首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a new method for selective laser killing of bacteria targeted with light-absorbing gold nanoparticles conjugated with specific antibodies. The multifunctional photothermal (PT) microscope/spectrometer provides a real-time assessment of this new therapeutic intervention. In this integrated system, strong laser-induced overheating effects accompanied by the bubble-formation phenomena around clustered gold nanoparticles are the main cause of bacterial damage. PT imaging and time-resolved monitoring of the integrated PT responses assessed these effects. Specifically, we used this technology for selective killing of the Gram-positive bacterium Staphylococcus aureus by targeting the bacterial surface using 10-, 20-, and 40-nm gold particles conjugated with anti-protein A antibodies. Labeled bacteria were irradiated with focused laser pulses (420-570 nm, 12 ns, 0.1-5 J/cm(2), 100 pulses), and laser-induced bacterial damage observed at different laser fluences and nanoparticle sizes was verified by optical transmission, electron microscopy, and conventional viability testing.  相似文献   

2.
Long-wavelength ultraviolet light (300 to 400 nm) converts L-tryptophan to a photoproduct that is toxic for bacterial cells in dark conditions. We now report that similar photoproducts of l-tryptophan sensitize bacterial deoxyribonucleic acid to 365-nm radiation, increasing the yield of deoxyribonucleic acid strand breaks (or alkali-labile bonds) by approximately 11.5-fold. Evidence is also presented which indicates that thse sensitized deoxyribonucleic acid lesions contribute to lethality for Escherichia coli irradiated with 365-nm ultraviolet light in suspensions of tryptophan photoproducts.  相似文献   

3.
Tissue ablation by ultraviolet excimer lasers results in exposure of viable cells to subablative doses of radiation. To understand the potential biological consequences better, we have studied changes in gene expression in cultured human skin fibroblasts exposed to either 193- or 248-nm laser light. Northern blot analyses revealed that both treatments up-regulate a common set of genes, including interstitial collagenase, tissue inhibitor of metalloprotease, metallothionein, and the proto-oncogene c-fos. Dose-response and kinetic studies of collagenase induction by 193-nm radiation showed a maximal effect with 60 J/m2 and at approximately 24 h. The induction was still persistent 96 h later. In addition to the commonly affected genes, known to be activated also by conventional UV light (254 nm) and tumor-promoting phorbol esters, other genes were found to be selectively induced by the 193-nm radiation. The heat-shock hsp70 mRNA, undetectable in controls and in cultures irradiated at 248 nm, was transiently induced 8 h after exposure to 193-nm radiation. Furthermore, a selective up-regulation of collagen type I expression was observed. The results indicate that the 193- and 248-nm radiations by excimer lasers elicit specific and different cellular responses, in addition to an overlapping pathway of gene activation common also to UV radiation by germicidal lamps. The laser-induced genes could serve as molecular markers in evaluating cell injury in situ.  相似文献   

4.
The interspecific variability in the sensitivity of marine bacterial isolates to UV-B (295- to 320-nm) radiation and their ability to recover from previous UV-B stress were examined. Isolates originating from different microenvironments of the northern Adriatic Sea were transferred to aged seawater and exposed to artificial UV-B radiation for 4 h and subsequently to different radiation regimens excluding UV-B to determine the recovery from UV-B stress. Bacterial activity was assessed by thymidine and leucine incorporation measurements prior to and immediately after the exposure to UV-B and after the subsequent exposure to the different radiation regimens. Large interspecific differences among the 11 bacterial isolates were found in the sensitivity to UV-B, ranging from 21 to 92% inhibition of leucine incorporation compared to the bacterial activity measured in dark controls and from 14 to 84% for thymidine incorporation. Interspecific differences in the recovery from the UV stress were also large. An inverse relation was detectable between the ability to recover under dark conditions and the recovery under photosynthetic active radiation (400 to 700 nm). The observed large interspecific differences in the sensitivity to UV-B radiation and even more so in the subsequent recovery from UV-B stress are not related to the prevailing radiation conditions of the microhabitats from which the bacterial isolates originate. Based on our investigations on the 11 marine isolates, we conclude that there are large interspecific differences in the sensitivity to UV-B radiation and even larger differences in the mechanisms of recovery from previous UV stress. This might lead to UV-mediated shifts in the bacterioplankton community composition in marine surface waters.  相似文献   

