首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Pan  G C King  J E Coleman 《Biochemistry》1989,28(22):8833-8839
Deuteriation of all aromatic protons of gene 32 protein (g32P) from phage T4, followed by selective introduction of specific protons, has allowed the precise identification of the number and magnitude of the chemical shift changes induced in the aromatic protons when g32P binds noncooperatively or cooperatively to nucleotides. Signals from five Tyr residues are shifted by binding of g32P to d(pA)8 or d(pA)40-60; however, the change from noncooperative, d(pA)8, to cooperative, d(pA)40-60, binding causes significant increases in the magnitudes of the shifts for only two of these Tyr signals. These two Tyr residues may interact directly with the nucleotide bases, while the shifts associated with the other three Tyr may be due to conformational changes in g32P upon ssDNA binding. Similar conclusions can be drawn for two of the six Phe residues whose protons undergo shifts upon nucleotide binding. Observation of selected proton signals allows for the first time detection by 1H NMR of changes in the proton signals from two Trp residues upon nucleotide binding. The side chains of two Tyr, one or two Phe, and one Trp are probably directly involved in nucleotide base-protein interactions. As assayed by the signals from the H2 and H8 protons of adenine, the bases of a bound nucleotide are undergoing a fast chemical exchange in the noncooperative mode of binding, but shift to slow exchange upon assuming the cooperative mode of ssDNA interaction. When bound to a polynucleotide, the A domain of g32P (residues 254-301) becomes more mobile, as reflected in sharpening of the 1H NMR signals from the A domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
J E Coleman  I M Armitage 《Biochemistry》1978,17(23):5038-5045
The interactions of oligodeoxynucleotides with the aromatic residues of gene 5 protein in complexes with d(pA)8 and d(pT)8 have been determined by 1H NMR of the protein in which the five tyrosyl residues have been selectively deuterated either in the 2,6 or the 3,5 positions. Only the 3,5 protons of the three surface tyrosyls (26, 41, and 56) interact with the bases. The remainder of the aromatic protons undergoing base-dependent upfield ring-current shifts on complex formation are phenylalanyl protons, assigned to Phe(13) on the basis of model building. 19F NMR of the complexes of the m-fluorotyrosyl-labeled protein with d(pT)4 and d(pA)8 confirms the presence of ring-current perturbations of nuclei at the 3,5-tyrosyl positions of the three surface tyrosyls. Differential expression of the 19F(1H) nuclear Overhauser effect confirms the presence of two buried and three surface tyrosyl residues. A new model of the DNA binding groove is presented involving Tyr(26)-base-Phe(13) intercalation.  相似文献   

3.
Kaur R  Ahuja S  Anand A  Singh B  Stark BC  Webster DA  Dikshit KL 《FEBS letters》2008,582(23-24):3494-3500
Although Vitreoscilla hemoglobin (VHb) carries a conventional globin fold, its proximal site geometry is unique in having a hydrogen-bonding network between proximal site residues, HisF8-TyrG5-GluH23 and TyrG5-TyrH12. TyrG5 and TyrH12 were mutated to study their relevance in VHb function. VHb G5 mutants (Tyr95Phe and Tyr95Leu showed no stable oxyform and nitric oxide dioxygenase activity, whereas, VHb H12 mutants (Tyr126Phe and Tyr126Leu) displayed little change in their oxygen affinity indicating a crucial role of Tyr95 in protein function. The VHb H12 mutant, Tyr126Leu, enhanced the intracellular pool of oxygen and cell growth better than VHb. Molecular modeling suggests that the replacement of tyrosine with leucine in Tyr126Leu creates an opening on the protein surface that may facilitate oxygen diffusion and accumulation.  相似文献   

