2.
3.
Methylocella silvestris BL2 is an aerobic methanotroph originally isolated from an acidic forest soil in Germany. It is the first fully authenticated facultative methanotroph. It grows not only on methane and other one-carbon (C1) substrates, but also on some compounds containing carbon-carbon bonds, such as acetate, pyruvate, propane, and succinate. Here we report the full genome sequence of this bacterium.Methylocella spp. are abundant in acidic soils and wetlands and help attenuate methane emissions from these habitats (2). They are unique in several ways compared to all other known aerobic methanotrophs. Notably, they lack extensive internal membrane systems and also appear to lack the particulate methane monooxygenase (pMMO) enzyme found in all other methanotrophs (6). Instead, they use only a soluble methane monooxygenase (sMMO) for methane oxidation. In addition, Methylocella spp. are not limited like other methanotrophs to growing on one-carbon (C1) compounds but also utilize a number of multicarbon compounds (3). The genome of Methylocella silvestris BL2 (4) was sequenced, assembled, and annotated by the Joint Genome Institute (U.S. Department of Energy; http://www.jgi.doe.gov/sequencing/strategy.html). A total of 38,459 reads (∼6× coverage), including 32,993 paired-end shotgun Sanger reads, 5,040 Roche 454 reads, and 580 finishing reads were included in the final assembly. Three lanes of Solexa data were used to polish the project.The genome size is 4.3 Mbp. The G+C content is 63%. In total, 3,917 candidate genes were predicted and 99 pseudogenes were found. Functionality was assigned to 67.9% of the genes, while 30.9% of the genes could not be assigned any known function. Based on BLASTP searches against the KEGG (Kyoto Encyclopedia of Genes and Genomes) database, 3,413 out of 3,917 (87.1%) candidate genes have significant similarity to genes from Proteobacteria. Only 11 and 14 genes have best hits to genes from Archaea and Eukarya, respectively. All tRNA-encoding regions were identified, and two identical rRNA operons were found.The absence of any pmoCAB genes encoding a pMMO enzyme that is present in all other genera of methanotrophs is now conclusively verified by the genome sequence. A complete operon encoding sMMO (mmoXYBZDC) was verified, as was a complete operon encoding methanol dehydrogenase (mxaFJGIRSACKLDEH) and all genes necessary for fixation of methane-derived carbon via the serine cycle. Genes encoding key enzymes in both the tetrahydrofolate and the tetrahydromethanopterin-mediated formaldehyde oxidation pathways were found.M. silvestris can grow on two-carbon compounds, particularly acetate. Acetate kinase- and phosphotransacetylase-encoding genes are present, allowing acetate to be fed into the tricarboxylic acid (TCA) cycle. Genes encoding glyoxylate bypass enzymes (i.e., isocitrate lyase and malate synthase) have been identified. This pathway is essential for bacteria when growing on two-carbon compounds (1). The bacterium can also grow on C3 and C4 compounds, and a full gene set encoding enzymes of the TCA cycle is present, including genes encoding α-ketoglutarate dehydrogenase, which are lacking in some methanotrophs. Interestingly, a gene cluster encoding di-iron-containing multi-component propane monooxygenase is also present.The genome sequence of M. silvestris is the first genome available for an alphaproteobacterial methanotroph. It joins the gammaproteobacterial methanotroph Methylococcus capsulatus Bath (7) and the verrucomicrobial methanotroph “Methylacidiphilum infernorum” (5). More detailed analyses of the genome as well as comparative analysis with obligate methanotrophs will provide deeper insight into the metabolism of this fascinating bacterium.  相似文献   

4.
Methylocystis strain SB2, a facultative methanotroph capable of growth on multi-carbon compounds, was screened for its ability to degrade the priority pollutants 1,2-dichloroethane (1,2-DCA), 1,1,2-trichloroethane (1,1,2-TCA), and 1,1-dichloroethylene (1,1-DCE), as well as cis-dichloroethylene (cis-DCE) when grown on methane or ethanol. Methylocystis strain SB2 degraded 1,2-DCA and 1,1,2-TCA when grown on either substrate and cis-DCE when grown on methane. Growth of Methylocystis strain SB2 on methane was inhibited in the presence of all compounds, while only 1,1-DCE and cis-DCE inhibited growth on ethanol. No degradation of any chlorinated hydrocarbon was observed in ethanol-grown cultures when particulate methane monooxygenase (pMMO) activity was inhibited with the addition of acetylene, indicating that competition for binding to the pMMO between the chlorinated hydrocarbons and methane limited both methanotrophic growth and pollutant degradation when this strain was grown on methane. Characterization of Methylocystis strain SB2 found no evidence of a high-affinity form of pMMO for methane, nor could this strain utilize 1,2-DCA or its putative oxidative products 2-chloroethanol or chloroactetic acid as sole growth substrates, suggesting that this strain lacks appropriate dehydrogenases for the conversion of 1,2-DCA to glyoxylate. As ethanol: (1) can be used as an alternative growth substrate for promoting pollutant degradation by Methylocystis strain SB2 as the pMMO is not required for its growth on ethanol and (2) has been used to enhance the mobility of chlorinated hydrocarbons in situ, it is proposed that ethanol can be used to enhance both pollutant transport and biodegradation by Methylocystis strain SB2.  相似文献   

