首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Young plants of a rhizomatous grass Calamagrostis epigejos (L.) Roth were grown from seed in nutrient solutions containing nitrogen in concentrations 0.1, 1.0, and 10 mM. After six weeks of cultivation the plants were defoliated and changes in growth parameters and in content of storage compounds were measured in the course of regrowth under highly reduced nitrogen availability. Plants grown at higher nitrogen supply before defoliation had higher amount of all types of nitrogen storage compounds (nitrates, free amino acids, soluble proteins), which was beneficial for their regrowth rate, in spite of lower content of storage saccharides. Amino acids and soluble proteins from roots and stubble bases were the most important sources of storage compounds for regrowth of the shoot. Faster growth of plants with higher N content was mediated by greater leaf area expansion and greater number of leaves. In plants with lower contents of N compounds number of green leaves decreased after defoliation significantly and senescing leaves presumably served as N source for other growing organs. Results suggest that internal N reserves can support regrowth of plants after defoliation even under fluctuating external N availability. Faster regrowth of C. epigejos with more reserves was mediated mainly by changes in plant morphogenesis.  相似文献   

2.
通过模拟N沉降实验,设置对照(CK,0 g N m~(-2)a~(-1));低氮(LN,5 g N m~(-2)a~(-1));中氮(MN,10 g N m~(-2)a~(-1));高氮(HN,15 g N m~(-2)a~(-1))4种N处理,以NH_4NO_3为外源N来研究福建省三明格氏栲自然保护区内板栗人工林、观光木人工林及米槠天然林0—10 cm土层养分变化动态。结果表明:N沉降会使板栗人工林土壤显著酸化,P含量降低,在一些时间段内,中高水平的N沉降会显著降低有机C、全N和速效N含量,中或低水平N沉降会显著降低土壤全P和速效P含量,而从第6个月起只有LN处理会显著降低土壤K含量。N沉降总体上会不同程度地提高观光木人工林土壤p H值、有机C、全N和速效N含量,有时影响会达显著或极显著水平;比较而言,LN和HN处理更会造成土壤全P的富集,而MN处理对速效P的影响更显著;LN和HN处理也会显著增加K含量,且以LN处理的效果更稳定。总体上N沉降量越大米槠天然林土壤酸化越显著;N沉降会使其有机C和速效P量显著波动;实验期间,HN处理会显著降低土壤全N和速效N量,而LN与MN处理则会使速效N和K含量增加;在4种处理下全P含量会呈相同趋势波动,差异不显著。  相似文献   

3.
The contribution of carbon and nitrogen reserves to regrowth following shoot removal has been studied in the past. However, important gaps remain in understanding the effect of shoot cutting on nodule performance and its relevance during regrowth. In this study, isotopic labelling was conducted at root and canopy levels with both 15N2 and 13C‐depleted CO2 on exclusively nitrogen‐fixing alfalfa plants. As expected, our results indicate that the roots were the main sink organs before shoots were removed. Seven days after regrowth the carbon and nitrogen stored in the roots was invested in shoot biomass formation and partitioned to the nodules. The large depletion in nodule carbohydrate availability suggests that root‐derived carbon compounds were delivered towards nodules in order to sustain respiratory activity. In addition to the limited carbohydrate availability, the upregulation of nodule peroxidases showed that oxidative stress was also involved during poor nodule performance. Fourteen days after cutting, and as a consequence of the stimulated photosynthetic and N2‐fixing machinery, availability of Cnew and Nnew strongly diminished in the plants due to their replacement by C and N assimilated during the post‐labelling period. In summary, our study indicated that during the first week of regrowth, root‐derived C and N remobilization did not overcome C‐ and N‐limitation in nodules and leaves. However, 14 days after cutting, leaf and nodule performance were re‐established.  相似文献   