4.
1H NMR (500 MHz) of gene 32 protein--oligonucleotide complexes   总被引:6,自引:0,他引:6  
In concentrated solutions, gene 32 single-stranded DNA binding protein from bacteriophage T4 (gene 32P) forms oligomers with long rotational correlation times, rendering 1H NMR signals from most of the protons too broad to be detected. Small flexible N- and C-terminal domains are present, however, the protons of which give rise to sharp resonances. If the C-terminal A domain (48 residues) and the N-terminal B domain (21 residues) are removed, the resultant core protein of 232 residues (gene 32P) retains high affinity for ssDNA and remains a monomer in concentrated solution, and most of the proton resonances of the core protein can now be observed. Proton NMR spectra (500 MHz) of gene 32P and its complexes with ApA, d(pA)n (n = 2, 4, 6, 8, and 10), and d(pT)8 show that the resonances of a group of aromatic protons shift upfield upon oligonucleotide binding. Proton difference spectra show that the 1H resonances of at least one Phe, one Trp, and five Tyr residues are involved in the chemical shift changes observed with nucleotide binding. The number of aromatic protons involved and the magnitude of the shifts change with the length of the oligonucleotide until the shifts are only slightly different between the complexes with d(pA)8 and d(pA)10, suggesting that the binding groove accommodates approximately eight nucleotide bases. Many of the aromatic proton NMR shifts observed on oligonucleotide complex formation are similar to those observed for oligonucleotide complex formation with gene 5P of bacteriophage fd, although more aromatic residues are involved in the case of gene 32P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
One- and two-dimensional NMR studies were performed on the complexes of porcine pancreatic phospholipase A2 with substrate analogs bound to a micellar lipid-water interface of fully deuterated dodecylphosphocholine. The interactions between the inhibitor and the enzyme were localized by comparison of the two-dimensional NOE spectra recorded for the enzyme-inhibitor complex using both protonated and selectively deuterated inhibitors. These experiments led us to the following conclusions for the phospholipase-A2-micelle complex: (i) the 38-kDa phospholipase A2 complex gives NMR spectra with relatively narrow lines, which is indicative of high mobility of the enzyme; (ii) the residues Ala1, Trp3, Phe63 and Tyr69 located in the interface recognition site, as well as Phe22, Tyr75, Phe106 and Tyr111 are involved in the micelle-binding process; (iii) when present on the micelle, phospholipase A2 is stereospecific for the inhibitor binding; (iv) the inhibitor, (R)-dodecyl-2-aminohexanol-1-phosphoglycol, binds stoichiometrically to phospholipase A2 with high affinity (Kd less than or equal to 10 microM); (v) the inhibitor binds in the active site of the enzyme, which is evidenced by large chemical-shift differences for Phe5, Ile9, Phe22, His48, Tyr52 and Phe106; (vi) the acyl chain of the inhibitor makes hydrophobic contacts (less than 0.4 nm) near Phe5, Ile9, Phe22 and Phe106. Comparison of our results on the enzyme-inhibitor-micelle ternary complex with the crystal structure of the enzyme-inhibitor complex [Thunnissen, M. M. G. M., AB, E., Kalk, K. H., Drenth, J., Dijkstra, B. W., Kuipers, O. P., Dijkman, R., de Haas, G. H. & Verheij, H. M. (1990) Nature 347, 689-691] shows that the mode of inhibitor binding is similar.  相似文献   

6.
We previously proposed the hydrophobic and bulky residues of the three loops, designated stereochemistry gate loops (SGLs), to constitute a hydrophobic substrate binding pocket of -hydantoinase from Bacillus stearothermophilus SD1. Simulation of substrate binding in the active site of -hydantoinase and sequence alignment of various -hydantoinases revealed the critical hydrophobic residues closely located around the exocyclic substituent of substrate. To evaluate the roles of these residues in substrate binding pocket, site-directed mutagenesis was performed specifically for Leu 65, Tyr 155, and Phe 159. When Tyr 155 was mutated to Phe and Glu, both mutants Y155F and Y155E were totally inactive for nonsubstituted hydantoin and -5-hydroxyphenyl hydantoin (HPH), which indicates that Tyr 155 is involved in substrate binding via a hydrogen bond with the hydantoinic ring. Furthermore, replacement of the hydrophobic residues Leu 65 and Phe 159 with Glu, a charged amino acid, resulted in a significant decrease in activity for nonsubstituted hydantoin, but not for HPH. The Kcat values of both mutants for nonsubstituted hydantoin also severely decreased, but a slight change in the Kcat values was observed towards HPH. These results suggest that the hydrophobic residues in SGLs play an essential role in substrate binding, and differentially interact according to the property of the exocyclic substituent.  相似文献   