5.
The interspecific variability in the sensitivity of marine bacterial isolates to UV-B (295- to 320-nm) radiation and their ability to recover from previous UV-B stress were examined. Isolates originating from different microenvironments of the northern Adriatic Sea were transferred to aged seawater and exposed to artificial UV-B radiation for 4 h and subsequently to different radiation regimens excluding UV-B to determine the recovery from UV-B stress. Bacterial activity was assessed by thymidine and leucine incorporation measurements prior to and immediately after the exposure to UV-B and after the subsequent exposure to the different radiation regimens. Large interspecific differences among the 11 bacterial isolates were found in the sensitivity to UV-B, ranging from 21 to 92% inhibition of leucine incorporation compared to the bacterial activity measured in dark controls and from 14 to 84% for thymidine incorporation. Interspecific differences in the recovery from the UV stress were also large. An inverse relation was detectable between the ability to recover under dark conditions and the recovery under photosynthetic active radiation (400 to 700 nm). The observed large interspecific differences in the sensitivity to UV-B radiation and even more so in the subsequent recovery from UV-B stress are not related to the prevailing radiation conditions of the microhabitats from which the bacterial isolates originate. Based on our investigations on the 11 marine isolates, we conclude that there are large interspecific differences in the sensitivity to UV-B radiation and even larger differences in the mechanisms of recovery from previous UV stress. This might lead to UV-mediated shifts in the bacterioplankton community composition in marine surface waters.  相似文献   

6.
We analyzed the effects of photobiomodulation (PBM) of various wavelengths on regeneration of the facial nerve using in vitro and in vivo experimental models. We assessed the antioxidative effect of PBM in geniculate ganglion neurons irradiated with a diode laser at 633 nm, 780 nm and 804 nm. Wavelengths of 633 and 780 nm but not 804 nm inhibited cell death by oxidative stress. We assessed the effects of PBM on functional and morphologic recovery in rats divided into control, facial nerve damage (FND) and FND irradiated with a 633 nm or 804 nm lasers. Injured rats treated with 633-nm light had better facial palsy scores, larger axon diameter and higher expression of Schwann cells compared with the FND group. No positive results were observed in rats irradiated at 804-nm light. These findings indicate that 633-nm PBM promotes accelerated nerve regeneration and improved functional recovery in an injured facial nerve.  相似文献   

7.
Recent investigations have reported contradictory results on the influence of low-power laser light on wound healing. Low-power laser with a power output of 250 mW and an emitted laser light of 670 nm have been insufficiently investigated to date. The effect of a 250-mW/670-nm laser light on the healing of burning wounds in rats was investigated. Thirty rats were burned on both flanks. One wound was irradiated with 670-nm laser light (2 J/cm2), whereas the other side remained untreated. Macroscopic evaluation of the wounds was performed daily; 10, 20, and 30 days after burning, 10 rats were killed and the wounds histologically evaluated. Neither macroscopic nor histologic examination of the irradiated wound showed accelerated wound healing when compared with control wounds. In the present study, irradiation of burns with a 250-mW/670-nm laser light produced no beneficial effects on wound-healing processes.  相似文献   

8.
Although several studies have suggested that inhibition of arterial narrowing by radiation after angioplasty is dependent on both time and dose, little is known regarding the temporal aspects of this effect and the mechanisms by which radiation affects the response of smooth muscle cells to injury. To determine the time course of inhibition of intimal hyperplasia by radiation, 135 rats were given single-fraction external gamma irradiation (1-10 Gy) to one carotid artery at intervals from 5 days before to 5 days after bilateral carotid artery balloon catheter injury, and intimal cross-sectional area was determined from histological sections at 20 days after injury. There was a prominent time- and dose-dependent inhibition of intimal hyperplasia by radiation when it was administered before or after balloon injury, with the greatest effect noted within 24 h before or after injury. To investigate the effect of radiation on smooth muscle cell growth (by cell counting) and proliferation, cell cycle kinetics (by BrdU incorporation), and cell killing (by clonogenic assay), smooth muscle cell cultures derived from rat aortic explants were seeded in equine plasma to induce quiescence, and radiation (2.5-10 Gy) was administered at various intervals before or after synchronous growth stimulation by 10% whole blood serum. A similar time and dose dependence was noted in growth kinetics, BrdU incorporation and cell killing for smooth muscle cells irradiated in vitro; in each case, the effect was most prominent for radiation administered in temporal proximity to stimulation with whole blood serum. By Western blot analysis, cultured smooth muscle cells showed a rapid time-dependent increase in Cdkn1a (formerly known as p21) protein expression, followed by a delayed increase in Tp53 (formerly known as p53) expression after irradiation. Activation of intracellular caspases, manifest by proteolytic poly(ADP-ribose) polymerase (PARP) cleavage, was not detected in smooth muscle cell cultures after irradiation. These observations suggest that radiation limits intimal hyperplasia in vivo by a transient, reversible process. Although apparent cytotoxic injury occurs in vitro, apoptosis of smooth muscle cells is not apparent. Both inhibition of proliferation of smooth muscle cells and cell cycle delay may contribute to inhibition of intimal hyperplasia in vivo by radiation.  相似文献   

