首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of topoisomerases I and II on the replication of SV40 DNA were examined using an in vitro replication system of purified proteins that constitutes the monopolymerase system. In the presence of the two topoisomerases, two distinct nascent DNAs were formed. One product arising from the replication of the leading template strand was approximately half the size of the template DNA, whereas the other product derived from the lagging template strand consisted of short DNAs. These products were synthesized from both SV40 naked DNA and SV40 chromosomes. For the replication of SV40 naked DNA, either topoisomerase I or II maintained replication fork movement and supported complete leading strand synthesis. When SV40 chromosomes were replicated with the same proteins, reactions containing only topoisomerase I produced shorter leading strands. However, mature size DNA products accumulated in reactions supplemented with topoisomerase II, as well as in reactions containing only topoisomerase II. In the presence of crude extracts of HeLa cells, VP-16, a specific inhibitor of topoisomerase II, blocked elongation of the nascent DNA during the replication of SV40 chromosomes. These results indicate that topoisomerase II plays a crucial role as a swivelase in the late stage of SV40 chromosome replication in vitro.  相似文献   

2.
O Sundin  A Varshavsky 《Cell》1981,25(3):659-669
When SV40-infected cells are placed into hypertonic medium, newly synthesized DNA accumulates as form C catenated dimers. These molecules consist of two supercoiled monomer circles of SV40 DNA interlocked by one or more topological inter-twinings and are seen as transiently labeled inter-mediates during normal replication. Form C catenated dimers represent pure segregation intermediates, replicative DNA structures in which DNA synthesis is complete but which still require topological separation of the two daughter circles. Hypertonic shock seems to block selectively a type II topoisomerase activity involved in disentangling the two circles. This is reflected in the fact that form C catenated dimers that accumulate during the block are highly intertwined with catenation linkage numbers up to C(L) = 20. While initiation of replication is also inhibited by hypertonic treatment, ongoing SV40 DNA synthesis is not affected, and replication is free to proceed from the earliest cairns structure through to form C catenated dimers. The block to segregation is rapidly and completely released by shifting the cells back to normal medium. A much slower recovery of DNA segregation takes place on prolonged incubation in hypertonic medium, perhaps because of some cellular homeostatic mechanism. The results of this work lead to a detailed view of the final stages of SV40 DNA replication.  相似文献   

3.
The normal sequence at which SV40 DNA replication terminates (TER) is unusual in that it promotes formation of catenated intertwines when two converging replication forks enter to complete replication (Weaver et al., 1985). Here we show that yeast centromeric sequences also exhibit this phenomenon. CEN3 caused accumulation of late replicating intermediates and catenated dimers in plasmids replicating in mammalian cells, but only when it was located in the termination region (180 degrees from ori), and only when cells were subjected to hypertonic shock to reduce topoisomerase II activity. Therefore, formation of catenated intertwines during termination of DNA replication was sequence dependent, suggesting that topoisomerase II acts behind replication forks in the termination region to remove intertwines generated by unwinding DNA rather than acting after replication is completed and catenates are formed. Under normal physiological conditions, CEN3 did not promote formation of catenated dimers in either mammalian or yeast cells. Therefore, CEN does not maintain association of sister chromatids during mitosis in yeast by introducing stable catenated intertwines during replication.  相似文献   

4.
The reconstituted pBR322 DNA replication system has been used to identify a mechanism for the processing and segregation of daughter DNA molecules by Escherichia coli topoisomerase I (Topo I) during the terminal stages of DNA replication. At low concentrations of Topo I (sufficient to confer specificity to the replication system for DNA templates containing a ColE1-type origin of DNA replication), the major products of the replication reaction were: multigenome-length, linear, double-stranded DNA molecules (an aberrant product); multiply interlinked, catenated, supercoiled DNA dimers; and a last Cairns-type replication intermediate. Thirty- to fifty-fold higher concentrations of Topo I led to the appearance of form II and form I pBR322 DNA as the only synthetic products. A model was developed in which Topo I, bound to a single-stranded gap on the parental H strand DNA just upstream of the origin of DNA replication, catalyzed the decatenation of the intermolecular linkages between the two daughter DNA molecules that were generated by primosome-catalyzed unwinding of the residual nonreplicated parental duplex DNA in the last Cairns-type intermediate. At low concentrations of Topo I, however, the intermolecular linkages persisted and, within the context of this replication system, were not removed by DNA gyrase. In support of this model it was demonstrated that: there was a single-stranded gap between the nonreplicated parental duplex region and the 5' end of the nascent leading-strand DNA; the number of intermolecular linkages in the catenated supercoiled DNA dimers was inversely related to the concentration of Topo I; the supercoiled DNA dimers did not serve as a precursor of the final form I DNA product; and maturation of the last Cairns-type replication intermediate to form I DNA was not affected by the presence of coumermycin, a potent inhibitor of the activities of DNA gyrase.  相似文献   

