共查询到20条相似文献,搜索用时 0 毫秒
1.
Cerebellar Purkinje cells (PCs), the sole output neurons in the cerebellar cortex, play an important role in the cerebellar circuit. PCs appear to be rather sensitive to aging, exhibiting significant changes in both morphology and function during senescence. This article reviews such changes during the normal aging process, including a decrease in the quantity of cells, atrophy in the soma, retraction in the dendritic arborizations, degeneration in the subcellular organelles, a decline in synapse density, disorder in the neurotransmitter system, and alterations in electrophysiological properties. Although these deteriorative changes occur during aging, compensatory mechanisms exist to counteract the impairments in the aging PCs. The possible neural mechanisms underlying these changes and potential preventive treatments are discussed. 相似文献
2.
Signal processing in cerebellar Purkinje cells 总被引:4,自引:0,他引:4
M Ito 《Physiologia Bohemoslovaca》1987,36(3):203-216
Mechanisms and functional implications of signal processing in cerebellar Purkinje cells have been the subject of recent extensive investigations. Complex patterns of their planar dendritic arbor are analysed with computer-aided reconstructions and also topological analyses. Local computation may occur in Purkinje cell dendrites, but its extent is not clear at present. Synaptic transmission and electrical and ionic activity of Purkinje cell membrane have been revealed in detail, and related biochemical processes are being uncovered. A special type of synaptic plasticity is present in Purkinje cell dendrites; long-term depression (LTD) occurs in parallel fiber-Purkinje cell transmission when the parallel fibers are activated with a climbing fiber innervating that Purkinje cell. Evidence indicates that synaptic plasticity in Purkinje cells is due to sustained desensitization of Purkinje dendritic receptors to glutamate, which is a putative neurotransmitter of parallel fibers, and that conjunctive activation of a climbing fiber and parallel fibers leads to desensitization through enhanced intradendritic calcium concentration. A microzone of the cerebellar cortex is connected to an extracerebellar neural system through the inhibitory projection of Purkinje cells to a cerebellar or vestibular nuclear cell group. Climbing fiber afferents convey signals representing control errors in the performance of a neural system, and evoke complex spikes in Purkinje cells of the microzone connected to the neural system. Complex spikes would modify the performance of the microzone by producing LTD in parallel fiber-Purkinje cell synapses, and consequently would improve the overall performance of the neural system. The primary function of the cerebellum thus appears to be endowing adaptability to numerous neural control systems in the brain and spinal cord through error-triggered reorganization of the cerebellar cortical circuitry. 相似文献
3.
4.
The cerebellar cortex and its sole output, the Purkinje cell, have been implicated in motor coordination, learning and cognitive functions. Therefore, the ability to generate Purkinje cell-specific mutations in physiologically relevant genes is of particular neurobiological interest. A suitable approach is the Cre/loxP strategy that allows temporally and spatially controlled gene inactivation. Here, we present the characterization of transgenic mouse strains expressing Cre recombinase controlled by the L7/pcp-2 gene. Endogenous L7/pcp-2 protein is expressed exclusively in Purkinje cells and retinal bipolar neurones. Recombination was detected by beta-galactosidase histochemistry in tissues from crosses of the L7/pcp-2:Cre transgenic lines with two different indicator strains, GtROSA26 and ACZL. Purkinje cells in all folia of the cerebellum displayed intense beta-galactosidase staining, whereas only few blue cells were observed in the retina and other parts of the CNS. Thus, these transgenic lines are potentially of great importance for genetic manipulations in cerebellar Purkinje cells. 相似文献
5.
The function of Golgi cells in the cerebellar cortex is quantitatively examined in consideration of the nonlinear input-output characteristics and convergence and divergence numbers of cells. It is strongly suggested that the two signal paths to Golgi cells have different function. The feed-forward path will have the same function as assumed in the previous theories of the cerebellar cortex, that is, to keep the firing rate of granule cells approximately constant over considerable variation in the firing rate of mossy fibers. The feedback path will, on the other hand, have a new function which has not been assumed in the previous theories. The function is to cause oscillation of the firing rate of granule cells for stationary mossy fiber inputs. The assumption of the new function enables us to explain cerebellar function to keep stationary posture. 相似文献
6.
To identify the kinds of cells in the brain that express the yes proto-oncogene, we examined chicken brains by using immunofluorescent staining and in situ hybridization. Both approaches showed that the highest level of the yes gene product was in cerebellar Purkinje cells. In addition, we analyzed Purkinje cell degeneration (pcd) mutant mice. The level of yes mRNA in cerebella of pcd mutants was four times lower than that found in cerebella of normal littermates. Our studies point to Purkinje cells as an attractive model for functional studies of the yes protein. 相似文献
7.