7.
G C King  J E Coleman 《Biochemistry》1987,26(10):2929-2937
The interaction of gene 5 protein (G5P) with oligodeoxynucleotides is investigated by 1H NMR methods, principally two-dimensional nuclear Overhauser effect spectroscopy (NOESY). Aromatic resonances of G5P are specifically assigned from crystallographic data, while the low-field resonances of nucleotides are assigned with sequential or other procedures. Chemical shift changes that accompany binding of d(pA)4, d(A)4, d(pT)4, and d(pA)8, combined with specific protein-nucleotide nuclear Overhauser effects (NOEs) obtained from NOESY spectra, suggest that Phe-73 and Tyr-26 are the only aromatic residues that stack significantly with nucleotide bases. Chemical shift data also imply a role for Leu-28, though this has not been confirmed with intermolecular NOEs. Binding of all four oligonucleotides causes marked upfield movements (0.1-0.6 ppm) of G5P NOESY cross peaks belonging to Tyr-26, Leu-28, and Phe-73. Most other G5P spin systems, notably those of Tyr-34 and Tyr-41, do not appear to be significantly affected. In the d(pA)4-G5P complex an intermolecular NOE is observed between Tyr-26 and H1' of Ade-1, while Phe-73 has NOEs with the H2, H8, and H1' protons of Ade-2 and -3. Intramolecular NOEs seem to follow a similar pattern in the partially cooperative d(pA)8-G5P complex, though specific nucleotide resonance assignments are not possible in this case. Binding causes relatively small chemical shift changes for the base resonances in adenylyl nucleotides, suggesting that there is some, but not complete, unstacking of the bases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Vasoactive intestinal peptide (VIP) is a 28-amino acid neuropeptide which belongs to a glucagon/secretin superfamily, the ligand of class II G protein-coupled receptors. Knowledge for the conformation of VIP bound to membrane is important because the receptor activation is initiated by membrane binding of VIP. We have previously observed that VIP-G (glycine-extended VIP) is unstructured in solution, as evidenced by the limited NMR chemical shift dispersion. In this study, we determined the three-dimensional structures of VIP-G in two distinct membrane-mimicking environments. Although these are basically similar structures composed of a disordered N-terminal region and a long α-helix, micelle-bound VIP-G has a curved α-helix. The side chains of residues Phe(6), Tyr(10), Leu(13), and Met(17) found at the concave face form a hydrophobic patch in the micelle-bound state. The structural differences in two distinct membrane-mimicking environments show that the micelle-bound VIP-G localized at the water-micelle boundary with these side chains toward micelle interior. In micelle-bound PACAP-38 (one of the glucagon/secretin superfamily peptide) structure, the identical hydrophobic residues form the micelle-binding interface. This result suggests that these residues play an important role for the membrane binding of VIP and PACAP.  相似文献   

9.
The hydrophobic S1' subsite is one of the major determinants of the substrate specificity of thermolysin and related M4 family proteases. In the thermolysin-like protease (TLP) produced by Bacillus stearothermophilus (TLP-ste), the hydrophobic S1' subsite is mainly formed by Phe130, Phe133, Val139 and Leu202. In the present study, we have examined the effects of replacing Leu202 by smaller (Gly, Ala, Val) and larger (Phe, Tyr) hydrophobic residues. The mutational effects showed that the wild-type S1' pocket is optimal for binding leucine side chains. Reduction of the size of residue 202 resulted in a higher efficiency towards substrates with Phe in the P1' position. Rather unexpectedly, the Leu202-->Phe and Leu202-->Tyr mutations, which were expected to decrease the size of the S1' subsite, resulted in a large increase in activity towards dipeptide substrates with Phe in the P1' position. This is probably due to the fact that 202Phe and 202Tyr adopt a second possible rotamer that opens up the subsite compared to Leu202, and also favours interactions with the substrate. To validate these results, we constructed variants of thermolysin with changes in the S1' subsite. Thermolysin and TLP-ste variants with identical S1' subsites were highly similar in terms of their preference for Phe vs. Leu in the P1' position.  相似文献   