4.
Noriyuki Osada 《Plant Ecology》2013,214(12):1493-1504
The theory of optimal nitrogen (N) distribution predicts that the carbon gain of plants will be maximised when leaves of higher irradiance have higher N content per area (N area). Most previous studies have examined optimal N distribution without explicitly considering the branching status of plants. I investigated light environment, N distribution and photosynthetic traits of individual leaves of an herbaceous species, Xanthium canadense. X. canadense was grown solitary under high (HN) and low nutrients (LN). Light availability, leaf mass per unit area and N area were measured for all leaves within plants. Daily photosynthesis of the plants of actual N distribution was compared with those of optimal and constant N distribution. Branch production was facilitated in HN but not in LN plants. N area was correlated more with leaf order than with leaf light environment. Although N was more limited and the light environment was less heterogeneous within crowns in LN than in HN plants, leaf N distribution was closer to optimal in the latter. These results suggest that leaf N distribution was not optimised in solitary plants of X. canadense. Because this species often regenerates in a dense stand, leaf N distribution might be selected to maximise carbon gain only in such a stand. Leaf N distribution might thus be constrained by the regeneration strategy of the species.  相似文献   

5.
Nutrient-enriched water hyacinths were stocked in outdoor tanks and cultured under both high nutrient (HN) and low nutrient (LN) regimes for 10 months. Seasonal changes in standing crop biomass and morphology of LN water hyacinths were similar to those of HN water hyacinths, despite a ten-fold between-treatment difference in N availability and a two-fold difference in average plant N concentrations (1.0 and 2.0% for LN and HN plants, respectively). Tissue N accumulated by the LN plants prior to stocking helped support standing crop development during the 10 month study. In both HN and LN treatments, the rate of detritus deposition, or the sloughing of dead plant tissues from the mat, was lower than the actual detritus production rate because of the retention of dead ‘aerial’ tissues (laminae and petioles) in the floating mat. The retention of laminae and petioles may serve as a nutrient conservation mechanism, since nutrients released from decomposing tissues in the mat-water environment may be assimilated by adjacent plants. The average rate of detritus deposition (both dry matter and N) by LN water hyacinths (1.2 g dry wt. m−2 day−1 and 0.017 g N m−2 day−1) was lower than that of HN plants (3.0 g dry wt. m−2 day−1 and 0.075 g N m−2 day−1) during the study. Low detrital N losses by the water hyacinth probably enhance the survival of this species in aquatic systems which receive nutrient inputs intermittently.  相似文献   

6.
魏圣钊  赵倩  廖泯权  周世兴  何聪  王雷  黄从德 《生态学报》2018,38(22):8001-8007
为进一步深化氮沉降对凋落物分解影响的研究,2016年3月—2017年3月,在华西雨屏区天然常绿阔叶林内,用凋落叶分解袋法研究了模拟氮沉降对凋落叶分解过程中微生物生物量碳(MBC)、微生物生物量氮(MBN)和微生物生物量磷(MBP)的影响。实验设置了对照(0 g N m~(-2)a~(-1))、低氮(5 g N m~(-2)a~(-1))、中氮(15 g Nm~(-2)a~(-1))和高氮沉降(30 g N m~(-2)a~(-1)) 4个处理。结果表明:低氮和中氮处理显著增加了凋落叶分解过程中的MBC和MBN,以低氮处理增加幅度最高;低氮和中氮处理对凋落叶分解过程中的MBP影响不显著;高氮处理显著降低了分解过程中的MBC、MBN和MBP。随模拟氮沉降量的递增,凋落叶分解过程中微生物生物量碳氮比逐渐减少,微生物生物量碳磷比呈现先增加后下降的趋势。研究结果说明,氮沉降影响了华西雨屏区天然常绿阔叶林凋落物分解过程中微生物生物量,进而改变了凋落物的分解过程。  相似文献   

7.
A dynamic model that includes regrowth after harvesting aerial shoots of an emergent macrophyte, Typha angustifolia L., was applied to evaluate the nitrogen (N) budget and the N uptake by the plant from sediment in Shibakawa Pond, Japan. Under natural conditions (control/uncut stands), the analysis showed that the annual uptake of N from sediment was 26.6 gN/m2 and harvesting Typha shoots at their growth peak removed 29.0 gN/m2 from the system (142 days in summer). Harvesting in winter after weathering of leaves removed only 13.9 gN/m2. To evaluate the N budget considering regrowth shoot characteristics, three sets of harvesting experiments were done on 16 May, 8 July, and 5 August 2003. Our study revealed that May, July, and August harvesting removed 9.4, 21.9, and 16.3 gN/m2, respectively. Further, combining the first harvesting from spring to summer and the second harvesting in autumn (before the start of senescence of regrowth shoots), the annual total N removals in stands cut in May and autumn and July and autumn were 34.7 and 36.0 gN/m2, respectively—higher than that in stands cut in August and autumn (22.2 gN/m2) or that in uncut stands (13.9 gN/m2). At the same time, the amounts stored in rhizomes by stands cut in May and autumn, July and autumn, and August and autumn were 9.1, 8.4, and 4.4 gN/m2, respectively, lower than that in uncut stands (18.8 gN/m2). Our results suggest that summer harvesting, especially in July to August, improves N removal efficiency and decreases the translocation of N from primary shoots to rhizomes, which is important for the sustainable management of Typha-dominated wetlands. Combined summer and autumn harvests further increase the removal efficiency but drastically reduce the storage of N. This might be useful when we need to control the plants properly.  相似文献   