5.
The proteome of the bacterium Methylocella silvestris has been characterized using reversed phase ultra high pressure liquid chromatography (UPLC) and two-dimensional reversed phase (high pH)-reversed phase (low pH) UPLC prior to mass spectrometric analysis. Variations in protein expression levels were identified with the aid of label-free quantification in a study of soluble protein extracts from the organism grown using methane, succinate, or propane as a substrate. The number of first dimensional fractionation steps has been varied for 2D analyses, and the impact on data throughput and quality has been demonstrated. Comparisons have been made regarding required experimental considerations including total loading of biological samples required, instrument time, and resulting data file sizes. The data obtained have been evaluated with respect to number of protein identifications, confidence of assignments, sequence coverage, relative levels of proteins, and dynamic range. Good qualitative and quantitative agreement was observed between the different approaches, and the potential benefits and limitations of the reversed phase-reversed phase UPLC technique in label-free analysis are discussed. A preliminary screen of the protein regulation data has also been performed, providing evidence for a possible propane assimilation route.  相似文献   

6.
Methanotrophic bacteria in an organic soil were enriched on gaseous mixing ratios of <275 parts per million of volume (ppmv) of methane (CH4). After 4 years of growth and periodic dilution (>10(20) times the initial soil inoculum), a mixed culture was obtained which displayed an apparent half-saturation constant [Km(app)] for CH4 of 56 to 186 nM (40 to 132 ppmv). This value was the same as that measured in the soil itself and about 1 order of magnitude lower than reported values for pure cultures of methane oxidizers. However, the Km(app) increased when the culture was transferred to higher mixing ratios of CH4 (1,000 ppmv, or 1%). Denaturing gradient gel electrophoresis of the enrichment grown on <275 ppmv of CH4 revealed a single gene product of pmoA, which codes for a subunit of particulate methane monooxygenase. This suggested that only one methanotroph species was present. This organism was isolated from a sample of the enrichment culture grown on 1% CH4 and phylogenetically positioned based on its 16S rRNA, pmoA, and mxaF gene sequences as a type II strain of the Methylocystis/Methylosinus group. A coculture of this strain with a Variovorax sp., when grown on <275 ppmv of CH4, had a Km(app) (129 to 188 nM) similar to that of the initial enrichment culture. The data suggest that the affinity of methanotrophic bacteria for CH4 varies with growth conditions and that the oxidation of atmospheric CH4 observed in this soil is carried out by type II methanotrophic bacteria which are similar to characterized species.  相似文献   

7.
硝酸盐和硫酸盐厌氧氧化甲烷途径及氧化菌群   总被引:1,自引:0,他引:1  
甲烷属于温室气体,厌氧氧化甲烷有效地减少了大气环境中甲烷的含量。依据吉布斯自由能变,以SO42、Mn4+、Fe3+、NO3等作为电子受体,厌氧条件下甲烷可以转化为CO2。重点阐述以SO42和NO3为电子受体时甲烷厌氧氧化的机理、反应发生的环境条件以及甲烷厌氧氧化菌的特点。针对目前研究存在的主要问题,提出了今后的发展方向。SO42为电子受体时,甲烷厌氧氧化的可能途径包括:逆甲烷生成途径、乙酰生成途径以及甲基生成途径。甲烷的好氧或厌氧氧化协同反硝化是以NO3为电子受体的甲烷氧化的可能途径。环境中的甲烷、硫酸盐或硝酸盐的浓度,有机质的数量,以及环境条件对甲烷的厌氧氧化有显著影响。  相似文献   

8.
A methane-oxidizing bacterium was isolated from the enriched culture of a landfill cover soil. The closest relative of the isolate, designated M6, is Methylocystis sp. Based on a kinetic analysis, the maximum specific methane oxidation rate and saturation constant were 4.93 mmol·g--dry cell weight--1·h?1 and 23 microM, respectively. This was the first time a kinetic analysis was performed using pure methanotrophic culture. The methane oxidation by M6 was investigated in the presence of aromatic (m- and p-xylene and ethylbenzene) or sulfur (hydrogen sulfide, dimethyl sulfide, methanthiol) compounds. The methane oxidation was inhibited by the presence of aromatic or sulfur compounds.  相似文献   

