首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Immunogold labelling techniques on ultrathin sections of low temperature embedded cells yielded evidence for the periplasmic location of the respiratory enzymes N2O reductase and nitrite reductase (cytochrome cd 1) in Pseudomonas stutzeri strain ZoBell. Cell fractionation by spheroplast preparation and two-dimensional electrophoresis showed the absence of a membrane association of these enzymes. Immunocytochemical localization of N2O reductase in a mutant strain deficient in the chromophore of N2O reductase showed the gold label at the cell periphery, indicating that the copper chromophore processing takes place after export of this protein's apoform.  相似文献   

5.
A chemiluminescence detector was used to measure the production of nitric oxide, NO, from the denitrifying bacteria Pseudomonas stutzeri. NO is an intermediate when P. stutzeri converts nitrate into nitrogen gas. The reaction between NO and ozone is selective and sensitive in generating chemiluminescence. Calibrations were made down to 1 nM, with a signal-to-noise ratio of 3. Bacteria were immobilised in alginate beads. Denitrification experiments were made in an anaerobic non-growth medium by adding nitrate to a certain concentration in the reactor. The bacteria were exposed to nitrate in the concentration range 1 pM–5 mM. The lowest concentration to give a measurable NO response was 100 nM. Received: 16 October 1997 / Received revision: 20 January 1998 / Accepted: 24 January 1998  相似文献   

6.
Previously, we described the generation and initial characterization of four Tn5 mutants of Pseudomonas stutzeri strain KC with impaired ability to degrade carbon tetrachloride (Sepúlveda-Torres et al., 1999). In this study, we show cloning and sequencing of an 8.3 kbp region in which all four transposons were located. This fragment encodes eight potential genes and is located in the central part of the 25 kbp fragment recently identified by Lewis et al. (2000) and shown by them to be sufficient to confer carbon tetrachloride transformation capability upon other pseudomonads. The four transposon insertion mutants mapped in ORF's F and I designated by Lewis et al. (2000). This is consistent with the results by Lewis et al. (2000) that orfFis required for carbon tetrachloride degradation. We further established that orfl is required for CCl4 degradation since the three mutants in this ORF were unable to degrade carbon tetrachloride. We present our analysis of the gene and protein sequences from the 8.3 kbp region and propose a tentative model for the role of different genes in the synthesis and activity of pyridine-2,6-bis(thiocarboxylate) (PDTC), the secreted factor responsible for carbon tetrachloride dechlorination. We also found a putative promoter that overlaps with a Fur-box-like sequence in the region upstream of mutated genes. To test this putative promoter region and Fur-box, we generated and ligated DNA fragments containing wild-type and mutant Fur-boxes to a lacZ reporter. The wild-type fragment showed promoter activity that is regulated by the concentration of iron in the medium. Finally, we screened a selection of Pseudomonas strains, including P. putida DSMZ 3601--a strain known to produce PDTC--for the presence of the genes characterized in this study. None of the strains tested positive, suggesting that Pseudomonas stutzeri strain KC may possess a distinct biosynthetic pathway for PDTC production.  相似文献   

7.
A novel heterotrophic nitrifying and aerobic denitrifying bacterium, KTB, was isolated from activated sludge flocci collected from a biological aerated filter according to the modified Takaya method and identified as Pseudomonas stutzeri by 16S rDNA gene sequence analysis. When shaking-cultured in the presence of 4.331 mmol/L of nitrate, 4.511 mmol/L of nitrite and 4.438 mmol/L of ammonium, the strain grew fast, with μmax being 0.42, 0.45, and 0.56/h, and displayed high nitrogen removal efficiency, with nitrogen removal rate being 0.239, 0.362, and 0.361 mmol/L/h and nitrogen removal ratio being 99.1, 100.0, and 100.0% in 18 h, respectively. The removal mainly occurred in the logarithmic phase. Nitrite accumulation did not affect denitrification performance. Nitrate concentration was below the detectable limit during the whole growth cycle when ammonium was used as sole nitrogen source. It tolerated high DO level and exhibited excellent aggregation ability. A possible pathway involved in the nitrogen removal process, which demonstrated a full nitrification and denitrification route, was speculated. The strain might be a great candidate for biological removal of nitrogen compounds from wastewater.  相似文献   

8.
9.
10.
11.
Pseudomonas stutzeri OX1 is able to degrade toluene and ortho-xylene via the direct oxygenation of the aromatic ring. The genetic studies carried out suggest that the genes coding for the monooxygenase involved in the early steps of this catabolic route have been acquired by gene transfer. P. stutzeri OX1 is also potentially able to utilize meta- and para-xylene as growth substrates. These two isomers are metabolized through a different pathway (TOL pathway). Both catabolic routes can be activated or inactivated by means of genomic rearrangements. The relevance of such recombination mechanisms in the evolution and the adaptability of P. stutzeri is discussed.  相似文献   

12.
13.
A strain-specific immunofluorescence assay for enumeration of a marine denitrifying bacterium was developed and applied in the marine environment. The polyclonal antiserum for Pseudomonas stutzeri (ATCC 14405) did not react with other pseudomonads, other heterotrophs, or autotrophic nitrifying strains. The abundance of P. stutzeri in the shallow water column of Monterey Bay was less than 0.1% of the total bacterial abundance and decreased with depth, whereas the total bacterial abundance was variable and nearly constant with depth. P. stutzeri was also detected in the sediments of a microbial mat from Tomales Bay. The relatively low contribution of P. stutzeri to the total bacterial abundance in both environments implies that it is not a major component of the heterotrophic assemblage. This conclusion appears to hold for most other strains for which specific assays have been applied in the marine environment. The isolation of several different denitrifying strains from local marine environments implies that the culturable population is quite diverse, even in the absence of different selective enrichment media. Thus, strain specific immunofluorescence is of limited use in quantifying functional groups of bacteria. Conversely, they provide specific information on the diversity of natural populations and their relation to culturable strains.Offprint requests to: B. Ward  相似文献   

14.
15.
16.
17.
Denitrification is the process by which nitrates are converted to nitrogen gas under the action of microor-ganism, and in a bioenergetics viewpoint, a kind of respiration of bacteria in anoxia condition. In such a process, nitrogen in oxidation state replaces oxygen as the terminal electron acceptor in cell membrane, gen-erates potential gradient with the action of a series of oxidoreductase, and finally converts nitrate into nitro-gen[1]. Denitrification is widely present in nature, and resea…  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号