8.
Lima  J.D.  Mosquim  P.R.  Da Matta  F.M. 《Photosynthetica》1999,37(1):113-121
The effects of N and P deficiency, isolated or in combination, on leaf gas exchange and fast chlorophyll (Chl) fluorescence emission were studied in common bean cv. Negrito. 10-d-old plants grown in aerated nutrient solution were supplied with high N (HN, 7.5 mol m−3) or low N (LN, 0.5 mol m−3), and also with high P (HP, 0.5 mol m−3) or low P (LP, 0.005 mol m−3). Regardless of the external P supply, in LN plants the initial fluorescence (F0) increased 12 % in parallel to a quenching of about 14 % in maximum fluorescence (Fm). As a consequence, the variable to maximum fluorescence ratio (Fv/Fm) decreased by about 7 %, and the variable to initial fluorescence ratio (Fv/F0) was lowered by 25 % in relation to control plants. In LP plants, Fv/Fm remained unchanged whilst Fv/F0 decreased slightly as a result of 5 % decline in Fm. Under N deficiency, the net photosynthetic rate (P N) halved at 6 d after imposition of treatment and so remained afterwards. As compared to LN plants, P N declined in LP plants latter and to a less extent. From 12 d of P deprivation onwards. P N fell down progressively to display rates similar to those of LN plants only at the end of the experiment. The greater P N in LP plants was not reflected in larger biomass accumulation in relation to LN beans. In general, P and N limitation affected photosynthesis parameters and growth without showing any synergistic or additive effect between deficiency of both nutrients. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Over time, the stimulative effect of elevated CO2 on the photosynthesis of rice crops is likely to be reduced with increasing duration of CO2 exposure, but the resultant effects on crop productivity remain unclear. To investigate seasonal changes in the effect of elevated CO2 on the growth of rice (Oryza sativa L.) crops, a free air CO2 enrichment (FACE) experiment was conducted at Shizukuishi, Iwate, Japan in 1998–2000. The target CO2 concentration of the FACE plots was 200 µmol mol?1 above that of ambient. Three levels of nitrogen (N) were supplied: low (LN, 4 g N m?2), medium [MN, 8 (1998) and 9 (1999, 2000) g N m?2] and high N (HN, 12 and 15 g N m?2). For MN and HN but not for LN, elevated CO2 increased tiller number at panicle initiation (PI) but this positive response decreased with crop development. As a result, the response of green leaf area index (GLAI) to elevated CO2 greatly varied with development, showing positive responses during vegetative stages and negative responses after PI. Elevated CO2 decreased leaf N concentration over the season, except during early stage of development. For MN crops, total biomass increased with elevated CO2, but the response declined linearly with development, with average increases of 32, 28, 21, 15 and 12% at tillering, PI, anthesis, mid‐ripening and grain maturity, respectively. This decline is likely to be due to decreases in the positive effects of elevated CO2 on canopy photosynthesis because of reductions in both GLAI and leaf N. Up to PI, LN‐crops tended to have a lower response to elevated CO2 than MN‐ and HN‐crops, though by final harvest the total biomass response was similar for all N levels. For MN‐ and HN‐crops, the positive response of grain yield (ca. 15%) to elevated CO2 was slightly greater than the response of final total biomass while for LN‐crops it was less. We conclude that most of the seasonal changes in crop response to elevated CO2 are directly or indirectly associated with N uptake.  相似文献   