The regulators of G protein signaling (RGS) proteins modulate heterotrimeric G protein signaling. RGS8 belongs to B/R4 subfamily of RGS proteins and is specifically expressed in Purkinje cells of adult cerebellum. Here, to examine the expression of RGS8 mRNA in developing cerebellum, we performed in situ hybridization. Apparent signals for expression of RGS8 mRNA were first detected on day 9 after birth, then RGS8 mRNA expression in Purkinje cells increased up to day 21, and its levels decreased to some extent in adult Purkinje cells. We also studied the expression of RGS7, which is expressed in Golgi cells in the granule cell layer of adult cerebellum. The expression of RGS7 mRNA was recognized in 7 day neonatal cerebellum. When examined with anti-RGS8 antibody, the RGS8 protein was already excluded from nucleus on day 9, and was distributed in cell body and dendrites in differentiating Purkinje cells of 14 day neonates. 相似文献
8.
9.
10.
Börner K Nygren H Hagenhoff B Malmberg P Tallarek E Månsson JE 《Biochimica et biophysica acta》2006,1761(3):335-344
White matter and the inner granular layer of rat cerebellum was analysed by imaging time-of-flight secondary-ion mass spectrometry (TOF-SIMS) equipped with a Bi+ ion cluster gun. Samples were prepared by high pressure freezing, freeze-fracturing and freeze drying or by plunge freezing and cryostat sectioning. The identified and localized chemical species were: sodium, potassium, phosphocholine, cholesterol and galactosylceramide (GalC) with carbon chain lengths C18:0 (N-stearoyl-galactosylceramide) and C24:0 (N-lignoceroylgalactosylceramide) with CH24:0 (hydroxy-lignoceroylgalactosylceramide). We report new findings regarding the organization of myelin in white matter. One is cholesterol-rich, ribbon-shaped 10-20 microm areas excluding Na+ and K+. The second finding is the different distribution of GalC C18 and GalC C24 in relation to these areas, where GalC C18 was localized in cholesterol-rich areas and GalC C24 was localized in Na/K-enriched areas. The distribution of GalC was in small spots, homogeneous in size, of 0.8-1.5 microm. Sample preparation with high pressure freezing allowed separate localization of sodium and potassium in tissue samples. 相似文献
11.
R R Sturrock 《Zeitschrift für mikroskopisch-anatomische Forschung》1990,104(5):705-714
Two types of medium to large sized neurons are present in the granular layer of the mouse cerebellum. One type has a large nucleus with a prominent nucleolus and a moderate amount of cytoplasm containing Nissl substance. This type corresponds to the classical Golgi II neuron. The second type has a much smaller nucleus (mean diameter 8.4 microns) with a darkly staining nuclear envelope which is almost invariably deeply indented by cytoplasmic intrusions. The nucleolus is smaller and less conspicuous than in Golgi II neurons. These neurons are identical to the pale cells described by Altman and Bayer (1977). The numbers of both types of neuron were estimated in the spinocerebellum, lobus simplex and nodulus in mice aged 6, 15, 22, 25, 28 and 31 months. There was no significant variation in the number of either Golgi II neurons or pale cells with age in any part of the cerebellum. The number of Golgi II neurons per mm3 was similar in all parts of the cerebellum (mean 3560 mm3). This was identical to the mean number of pale cells per mm3 in the spinocerebellum and pontocerebellum but in the nodulus pale cells were much more numerous (mean 41,170 per mm3). It is postulated that pale cells are small Golgi II neurons. 相似文献
12.
Ikeda A Miyazaki T Kakizawa S Okuno Y Tsuchiya S Myomoto A Saito SY Yamamoto T Yamazaki T Iino M Tsujimoto G Watanabe M Takeshima H 《Biochemical and biophysical research communications》2007,363(3):835-839
Junctional membrane complexes (JMCs) generated by junctophilins are required for Ca(2+)-mediated communication between cell-surface and intracellular channels in excitable cells. Knockout mice lacking neural junctophilins (JP-DKO) show severe motor defects and irregular cerebellar plasticity due to abolished channel crosstalk in Purkinje cells (PCs). To precisely understand aberrations in JP-DKO mice, we further analyzed the mutant PCs. During the induction of cerebellar plasticity via electrical stimuli, JP-DKO PCs showed insufficient depolarizing responses. Immunochemistry detected mild impairment in synaptic maturation and hyperphosphorylation of protein kinase Cgamma in JP-DKO PCs. Moreover, gene expression was slightly altered in the JP-DKO cerebellum. Therefore, the mutant PCs bear marginal but widespread abnormalities, all of which likely cause cerebellar motor defects in JP-DKO mice. 相似文献
13.