5.
Simian Virus 40 (SV40) infected cells were pulse labeled with (3H) thymidine and chased either in the absence or in the presence of the cytotoxic drug VM26 (teniposide). We investigated the structure of labeled SV40 DNA and found that VM26 had no significant effect on replicative chain elongation but strongly inhibited the conversion of late replication intermediates to mature DNA daughter molecules. The late replicative SV40 DNA intermediates which accumulate in VM26 treated cells contained essentially full length labeled DNA strands. These newly synthesized strands were not part of two catenated interlocked SV40 monomers suggesting that the block occurred prior to the final ligation reaction. Since VM26 is known to be a specific inhibitor of DNA topoisomerase II we conclude that this enzyme is dispensable for the chain elongation of replicating SV40 DNA, but that it is essential for the termination of SV40 DNA replication cycles.  相似文献   

6.
Separation of the two newly replicated chromosomes in simian virus 40 late replicating intermediates (RI*) occurred by two pathways. The parental DNA strands were completely unwound, releasing circular DNA monomers with a gap in the nascent strand (Form II*), or duplex DNA in the termination region was not unwound, resulting in formation of catenated dimers. Under optimal conditions, both products were transient intermediates in replication, although Form II* was predominant. However, in hypertonic medium both RI* and catenated dimers accumulated, and Form II* was not observed. Hypertonic medium appeared to inhibit both DNA unwinding in the termination region and separation of catenated dimers. When the size of the genome or the position of the origin of replication was changed, termination occurred at sites other than that of wild-type SV40. Neither catenated dimers nor RI* DNA accumulated at these sites. Instead, RI* separated into Form II*. Unwinding parental DNA was more difficult at some termination regions than others. Therefore, although completion of DNA replication does not require a unique termination sequence, this sequence can determine the mode of separation for sibling molecules.  相似文献   

7.
DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclin-dependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.

Key Words:

Plant cyclin B2, Topoisomerase II, ICRF-193, G2 checkpoint, Microtubules  相似文献   

8.
DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclindependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.  相似文献   

9.
Topoisomerase II is essential for cell proliferation and survival and has been a target of various anticancer drugs. ICRF-193 has long been used as a catalytic inhibitor to study the function of topoisomerase II. Here, we show that ICRF-193 treatment induces DNA damage signaling. Treatment with ICRF-193 induced G2 arrest and DNA damage signaling involving gamma-H2AX foci formation and CHK2 phosphorylation. DNA damage by ICRF-193 was further demonstrated by formation of the nuclear foci of 53BP1, NBS1, BRCA1, MDC1, and FANCD2 and increased comet tail moment. The DNA damage signaling induced by ICRF-193 was mediated by ATM and ATR and was restricted to cells in specific cell cycle stages such as S, G2, and mitosis including late and early G1 phases. Downstream signaling of ATM and ATR involved the phosphorylation of CHK2 and BRCA1. Altogether, our results demonstrate that ICRF-193 induces DNA damage signaling in a cell cycle-dependent manner and suggest that topoisomerase II might be essential for the progression of the cell cycle at several stages including DNA decondensation.  相似文献   

10.
We have found that type II topoisomerase inhibitors have two effects on replicating simian virus 40 genomes in vivo: production of catenated dimers and slowed replication of the last 5% of the genome. This suggests that type II topoisomerase simultaneously decatenates and facilitates replication fork movement at this stage of DNA replication. On the basis of this observation, a detailed model is proposed for the roles of topoisomerases I and II in simian virus 40 DNA replication.  相似文献   