9.
The effect of gamma-irradiation on ovine testicular hyaluronidase was studied in aqueous solution. Following irradiation, hyaluronidase is inhibited, and the kinetics of inhibition follow a pattern in which Km and Vmax decline as radiation dose is increased. It was indicated that the binding affinity of the residual activity of hyaluronidase with substrate is enhanced and depends upon radiation damage. Effects of various agents such as pH, salts, PCMB and glutathione on irradiated hyaluronidase have been compared with non-irradiated enzyme. The irradiated hyaluronidase was more sensitive to inhibition by CuSO4 than the non-irradiated enzyme. The residual activity after irradiation is less refractory to FeCl3 inhibition and less sensitive to NaCl stimulation compared to non-irradiated hyaluronidase. pH response curves of ovine testicular hyaluronidase show two maxima which become more evident after irradiation.  相似文献   

10.
A series of photolabile o-nitrobenzyl derivatives of serotonin (caged serotonin) were synthesized: the amine-linked serotonin derivatives N-(2-nitrobenzyl) serotonin (Bz-5HT) and N-(alpha-carboxy-2-nitrobenzyl) serotonin (N-CNB-5HT), and O-alpha-carboxy-2-nitrobenzyl) serotonin (O-CNB-5HT), which has the caging group attached to the phenolic OH group. All the derivatives released free serotonin when excited by 308-nm or 337-nm laser pulses. The time constant of serotonin release from N-CNB-5HT was 1. 2 ms, with a quantum yield of 0.08. This is too slow for rapid chemical kinetic measurements. O-CNB-5HT is suitable for transient kinetic investigations of the serotonin 5-HT(3) receptor. It released serotonin with a time constant of 16 micros and a quantum yield of 0.03. The biological properties of O-CNB-5HT were evaluated, and the applicability of the compound for kinetic studies of the 5-HT(3) receptor was demonstrated. O-CNB-5HT does not activate the 5-HT(3) receptor by itself, nor does it modulate the response of a cell when co-applied with serotonin. When irradiated with a 337-nm laser pulse, O-CNB-5HT released free serotonin that evoked 5-HT(3) receptor-mediated whole-cell currents in NIE-115 mouse neuroblastoma cells.  相似文献   

11.
The effect of He-Ne laser radiation in wide range of intensities on E. coli cells division was studied in dependence on dose of light, on time of irradiation as well as on cAMP content in initial bacterial culture. Two maxima in E.coli growth stimulation vs dose or irradiation time curves were observed: first--irradiation time-independent, near 55 J/m2, second--dose-independent, near 100 s. It was proposed that latter maximum reflects kinetic parameters of photosensitive signaling network, and the former one reflects redox state of globin-coupled direct photosensor--EcDOS phosphodiesterase cAMP.  相似文献   

12.
The objective of this study was to evaluate the antibacterial activity of argon fluoride (ArF) excimer laser radiation on clinically important strains of gram-negative bacteria. The antibacterial activity of ArF excimer laser radiation was evaluated on two Acinetobacter baumannii, one Enterobacter cloacae, three Escherichia coli, two Helicobacter pylori, one Klebsiella pneumoniae and two Pseudomonas aeruginosa strains. The strains were isolated from clinical specimens and typed by the usual biochemical procedures. Square agar plates of 12 x 12 cm were divided into rectangular (2 x 3 cm) regions and spread with 0.5x 10(4) colony forming units (CFU)/ml of bacterial suspension. The excess liquid was removed and the plates were allowed to dry for 30 min. A total of 96 rectangular (2x3 cm) regions were used for each strain, in order to test an equal number of laser parameters. Each rectangular region was irradiated with different laser parameters, using a 193 nm ArF excimer laser, linked with a simple Galilean afocal system and a rectangular diaphragm of the same dimensions as the original laser beam cross-section, at a distance of 10 cm from the irradiated surface. This system was used in order to keep the laser pulse energy under 80 mJ and to cut-out the non-transverse electromagnetic mode branches of the laser beam. We then studied the bacterial survival ratio versus the number of laser pulses, the repetition frequency and the total laser beam fluence. Our results showed that the total laser beam fluence was the most important parameter to consider in evaluating the bactericidal effect of ArF excimer laser radiation. A critical value of the total fluence was determined for each strain, such that, for laser beam fluences greater than this critical value, no colonies appeared to survive while, for laser fluences less than this critical value, the survival ratio did not exceed 2 x 10(7) CFU (2 x 10(-5)%). These critical values were found to vary between 8 J/cm2 and 16 J/cm2 for the bacterial species studied. Under these conditions, ArF laser irradiation is promising for the sterilisation of hard surfaces and for in situ application.  相似文献   