Murine chimeras provide an experimental system in which cell lineage analysis of the mammalian central nervous system (CNS) can be accomplished. Utilizing a cell marker system that permits the identification of cells of each genotype in various cell populations present in histologic sections of the CNS at different developmental periods, fate maps of the mammalian CNS can be constructed. Thus, the presence or persistence of clones of cells can be readily visualized in simply organized CNS regions, like the cerebellar cortex. The electrophoretic variants of the glycolytic enzyme, glucosephosphate isomerase (GPI, E.C. 5.3.1.9; GPI-1A, GPI-1B), are the genotype-specific cell markers most commonly used by experimental mammalian embryologists in studies of cell lineage utilizing mammalian chimeras. We have adapted this cell marker system to permit the visualization and unequivocal identification of cells containing the GPI-1B variant throughout the CNS of adult chimeric mice. Utilizing allozyme-specific anti-GPI-1B antisera in immunocytochemical (PAP) staining techniques, we can score small as well as large cell populations, neurons as well as glia. We have reconstructed and statistically analyzed the location and distribution of chimerism present in the Purkinje cell population of four of these chimeric mice. We found the Purkinje cells in each of these animals existed as small (3–8) cell patches of like genotype that were not randomly arranged. This suggests that clones of cells may persist as contiguous groups of cells throughout mammalian cerebellar development. 相似文献
14.
Murzina GB 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2003,53(2):184-190
Mechanisms of associative and homosynaptic long-term depression (LTD) in cerebellar Purkinje cells are discussed. The possibility of LTD induction related to a decrease in efficacy of AMPA receptors through either their dephosphorylation or phosphorylation is investigated by mathematical simulation. 相似文献
15.
In experiments on guinea pigs (from newborn to adults), studies have been made on the extensor, support and lift reactions, as well as on the activity of cerebellar Purkinje cells in the same animals. First signs of immature lift, extensor and support reactions were observed already 12th after birth. At this period, mean discharge frequency in Purkinje cells was significantly lower than in the adult animals, reaching 11.5 +/- 1.2 imp/s for simple spikes and 0.45 +/- 0.05 imp/s for complex ones. Complete maturation of lift, extensor and support reactions takes place to the beginning of the 2nd week (8-9 days) of postnatal life. Within this period, significant changes in the activity of Purkinje cells were observed: mean discharge frequency of simple and complex spikes increased correspondingly up to 17.9 +/- 2.3 and 1.48 +/- 0.25 imp/s. At the same time, the mean discharge frequency in Purkinje cells, the average duration of inhibition pause, and the response latency became more stable. 相似文献
16.
Bosman LW Hartmann J Barski JJ Lepier A Noll-Hussong M Reichardt LF Konnerth A 《Brain Cell Biology》2006,35(1):87-101
The receptor tyrosine kinase TrkB and its ligands, brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5),
are critically important for growth, survival and activity-dependent synaptic strengthening in the central nervous system.
These TrkB-mediated actions occur in a highly cell-type specific manner. Here we report that cerebellar Purkinje cells, which
are richly endowed with TrkB receptors, develop a normal morphology in trkB-deficient mice. Thus, in contrast to other types of neurons, Purkinje cells do not need TrkB for dendritic growth and spine
formation. Instead, we find a moderate delay in the maturation of GABAergic synapses and, more importantly, an abnormal multiple
climbing fiber innervation in Purkinje cells in trkB-deficient mice. Thus, our results demonstrate an involvement of TrkB receptors in synapse elimination and reveal a new role
for receptor tyrosine kinases in the brain.
Electronic Supplementary Materials Supplementary Materials is available in the online version of this article at 相似文献
17.