9.
Mono Lake is an alkaline hypersaline lake that supports high methane oxidation rates. Retrieved pmoA sequences showed a broad diversity of aerobic methane oxidizers including the type I methanotrophs Methylobacter (the dominant genus), Methylomicrobium, and Methylothermus, and the type II methanotroph Methylocystis. Stratification of Mono Lake resulted in variation of aerobic methane oxidation rates with depth. Methanotroph diversity as determined by analysis of pmoA using new denaturing gradient gel electrophoresis primers suggested that variations in methane oxidation activity may correlate with changes in methanotroph community composition.  相似文献   

10.
11.
Patterns of aerobic methane (CH4) oxidation and associated methanotroph community composition were investigated during the development of seasonal stratification in Mono Lake, California (USA). CH4 oxidation rates were measured using a tritiated CH4 radiotracer technique. Fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequence analysis were used to characterize methanotroph community composition. A temporally shifting zone of elevated CH4 oxidation (59-123 nM day(-1)) was consistently associated with a suboxycline, microaerophilic zone that migrated upwards in the water column as stratification progressed. FISH analysis revealed stable numbers of type I (4.1-9.3 x 10(5) cells ml(-1)) and type II (1.4-3.4 x 10(5) cells ml(-1)) methanotrophs over depth and over time. Denaturing gradient gel electrophoresis and sequence analysis indicated slight shifts in methanotroph community composition despite stable absolute cell numbers. Variable CH4 oxidation rates in the presence of a relatively stable methanotroph population suggested that zones of high CH4 oxidation resulted from an increase in activity of a subset of the existing methanotroph population. These results challenge existing paradigms suggesting that zones of elevated CH4 oxidation activity result from the accumulation of methanotrophic biomass and illustrate that type II methanotrophs may be an important component of the methanotroph population in saline and/or alkaline pelagic environments.  相似文献   

12.
A strain of Methylomonas albus BG8WM, a type 1 obligate methanotroph, which had been maintained for 2 ycars by serial passage on solid medium containing methanol as a carbon source was found to mutate at a frequency of 10-5-10-6 to resistance to dichloromethane (DCMR), the parental strain BG8 did not give rise to DCMR colonies. DCMR strains were no longer capable of growth on methane as a carbon cource and exhibited greatly reduced or undetectable methane mono-oxygenase activity. The mutants fell into three groups on the basis of SDS-PAGE analysis of the polypeptide profiles of the particulate fraction of cell extracts. One or more of four polypeptides of Mr 70,000, 50,000, 25,000 and 23,000 were implicated as being components of the methane mono-oxygenase. Spontaneous reversion to growth on methane and sensitivity to dichloromethane occurred at a frequency of about 10-8. The loss of methane mono-oxygenase activity was not associated with loss of the resident 55 kb plasmid.Abbreviations DCMR dichloromethane-resistant - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - NMS nitrate minimal salts medium  相似文献   

13.
Commonly the TCA cycle fulfils an anabolic and a catabolic function in case of aerobic chemoorganoheterotrophic nutrition. In methylotrophic growth the TCA cycle is dispensable as a bioenergetic pathway. This is reflected by properties of citrate synthase in facultative methylotrophic bacteria. Two citrate synthases, a "chemoorganoheterotrophic" one, which is inhibited by NADH (or ATP in Acetobacter MB 58), and a "methylotrophic" one, which is not or less affected by energy indicators, were found in Pseudomonas oleovorans, Pseudomonas MS, Pseudomonas MA, and Acetobacter MB 58. The concentration of these citrate synthases depends on the manner of nutrition. Bacteria with ICL-negative-variant of the serine pathway and with ribulosebisphosphate pathway seem to possess only a "chemoorganoheterotrophic" citrate synthase. Possibly the anabolic function of this citrate synthase can be realized by metabolites.  相似文献   

14.
15.
Soil drainage is one of the most promising approaches to mitigate methane (CH(4) ) emission from paddy fields. The microbial mechanism for the drainage effect on CH(4) emission, however, remains poorly understood. In the present study, we determined the effect of short (four drainages of 5-6 days each) and long drainage cycles (two drainages of 10-11 days each) on CH(4) emission and analyzed the response of the structure and abundance of methanogens and methanotrophs in a Chinese rice field soil at the DNA level. Rice biomass production was similar between drainage and the practice of continuous flooding. The rate of CH(4) emission, however, was reduced by 59% and 85% for the long and short drainage cycles, respectively. Quantitative (real-time) PCR analysis revealed that the total abundance of archaeal populations decreased by 40% after multiple drainages, indicating the inhibitory effects on methanogen growth. The structure of the methanogen community as determined by terminal restriction fragment length polymorphism analysis, however, remained unaffected by drainages, although it varied among rhizosphere, bulk and surface soils. Quantitative PCR analysis of the methanotrophic functional pmoA genes revealed that the total abundance of methanotrophs in rhizosphere soil increased two to three times after soil drainages, indicating a stimulation of methanotroph growth. The CH(4) oxidation potential in the rhizosphere soil also increased significantly. Furthermore, drainages caused a shift of the methanotrophic community, with a significantly increase of type II methanotrophic bacteria in the rhizosphere and surface soil. Thus, both inhibition of methanogens and stimulation of methanotrophs were partly responsible for the reduction of CH(4) emissions. The methanotroph community, however, appeared to react more sensitively to soil drainage compared with the methanogen community.  相似文献   