13.
XeCl准分子激光辐照对溶菌酶结构的影响   总被引:1,自引:0,他引:1  
利用荧光光谱、SDS-PAGE和NMR方法,考察308 nm XeCl准分子激光辐照对溶菌酶结构与活性的影响。使用能量密度为0.3 mJ/mm2的激光辐照溶菌酶,脉冲数分别为25、50、100、200、600、1200、1800、3600和7200。结果表明,用低强度激光辐照(低于200个脉冲)时,溶菌酶的活性出现增高趋势。随着激光辐照脉冲数的进一步增大,溶菌酶的活性又开始逐步降低。激光辐照处理后,溶菌酶的荧光强度发生了与生物活性相对应的先增高再降低现象,说明溶菌酶的高级结构发生了显著变化。SDS-PAGE结果显示,经激光辐照后,溶菌酶出现了分子间的聚合。分析溶菌酶的1H-NMR谱发现,辐照后,溶菌酶色氨酸(Trp)111、Trp63和Trp62的化学位移发生了变化,此结果进一步说明,激光辐照使溶菌酶的高级结构发生了变化。该实验可为激光辐照诱导蛋白质去折叠的研究提供参考。  相似文献   

14.
A comparative histological investigation of posttraumatic regeneration in irradiated with 30 or 40 Gy and cross-sectioned musculus gastrocnemius of rats after autotransplantation into muscle defect of non-irradiated minced muscle tissue and laser therapy of hind limb in post-operative period was conducted. The obtained results showed that in irradiated with 30 Gy sectioned muscle (control series) the inflammatory reaction, resorption of fibrin in the area of trauma were inhibited and proliferation of muscle tissue from proximal and distal stump was suppressed. The rough connective tissue scar was formed. In experimental series for stimulation of regeneration the method of autografting minced muscle tissue into the defect of irradiated (30 or 40 Gy) cross-sectioned muscle and combination of this method with helium-neon laser rays exposition was used. The more marked recovery was obtained in irradiated with 30 Gy operated muscle after a 10-day treatment of limb with laser rays.  相似文献   

15.
The effect of low mean power laser irradiations with short pulse duration from an Nd:YAG (neodymium-doped yttrium aluminium garnet) laser on a marine biofilm-forming bacterium, Pseudoalteromonas carrageenovora, was investigated in the laboratory. Laser-irradiated bacteria were tested for their ability to attach on nontoxic titanium nitride (TiN) coupons with nonirradiated bacteria as the reference. Two durations of irradiation were tested, 10 and 15 min. Bacterial attachment was monitored after 20 min, 40 min, and 1 h of irradiation. The average laser fluence used for this study was 0.1 J/cm(2). The area of attachment of the irradiated bacteria was significantly less than the reference for both durations of irradiation. The growth of irradiated bacteria showed a longer lag phase than the nonirradiated sample, mainly due to mortality in the former. The bacterial mortality observed was 23.4 +/- 0.71 and 48.6 +/- 6.5% for 10- and 15-min irradiations, respectively. Thus, the results show that low-power pulsed laser irradiations resulted in a significant bacterial mortality and a reduced bacterial attachment on nontoxic hard surfaces.  相似文献   