10.
Further knowledge of the processes conditioning nitrogen use efficiency (NUE) is of great relevance to crop productivity. The aim of this paper was characterise C and N partitioning during grain filling and their implications for NUE. Cereals such as bread wheat (Triticum aestivum L. cv Califa sur), triticale (× Triticosecale Wittmack cv. Imperioso) and tritordeum (× Tritordeum Asch. & Graebn line HT 621) were grown under low (LN, 5 mm NH4NO3) and high (HN, 15 mm NH4NO3) N conditions. We conducted simultaneous double labelling (12CO2 and 15NH415NO3) in order to characterise C and N partitioning during grain filling. Although triticale plants showed the largest total and ear dry matter values in HN conditions, the large investment in shoot and root biomass negatively affected ear NUE. Tritordeum was the only genotype that increased NUE in both N treatments (NUEtotal), whereas in wheat, no significant effect was detected. N labelling revealed that N fertilisation during post‐anthesis was more relevant for wheat and tritordeum grain filling than for triticale. The study also revealed that the investments of C and N in flag leaves and shoots, together with the ‘waste’ of photoassimilates in respiration, conditioned the NUE of plants, and especially under LN. These results suggest that C and N use by these plants needs to be improved in order to increase ear C and N sinks, especially under LN. It is also remarkable that even though tritordeum shows the largest increase in NUE, the low yield of this cereal limits its agronomic value.  相似文献   

11.
设置模拟氮沉降的控制试验,以NH4NO3作为外加氮源,设计CK(0kg N hm-2·a-1)、LN(50 kg N hm-2·a-1)、MN(100 kg N hm-2·a-1)、HN(150 kg N hm-2· a-1)4个处理,历时9个月,测定木荷(Schima superba)幼苗的光合特性、生物量和C、N、P含量及其分配格局对氮沉降的响应.结果表明:(1)木荷幼苗的最大净光合速率和光饱和点随着氮处理水平增加呈先增加后减小的特点,在中氮处理下极显著增加(P<0.01).氮处理降低了幼苗的光补偿点和暗呼吸速率,光补偿点在低氮处理下显著降低(P<0.05),暗呼吸速率在低中氮处理下极显著降低(P<0.01),高氮处理下显著降低(P<0.05).未见氮处理对表观量子效率产生显著影响.(2)氮处理促进了木荷的全株生物量以及各部分生物量的增长.随着氮处理水平的增加,叶重比呈升高的趋势,而根重比和根冠比呈降低的趋势,在高氮处理下叶重比的增加和根重比、根冠比的降低都达到了显著水平(P<0.05).(3)氮沉降促进各器官N含量的增加,在高氮处理下根和茎中N含量极显著增加(P<0.01),叶中N含量显著增加(P<0.05).而各器官C含量随着氮沉降程度的增加呈先增加后降低的趋势,在中氮处理下根和茎中C含量极显著增加(P<0.01),叶中C含量显著增加(P<0.05).但各器官P含量变化趋势各不相同,随着氮的增加,根中P含量是呈先增加后降低的趋势,而茎和叶中P含量是呈降低的趋势.氮沉降一定程度上降低了木荷各器官的C/N比值而增加了N/P比值.  相似文献   

12.
樟树人工林凋落物养分含量及归还量对氮沉降的响应   总被引:3,自引:0,他引:3  
赵晶  闫文德  郑威  李忠文 《生态学报》2016,36(2):350-359
氮沉降的持续增加对陆地生态系统的健康发展构成严重威胁,森林是陆地生态系统中重要的组成部分,大量的氮沉降对其结构和功能造成严重影响。凋落物是森林生态系统养分循环的重要组成部分,它对土壤肥力、森林生态系统养分循环等方面具有重要作用。为了探讨亚热带常绿阔叶森林凋落物对氮沉降增加的响应,在湖南省森林植物园以樟树人工林为研究对象进行模拟氮沉降的实验,实验设置4种氮添加水平CK(0g N m~(-2)a~(-1),对照)、LN(5g N m~(-2)a~(-1)),MN(15g N m~(-2)a~(-1)),HN(30g N m~(-2)a~(-1)),研究氮沉降对樟树林年凋落物量、凋落物养分含量以及归还量的影响。结果表明:不同施氮水平下(CK、LN、MN、HN),樟树林凋落物的年凋落量分别为(4.53±0.32)t hm~(-2)a~(-1)、(3.95±0.28)t hm~(-2)a~(-1)、(3.56±0.41)t hm~(-2)a~(-1)、(4.46±0.48)t hm~(-2)a~(-1),施氮抑制了樟树林的凋落量,且低、中氮处理下差异显著(P0.05);施氮处理后凋落物的养分含量大小顺序为:CNCaKMg,凋落物的碳含量没有显著变化,但氮含量都有所增加,因此,施氮降低了樟树凋落物各组分的C/N比;凋落物中元素的年归还量大小顺序表现为:CNCaKMg,施氮处理对凋落物C、K、Ca、Mg归还量有抑制作用,但对凋落物N归还量表现为促进作用。  相似文献   