11.
We have examined the influence of VM26 (teniposide), a specific inhibitor of mammalian type II DNA topoisomerase, on the replication of SV40 minichromosomes in vitro. The replication system we used consists of replicative intermediate SV40 chromatin as substrate which is converted to mature SV40 chromatin in the presence of ATP, deoxynucleotides and a protein extract from uninfected cells. The addition of 100 microM VM26 to this system reduces DNA synthesis to 70 to 80 percent of the control and leads to an accumulation of 'late replicative intermediates'. The VM26 induced block of replication was not released by the addition of large quantities of type I DNA topoisomerase. We conclude, that type II DNA topoisomerase is essential for the final replication steps leading from late Cairns structures of replicative intermediates to monomeric minichromosomes. It appears that type I DNA topoisomerase can function as a swivelase during most of the replicative elongation phase, but must later be replaced by type II DNA topoisomerase.  相似文献   

12.
13.
A bis(2,6-dioxopiperazine) derivative, ICRF-193, is a specific inhibitor of topoisomerase II without clearable complex-stabilizing activity. In Xenopus egg extract containing ICRF-193, demembranated sperm head chromatins were inhibited from decondensation. However, nuclear envelope-lamina assembled on the inhibited chromatins. The nuclear envelope-lamina continued to expand even after loss of contact with the chromatin surface. On the other hand, semiconservative DNA replication was initiated as soon as the lamina was assembled onto the surface of condensed chromatin, though the initiation was retarded and its extent was reduced, compared with that in noninhibited chromatins. Thus, it is concluded that topoisomerase II activity is not required for the formation of active DNA replication clusters and the extension of nuclear envelope-lamina on the chromatin, while the nuclear envelope-mediated decondensation of sperm chromatins is dependent on topoisomerase II activity.  相似文献   

14.
DNA gyrase-catalyzed decatenation of multiply linked DNA dimers   总被引:7,自引:0,他引:7  
One possible intermediate during the terminal stages of the replication of a closed circular DNA is a catenated DNA dimer of the two completed daughter molecules. The two monomer DNA rings in these DNA dimers can be linked as many as 20-30 times. In Escherichia coli, DNA gyrase could act on these catenated dimers to eliminate the linkages between the daughter duplexes, yielding the final monomer product. In this report, this reaction has been studied biochemically. The in vitro pBR322 DNA replication system (Minden, J., and Marians, K. J. (1985) J. Biol. Chem. 260, 9316-9325) was used to manufacture large amounts of multiply linked catenated DNA dimers for use as a substrate for DNA gyrase-catalyzed decatenation. Studies presented here demonstrate that this decatenation reaction is more efficient with supercoiled as opposed to relaxed DNA dimers, proceeds in a distributive fashion, is inhibited by moderate amounts of salt (80 mM KCl), and is stimulated by the E. coli protein HU.  相似文献   

15.
C G Shin  R M Snapka 《Biochemistry》1990,29(49):10934-10939
Exposure of infected CV-1 cells to specific type I and type II topoisomerase poisons caused strong protein association with distinct subsets of simian virus 40 (SV40) DNA replication intermediates. On the basis of the known specificity and mechanisms of action of these drugs, the proteins involved are assumed to be the respective topoisomerases. Camptothecin, a topoisomerase I poison, caused strong protein association with form II (relaxed circular) and form III (linear) viral genomes and replication intermediates having broken DNA replication forks but not with form I (superhelical) viral DNA or normal late replication intermediates which were present. In contrast, type II topoisomerase poisons caused completely replicated forms and late viral replication forms to be tightly bound to protein--some to a greater extent than others. Different type II topoisomerase inhibitors caused distinctive patterns of protein association with the replication intermediates present. Both intercalating and nonintercalating type II topoisomerase poisons caused a small amount of form I (superhelical) SV40 DNA to be protein-associated in vivo. The protein complex with form I viral DNA was entirely drug-dependent and strong, but apparently noncovalent. The protein associated with form I DNA may represent a drug-stabilized "topological complex" between type II topoisomerase and SV40 DNA.  相似文献   

16.
The bis-dioxopiperazine ICRF-193 has long time been considered as a pure topoisomerase II catalytic inhibitor able to exert its inhibitory effect on the enzyme without stabilization of the so-called cleavable complex formed by DNA covalently bound to topoisomerase II. In recent years, however, this concept has been challenged, as a number of reports have shown that ICRF-193 really "poisons" the enzyme, most likely through a different mechanism from that shown by the classical topoisomerase II poisons used in cancer chemotherapy. In the present investigation, we have carried out a study of the capacity of ICRF-193 to induce DNA strand breaks, as classical poisons do, in cultured V79 and irs-2 Chinese hamster lung fibroblasts using the comet assay and pulsed-field gel electrophoresis (PFGE). Our results clearly show that ICRF-193 readily induces breakage in DNA through a mechanism as yet poorly understood.  相似文献   