16.
Lasers have been widely used in the field of biology along with the development of laser technology, but the mechanism of the bio-effect of lasers is not explicit. The objective of this paper was to test the optical effect of a laser on protecting wheat from UV-B damage. A patent instrument was employed to emit semiconductor laser (wavelength 650 nm) and incoherent red light, which was transformed from the semiconductor laser. The wavelength, power and lightfleck diameter of the incoherent red light are the same as those of the semiconductor laser. The semiconductor laser (wavelength 650 nm, power density 3.97 mW mm(-2)) and incoherent red light (wavelength 650 nm, power density 3.97 mW mm(-2)) directly irradiated the embryo of wheat seeds for 3 min respectively, and when the seedlings were 12-day-old they were irradiated by UV-B radiation (10.08 kJ m(-2)) for 12 h in the dark. Changes in the concentration of malondialdehyde (MDA), hydrogen peroxide (H(2)O(2)), glutathione (GSH), ascorbate (AsA), carotenoids (CAR), the production rate of superoxide radical (O(2)(-)), the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and the growth parameters of seedlings (plant height, leaf area and fresh weight) were measured to test the optical effect of the laser. The results showed that the incoherent red light treatment could not enhance the activities of SOD, POD and CAT and the concentration of AsA and CAR. When the plant cells were irradiated by UV-B, the incoherent red light treatment could not eliminate active oxygen and prevent lipid peroxidation in wheat. The results also clearly demonstrate that the plant DNA was damaged by UV-B radiation and semiconductor laser irradiance had the capability to protect plants from UV-B-induced DNA damage, while the incoherent red light could not. This is the first investigation reporting the optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.  相似文献   

17.
Andreeva  N. V.  Zotov  K. V.  Yusupov  V. I.  Belyavsky  A. V. 《Molecular Biology》2019,53(2):286-290
Molecular Biology - We have established earlier that 835-nm infrared laser irradiation results in a dose-dependent growth inhibition of human mesenchymal stem and melanoma cells and is able to...  相似文献   

18.
The accident at the Chernobyl Atomic Energy Station resulted in radiation contamination of large tracts of land and particularly the reactor building itself. Sustained exposure of microfungi to radiation appears to have resulted in formerly unknown adaptive features, such as directed growth of fungi to sources of ionizing radiation. We evaluate here spore germination and subsequent emergent hyphal growth of microfungi in the presence of pure gamma or mixed beta and gamma radiation of fungi isolated from a range of long term background radiation levels. Conidiospore suspensions were exposed to collimated beams of radiation and percent spore germination and length of emergent hyphae were measured. All fungal species isolated from background radiation showed inhibition or no response in germination when irradiated. Isolates from sites with elevated radiation showed a stimulation in spore germination (69% mixed radiation and 46% for gamma irradiation). Most isolates from low background radiation sites showed a significant reduced or no response to exposure to either source of radiation, whereas the stimulatory effect of experimental exposure to radiation appeared to increase in magnitude as prior exposure to radiation increased. We propose that the enhanced spore germination and hyphal growth seen in the exposure trials is induced by prior long term exposure to radiation and these factors could be important in controlling the decomposition of radionuclide-bearing resources in the environment.  相似文献   

19.
Partial desiccation treatment was applied to improve plant regeneration response in irradiated in vitro cultures. Embryogenic callus cultures of sugarcane cv. Co-671 were exposed to different doses of gamma radiation (0–80 Gy) and radiation effect was evaluated in terms of post-irradiation callus recovery, growth and regeneration of plants. Proliferative capacity of cultures was inversely correlated with radiation dose as the percentage surviving cultures or white proliferating clumps (WPC) decreased as the radiation dose increased up to 80 Gy. LD50 was found to be around 20–30 Gy and at higher doses, poor regeneration frequency was observed after 4–6 weeks of post-irradiation culture. To stimulate regeneration response, irradiated cultures were subjected to partial desiccation for 6 h and the treatment resulted in enhanced plant regeneration response. The study suggests that partial desiccation treatment can be useful in stimulating regeneration response of irradiated in vitro cultures.  相似文献   

20.
Static light scattering is an important solution-based method for assaying spontaneous protein aggregation reactions. But the reliability of the measurements when conducted in the presence of fibrillization inducers has been questioned. Here the utility of static laser light scattering for quantitative assay of anionic micelle-induced protein fibrillization was characterized using tau protein, the major component of neurofibrillary lesions of Alzheimer's disease. Both inducer micellization and tau fibrillization made significant contributions to light scattering intensity. The intensity arising solely from micellization was quantified using proteins that promoted inducer micellization but could not fibrillize, such as mixed histones and assembly-incompetent mutant htau40(I277P/I308P). When corrected for micellization, reaction progress curves for wild-type tau fibrillization were sigmoidal and correlated well with measurements of total filament length made by transmission electron microscopy. The utility of the improved laser light scattering assay was demonstrated by quantifying the effect of inducer concentration on tau assembly kinetics using a three-parameter Gompertz growth function. Results showed that alkyl sulfate detergent accelerated tau nucleation as reflected by shorter lag times and modulated pre-nuclear equilibria to yield more filament mass at reaction equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号