13.
The effects of nitrogen [75 and 150 kg (N) ha−1] and elevated CO2 on growth, photosynthetic rate, contents of soluble leaf proteins and activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and nitrate reductase (NR) were studied on wheat (Triticum aestivum L. cv. HD-2285) grown in open top chambers under either ambient (AC) or elevated (EC) CO2 concentration (350 ± 50, 600 ± 50 μmol mol−1) and analyzed at 40, 60 and 90 d after sowing. Plants grown under EC showed greater photosynthetic rate and were taller and attained greater leaf area along with higher total plant dry mass at all growth stages than those grown under AC. Total soluble and Rubisco protein contents decreased under EC but the activation of Rubisco was higher at EC with higher N supply. Nitrogen increased the NR activity whereas EC reduced it. Thus, EC causes increased growth and PN ability per unit uptake of N in wheat plants, even if N is limiting.  相似文献   

14.
降水和氮沉降增加对草地土壤酶活性的影响   总被引:7,自引:0,他引:7  
为探究降水和氮沉降增加对草地生态系统土壤酶活性的影响,于2014年生长季在内蒙古温带典型羊草草原开展了野外原位控制实验。试验共设置降水(对照,W0,自然降水;W15,增加15%的年均降水量)、施氮(对照,CK,0 kg N hm~(-2)a~(-1);低氮,LN,25 kg N hm~(-2)a~(-1);中氮,MN,50 kg N hm~(-2)a~(-1);高氮,HN,100 kg N hm~(-2)a~(-1))及其交互作用等8个不同的处理水平来模拟降水和氮沉降增加的全球变化情景,分别定量探讨了不同水、氮添加条件下草地表层土壤中与氮循环相关的蛋白酶,脲酶,硝酸还原酶,亚硝酸还原酶活性的月动态变化及其与土壤理化性质之间的相关性。研究结果表明:在自然降水条件下,不同施氮水平蛋白酶、脲酶和硝酸还原酶活性无显著差异,亚硝酸还原酶活性相比于对照显著降低;在增加降水条件下,不同施氮水平对蛋白酶和硝酸还原酶活性未产生显著性影响,高氮水平显著降低脲酶和亚硝酸还原酶活性。不同施氮水平是否添加降水对亚硝酸还原酶活性无影响,而增添降水使低氮处理的蛋白酶活性和中、高氮处理水平的硝酸还原酶活性增加、高氮处理的脲酶活性降低。降水在影响蛋白酶和硝酸还原酶活性方面具有主效应,氮沉降在影响亚硝酸还原酶活性方面具有主效应,而降水和施氮处理未表现出明显地交互作用。土壤亚硝酸还原酶活性与土壤碳氮比和NH~+_4-N含量极显著正相关,与NO-3-N含量显著正相关。  相似文献   

15.
Rates of inorganic nitrogen uptake by three Northeast US and three Asian species of Porphyra were compared in short-term incubations to evaluate potential for longer term and larger scale examination of bioremediation of nutrient-loaded effluents from finfish aquaculture facilities. The effects of nitrogen (N) species and concentration, temperature, acclimation history, and irradiance were investigated. Uptake rates increased ca. nine-fold from 20 to 150 μM N. Nitrate and ammonium uptake occurred at similar rates. Irradiance had a strong effect, with uptake at 40 μmol photons m−2 s−1only 55% of uptake at 150 μmol photons m−2 s−1. N-replete tissue took up inorganic nitrogen at rates that averaged only 60% of nutrient-deprived tissue. Although there were species (P. amplissima > (P. purpurea = P. umbilicalis)) and temperature effects (10 °C>5 °C>15 °C), interactions among factors indicated that individual species be considered separately. Overall, P. amplissima was the best Northeast US candidate. It took up ammonium at faster rates than other local species at 10 and 15 °C, two temperatures that fall within the expected range of industrial conditions for finfish operations.  相似文献   