17.
Antineoplastic bis(dioxopiperazine)s, such as meso-2,3-bis(2,6-dioxopiperazin-4-yl)butane (ICRF-193), are widely believed to be only catalytic inhibitors of topoisomerase II. However, topoisomerase inhibitors have little or no antineoplastic activity unless they are topoisomerase poisons, a special subclass of topoisomerase-targeting drugs that stabilize topoisomerase-DNA strand passing intermediates and thus cause the topoisomerase to become a cytotoxic DNA-damaging agent. Here we report that ICRF-193 is a very significant topoisomerase II poison. Detection of topoisomerase II poisoning by ICRF-193 required the use of a chaotropic protein denaturant in the topoisomerase poisoning assays. ICRF-193 caused dose-dependent cross-linking of human topoisomerase IIbeta to DNA and stimulated topoisomerase IIbeta-mediated DNA cleavage at specific sites on (32)P-end-labeled DNA. Human topoisomerase IIalpha-mediated DNA cleavage was stimulated to a lesser extent by ICRF-193. In vivo experiments with MCF-7 cells also showed the requirement of a chaotropic protein denaturant in the assays and selectivity for the beta-isozyme of human topoisomerase II. Studies with two topoisomerase IIbeta-negative cell model systems confirmed significant topoisomerase II poisoning by ICRF-193 in the wild type cells and were consistent with beta-isozyme selectivity. Common use of only the detergent, SDS, in assays may have led to failure to detect topoisomerase II poisoning by ICRF-193 in earlier studies.  相似文献   

18.
Drosophila topoisomerase II-DNA interactions are affected by DNA structure.   总被引:6,自引:0,他引:6  
The binding of purified Drosophila topoisomerase II to the highly bent DNA segments from the SV40 terminus of replication and C. fasciculata kinetoplast minicircle DNA (kDNA) was examined using electron microscopy (EM). The probability of finding topoisomerase II positioned at or near the bent SV40 terminus and Crithidia fasciculata kDNA was two- and threefold higher, respectively, than along the unbent pBR325 DNA into which the elements had been cloned. Closer examination demonstrated that the enzyme bound preferentially to the junction between the bent and non-bent sequences. Using gel electrophoresis, a cluster of strong sodium dodecyl sulfate-induced topoisomerase II cleavage sites was mapped to the SV40 terminus DNA, and two weak cleavage sites to the C. fasciculata kDNA. As determined by EM, Drosophila topoisomerase II foreshortened the apparent length of DNA by only 15 base-pairs when bound, arguing that it does not wrap DNA around itself. When bound to pBR325 containing the C. fasciculata kDNA and the SV40 terminus, topoisomerase II often produced DNA loops. The size distribution was that predicted from the known probability of any two points along linear DNA colliding. In vitro mapping of topoisomerase II on DNA whose ends were blocked by avidin protein revealed that binding is enhanced at sites located near a blocked end as compared to a free end. These observations may contribute towards establishing a framework for understanding topoisomerase II-DNA interactions.  相似文献   

19.
Differentiation of Drosophila Schneider cells caused by DNA double-strand break (DSB)-inducing topoisomerase II (topo II) inhibitors were attenuated by ICRF-193, a non-DNA-damaging topo II inhibitor. ICRF-193 did not inhibit differentiation induced by neocarzinostatin (NCS), a drug that causes DNA DSBs independent of topo II. Schneider cells differentiated upon treatment with gamma-ray. These results suggest that DNA DSBs induce myogenic differentiation of Schneider cells. We also found DNA replication inhibitors, hydroxyurea (HU), aphidicolin, and ethylmethanesulfonate (EMS) induced myogenic differentiation of Schneider cells. HU-induced differentiation was inhibited upon pretreatment of cells with chemical inhibitors of PP 1/2A, p38 MAPK, JNK, and proteasome. RT-PCR analysis revealed that the expressions of fusion-competent myoblast-specific genes lmd, sns, and del were induced in Schneider cells upon treatment with NCS or HU, whereas expressions of three founder cell-specific genes, duf, ants, and rols, were undetectable. These results indicate that the expression of fusion competent-myoblast-specific genes is induced during myogenic differentiation of Drosophila Schneider cells by DNA DSBs or replication inhibition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号