Transient biochemical compartmentalization of Purkinje cells during early cerebellar development 总被引:6,自引:0,他引:6
It has recently been observed that during early cerebellar development--from embryonic Day 17 to postnatal Day 3 in the rat--only certain discrete clusters of Purkinje cells (PCs) are immunoreactive to cyclic GMP-dependent protein kinase (cGK). In contrast, at later stages and in the adult, all the PCs are immunoreactive. These results obtained with cGK suggest a transitory intrinsic heterogeneity in the immature cerebellar cortex. It seemed therefore interesting to investigate the distribution of other PC markers during early development in the rat and in other species. The results presented here were obtained with two other antibodies--against vitamin D-dependent calcium binding protein and against Purkinje cell specific glycoprotein--which, like cGK, label all adult PCs. Each antibody gave a different and reproducible mosaic of positive and negative clusters of PCs in the perinatal cerebellum, thus indicating a transient biochemical compartmentalization resulting from the differential expression of parts of the same genotype by clusters of PCs. This compartmentalization in concomitant with the ingrowing of the cerebellar afferents. Once synaptogenesis starts, the biochemical heterogeneity of PCs disappears. 相似文献
18.
T. L. Oleinik R. A. Grigoryan 《Journal of Evolutionary Biochemistry and Physiology》2008,44(1):109-115
In sagittal cerebellum sections, morphometrical study of cerebellum of mature-born animals—guinea pigs—was performed using Nissl’s procedure. A change of shape and volume of Purkinje cells and their nuclei in the course of the guinea pig postnatal ontogenesis was studied. It has been shown that both the growth process itself and the rate of formation of the definite form of Purkinje cells and of their nuclei in the course of ontogenesis proceeds non-uniformly. The most intensive growth of vertical and horizontal diameters of Purkinje cells and of their nuclei is observed during the 1st and 4th weeks of postnatal life. Especially rapid is an increase of horizontal diameters of Purkinje cells and of their nuclei, which impairs the ovoid-bear-like shape to the cerebellar Purkinje cells of adult guinea pigs. 相似文献
19.
OBJECTIVE--To examine the dose-response effect of alcohol consumption on the number of cerebellar Purkinje cells. DESIGN--A prospective necropsy study combined with detailed reports on use of alcohol from a relative or friend. The number of Purkinje cells was counted in the anterior midsagittal section of the cerebellar vermis, the area of which was measured by computer assisted morphometry. SETTING--Department of forensic medicine, University of Helsinki. SUBJECTS--66 men, aged 35 to 69 years, subjected to medicolegal necropsy because of sudden or violent death. The average all year daily alcohol consumption over the year was 0 to 10 g in 17 men, 11 to 80 g in 24 men, and more than 80 g in 25 men. MAIN OUTCOME MEASURES--Number of Purkinje cells, alcohol consumption. RESULTS--The numbers and density of Purkinje cells in the cross section of vermis showed a consistent but weak decrease with increasing daily alcohol intake but not with age. A wide variation in the cell counts was observed, especially in men drinking more than 80 g, suggesting differences in the susceptibility to effects of alcohol. Compared with men drinking 40 g or less, a long term moderate consumption of an average of 41 to 80 g daily was associated with a significant average loss of 242 (95% confidence interval 45 to 439) Purkinje cells (15.2%) from a mean of 1583 to 1341 cells. In those drinking 81 to 180 g the average loss was 535 (259 to 811) cells (33.4%) to a mean of 1048 cells. The density of cells in the cross section of vermis also fell significantly by 0.9 cell/mm (0.1 to 1.7) when the daily consumption exceeded 40 g and by 1.4 cell/mm (0.3 to 2.5) when the intake was 81 to 180 g. Only three cases (4.5%) in the series showed macroscopical cerebellar atrophy. CONCLUSION--Long term intake of moderate doses of alcohol daily for 20-30 years may damage the cerebellum before the onset of macroscopical atrophy. Despite distinct individual differences an all year average daily alcohol intake of 41-80 g results in a risk of significant loss of Purkinje cells. 相似文献
20.
在离体大鼠小脑脑片上观察了组胺对小脑皮层第Ⅹ小叶浦肯野细胞的作用。组胺(3~100μmol/L)主要引起浦肯野细胞的兴奋反应(944%,51/54),在少数细胞上也观察到组胺所引起的放电抑制现象(56%,3/54)。用低Ca2+/高Mg2+人工脑脊液灌流脑片,不能取消浦肯野细胞对组胺的兴奋反应(n=4)。H2受体对抗剂ranitidine(01~5μmol/L)能够阻断浦肯野细胞对组胺的兴奋反应(n=20),而H1受体对抗剂triprolidine(05~5μmol/L)不能够(n=9)或仅轻微地(n=4)阻断浦肯野细胞对组胺的兴奋反应。这些结果提示,组胺可能主要通过H2受体的介导对浦肯野细胞起兴奋性调节作用,下丘脑小脑组胺能神经通路可能参与了小脑的某些躯体的和非躯体的功能调节。 相似文献