16.
滇中亚高山地带性植被凋落物分解对模拟氮沉降的响应   总被引:4,自引:0,他引:4  
模拟氮(N)沉降对凋落物分解特征的影响对研究森林生态系统物质循环响应大气N沉降的内在机理和应对N沉降全球化具有重要意义。从2018年2月至2019年1月,对滇中亚高山常绿阔叶林(Evergreen broad-leaf forest)和高山栎林(Quercus semecarpifolia forest)两种地带性植被进行模拟N沉降试验,利用尼龙网袋法对两种林型凋落叶和凋落枝进行原位分解试验,N沉降处理水平分别为对照CK(Control check,0 g N m-2 a-1)、低氮LN(Low nitrogen,5 g N m-2 a-1)、中氮MN(Medium nitrogen,15 g N m-2 a-1)和高氮HN(High nitrogen,30 g N m-2 a-1)。结果表明:常绿阔叶林凋落叶和凋落枝分解率分别为44.84%和21.96%,均高于高山栎林的35.97%(凋落叶)和17.51%(凋落枝);N沉降处理使得常绿阔叶林和高山栎林的凋落叶和凋落枝质量损失95%的时间在对照(CK)的基础上均有一定程度的增加,其中以HN处理下最为显著;经过1年的分解,两种林型凋落叶、枝纤维素和木质素降解均受到N沉降的抑制作用;两种林型中凋落物质量残留率、纤维素和木质素残留率三者间呈极显著正相关。针对滇中亚高山区域范围内的两种地带性植被,凋落物分解对N沉降的响应方向主要取决于凋落物基质质量,其中尤以纤维素和木质素为重要影响因素。  相似文献   

17.
Nitrogen remobilization response to current supply in young citrus trees   总被引:2,自引:0,他引:2  
Internal nitrogen (N) storage and remobilization processes support seasonal growth (flowering/fructification and subsequent leaf development) in particular in early spring, when soil temperatures are unfavourable for adequate N uptake. Storage nitrogen mobilization in young citrus trees was studied under two contrasting N supplies; high N (HN) and low N dose (LN) in the critical period of flowering and fruit set. 15N labelling technique was used to distinguish N derived from internal remobilization from that taken up by the roots. Regardless N supply, the greatest N remobilization took place from the beginning of the vegetative activity until flowering. Low N availability significantly increased (+14%) N retranslocation at the end of June drop agreeing with the hypothesis that reserve mobilization depends on soil N availability during flowering and fruit set. At the end of fruit drop, N remobilization contributed up to 70% and 61% of total N of young organs for LN and HN, respectively. Remobilized N was mainly recovered in abscised organs of both HN and LN trees and to a lesser extent in new flush leaves; however a greater percentage partitioned to abscised organs of LN as a consequence of the greater remobilization rate and the increased fruit abscission. Old leaves of LN remobilized significantly higher N, while woody organs and root system did not show differences between HN and LN supplied trees. The results presented in this paper demonstrate that the amount of N remobilized by young citrus plants depends on external N availability. Thus, low N application rates in early stages (flowering and fruit set) lead to higher translocation of N stored during the previous cycle to developing new organs.  相似文献   

18.
土壤微生物作为土壤养分的生物驱动因素,氮沉降会改变其活性和生物量,从而打破土壤养分循环动态平衡。氮沉降对热带、亚热带森林以及温带原始林生态系统土壤微生物量影响的研究较多,但对温带天然次生林影响的研究鲜有报道。于2016年5月(春)、7月(夏)和9月(秋)分别对长白山模拟10年氮沉降的控制试验样地——白桦山杨次生林进行了野外调查。控制试验分为3个氮添加处理,对照(CK 0 kg N hm~(-2)a~(-1))、低氮(LN 25 kg N hm~(-2)a~(-1))和高氮(HN 50 kg N hm~(-2)a~(-1)),按照土壤层(0—10 cm和10—20 cm)分别测试了不同处理的土壤微生物量碳(MBC)和氮(MBN)、土壤全碳(TC)、全氮(TN)和全磷(TP)、p H、土壤可溶性有机碳(DOC)和氮(DON)等指标。结果表明:1)土壤p H在氮沉降的作用下显著降低;上层土壤TC、TN在氮沉降下变化较小,下层土壤TC、TN的含量显著增加;氮沉降下春、夏两季土壤TP含量上升,LN处理在秋季对TP有抑制作用;氮沉降对DOC、DON的影响不显著。2)上层土壤MBC春季到秋季呈现递减的趋势,下层土壤呈现先升后降的趋势,HN对MBC有抑制作用,LN对下层土壤MBC有促进作用;土壤MBN由春季到秋季呈现递减的趋势,且上、下层土壤MBN差异显著;氮处理对春、秋两季MBN有促进作用,夏季有抑制作用;氮沉降使春、秋两季MBC/MBN降低,夏季土壤MBC/MBN升高。3)氮处理、季节变化和土层深度对MBC、MBN存在显著影响,其交互影响也显著。总之,长期氮沉降在生长季对土壤微生物量的影响具有季节性差异,且受到土层深度的影响。未来研究在重视年际变化的同时,也要注重时空动态对氮沉降作用表现出的差异性。  相似文献   