16.
As the bioconversion of methane becomes increasingly important for bio-industrial and environmental applications, methanotrophs have received much attention for their ability to convert methane under ambient conditions. This includes the extensive reporting of methanotroph engineering for the conversion of methane to biochemicals. To further increase methane usability, we demonstrated a highly flexible and efficient modular approach based on a synthetic consortium of methanotrophs and heterotrophs mimicking the natural methane ecosystem to produce mevalonate (MVA) from methane. In the methane-conversion module, we used Methylococcus capsulatus Bath as a highly efficient methane biocatalyst and optimized the culture conditions for the production of high amounts of organic acids. In the MVA-synthesis module, we used Escherichia coli SBA01, an evolved strain with high organic acid tolerance and utilization ability, to convert organic acids to MVA. Using recombinant E. coli SBA01 possessing genes for the MVA pathway, 61 mg/L (0.4 mM) of MVA was successfully produced in 48 h without any addition of nutrients except methane. Our platform exhibited high stability and reproducibility with regard to cell growth and MVA production. We believe that this versatile system can be easily extended to many other value-added processes and has a variety of potential applications.  相似文献   

17.
Pyruvate kinase (EC2.7.1.40) from Rhodopseudomonas sphaeroides was purified 40-fold by precipitation with protamine sulfate and ammonium sulfate followed by gelfiltration. The preparations obtained from cells grown with different carbon sources or cultural conditions differ with respect to specific activity but not with respect to molecular weight (250000 dalton) or regulatory properties. The phosphoenolpyruvate (PEP)-saturation curve of the enzyme is sigmoidal with Hill coefficients varying from n H =1.8 (pH 9.2) to 2.7 (pH 6.0). The enzyme is activated by adenosinemonophosphate (AMP) and the sugarmonophosphates ribose-5-phosphate (R-5-P), glucose-6-phosphate (G-6-P), and-to a lesser extent-fructose-6-phosphate (F-6-P). Fructose-1.6-bisphosphate (FDP) has no measurable effect. Inhibitors of the enzyme are adenosintriphosphate (ATP), inorganic phosphate (P i ) and the dicarboxylic acids succinate and fumarate. Kinetic analysis reveals that the sugar-phosphates and the dicarboxylic acids act as true allosteric ligands, wheras the effects of AMP, ATP, and P i cannot be interpreted solely in terms of allosteric interactions. Cold-treatment of the enzyme leads to a rapid loss of activity, but does not change the regulatory properties of the enzyme. Analysis of the kinetics of cold-inactivation and its reversal at 30°C, together with studies on the gelfiltration behaviour of the native and the cold-treated enzyme make it likely that the cold-induced loss of activity is due to a dissociation of the enzyme.  相似文献   

18.
Soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO) gene clusters in the marine methanotroph Methylomicrobium sp. strain NI were completely sequenced and analysed. Degenerated primers were newly designed and used to amplify the gene fragments containing intergenic mmoX-Y and mmoD-C regions and a partial pmoC region. Phylogenetic analysis of amino acid sequences deduced from mmoX and pmoA, as well as of 16S rRNA gene sequences, indicated that this strain was most closely related to the halotolerant methanotroph Methylomicrobium buryatense. There were putative sigma(54)- and sigma(70)-dependent promoter sequences upstream of the sMMO and pMMO genes, respectively, and mmoG, which is known to be related to the expression and assembly of sMMO, existed downstream of the sMMO genes. These findings suggest that the major components and regulation of MMOs in this marine methanotroph are quite similar to those in freshwater methane oxidizers, despite the difference in their habitats.  相似文献   

19.
When cells of a type II methanotrophic bacterium (Methylocystis strain LR1) were starved of methane, both the K(m(app)) and the V(max(app)) for methane decreased. The specific affinity (a(o)(s)) remained nearly constant. Therefore, the decreased K(m(app)) in starved cells was probably not an adjustment to better utilize low-methane concentrations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号