19.
Sugar beet (Beta vulgaris L., cultivar Celt) plants were grownunder simulated field conditions in pots and supplied with adequateor deficient nitrogen (HN and LN, respectively) combined withtwo CO2 concentrations, ambient (c. 350µmol mol–1C02—AC), or elevated CO2 (c. 600 µmol mol–1CO2—HC). Chloroplast structure in mesophyll palisade cellsof mature leaves (leaf number 19 in HN and 9 in LN), sampledat midday on 16 August 1993 was studied by transmission electronmicroscopy and quantified stereologically. The ultrastructureof palisade parenchyma chloroplasts was affected by the elevatedCO2 concentration and strikingly affected by nitrogen supply.Chloroplast diameter (cross-sectional length) was slightly,but not significantly, greater in HC than AC treatments withinan N treatment, but was smaller in LN than HN; chloroplast cross-sectionalarea also increased with HC in both N treatments, but only significantlyso in LN. Elevated CO2 reduced the proportion of total thylakoids(significant at 5% and 0.1% in HN and LN, respectively) dueto decreased granal thylakoids, but the proportion of inter-granal(stromal) thylakoid membranes was not affected compared to chloroplastsfrom plants grown with ambient CO2. Chloroplast stroma increasedas a proportion of chloroplast volume with elevated comparedto ambient CO2 with HN but not LN. Starch inclusions were notsignificantly different with elevated compared to ambient CO2at HN, but the proportion of starch increased considerably atelevated compared to ambient C02 at LN, indicating an over-productionof assimilates. Plastoglobuli in chloroplasts increased withdeficient N, but decreased with elevated CO2. Larger chloroplastswith a greater proportion of stroma, but a smaller proportionof granal thylakoids, suggest increased CO2 assimilating capacityand decreased light harvesting/PSII capacity with elevated CO2. Key words: Chloroplast, ultrastructure, elevated CO2 concentration, nitrogen deficiency, sugar beet, Beta vulgaris  相似文献   

20.
Carbon and nitrogen cycling in intertidal mud flat sediments in the Scheldt Estuary was studied using measurements of carbon dioxide, methane and nitrous oxide emission rates and pore-water profiles of CO2, ammonium and nitrate. A comparison between chamber measured carbon dioxide fluxes and those based on CO2 pore-water gradients using Fick's First law indicates that apparent diffusion coefficients are 2 to 28 times higher than bulk sediment diffusion coefficients based on molecular diffusion. Seasonal changes in gaseous carbon fluxes or CO2 pore water concentrations cannot be used directly, or in a simple way, to determine seasonal rates of mineralization, because of marked seasonal changes in pore-water storage and exchange parameters.The annual amount of carbon delivered to the sediment is 42 mol m–2, of which about 42% becomes buried, the remaining being emitted as methane (7%) or carbon dioxide (50%). Each year about 2.6 mol N m–2 of particulate nitrogen reaches the sediment; 1.1 mol m–2 is buried and 1.6 mol m–2 is mineralized to ammonium. Only 0.42 mol m–2 yr–1 of the ammonium produced escapes from the sediments, the remaining being first nitrified (1.2 mol m–2 yr–1) and then denitrified (1.7 mol m–2 yr–1). Simple calculations indicate that intertidal sediments may account for about 14% and 30% of the total estuarine retention of nitrogen and carbon, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号