10.
In the family of acyl-coenzyme A binding proteins, a subset of 26 sequence sites are identical in all eukaryotes and conserved throughout evolution of the eukaryotic kingdoms. In the context of the bovine protein, the importance of these 26 sequence positions for structure, function, stability, and folding has been analyzed using single-site mutations. A total of 28 mutant proteins were analyzed which covered 17 conserved sequence positions and three nonconserved positions. As a first step, the influence of the mutations on the protein folding reaction has been probed, revealing a folding nucleus of eight hydrophobic residues formed between the N- and C-terminal helices [Kragelund, B. B., et al. (1999) Nat. Struct. Biol. (In press)]. To fully analyze the role of the conserved residues, the function and the stability have been measured for the same set of mutant proteins. Effects on function were measured by the extent of binding of the ligand dodecanoyl-CoA using isothermal titration calorimetry, and effects on protein stability were measured with chemical denaturation followed by intrinsic tryptophan and tyrosine fluorescence. The sequence sites that have been conserved for direct functional purposes have been identified. These are Phe5, Tyr28, Tyr31, Lys32, Lys54, and Tyr73. Binding site residues are mainly polar or charged residues, and together, four of these contribute approximately 8 kcal mol-1 of the total free energy of binding of 11 kcal mol-1. The sequence sites conserved for stability of the structure have likewise been identified and are Phe5, Ala9, Val12, Leu15, Leu25, Tyr28, Lys32, Gln33, Tyr73, Val77, and Leu80. Essentially, all of the conserved residues that maintain the stability are hydrophobic residues at the interface of the helices. Only one conserved polar residue, Gln33, is involved in stability. The results indicate that conservation of residues in homologous proteins may result from a summed optimization of an effective folding reaction, a stable native protein, and a fully active binding site. This is important in protein design strategies, where optimization of one of these parameters, typically function or stability, may influence any of the others markedly.  相似文献   

11.
Takayama Y  Harada E  Kobayashi R  Ozawa K  Akutsu H 《Biochemistry》2004,43(34):10859-10866
The roles of aromatic residues in redox regulation of cytochrome c(3) were investigated by site-directed mutagenesis at every aromatic residue except for axial ligands (Phe20, Tyr43, Tyr65, Tyr66, His67, and Phe76). The mutations at Phe20 induced large chemical shift changes in the NMR signals for hemes 1 and 3, and large changes in the microscopic redox potentials of hemes 1 and 3. The NMR signals of the axial ligands of hemes 1 and 3 were also affected. Analysis of the nature of the mutations revealed that a hydrophobic environment and aromaticity are important for the reduction of the redox potentials of hemes 1 and 3, respectively. There was also a global effect. The replacement of Tyr66 with leucine induced chemical shift changes for heme 4, and changes in the microscopic redox potentials of heme 4. The mutations of Tyr65 induced changes in the chemical shifts and microscopic redox potentials for every heme, suggesting that Tyr65 stabilizes the global conformation, thereby reducing the redox potentials. In contrast, although the mutations of His67 and Phe76 caused chemical shift changes for heme 2, they did not affect its redox potentials, showing these residues are not important. All noncoordinated aromatic residues conserved in the cytochrome c(3) subfamily with heme binding motifs CXXCH, CXXXXCH, CXXCH, and CXXXXCH (Phe20, Tyr43, and Tyr66) are involved in the pi-pi interaction, which causes a decrease in the redox potential of the interacting heme. The global effect can be attributed to either direct or indirect interactions among the four hemes in the cyclic architecture.  相似文献   

12.
L Guarrera  G Colotti  E Chiancone  A Boffi 《Biochemistry》1999,38(31):10079-10083
FTIR spectra of native Scapharca homodimeric hemoglobin (HbI) and of the Phe97-->Ile mutant have been measured in the region 2400-2700 cm(-1) where the absorption of the sulfhydryl groups can be observed. In native HbI, the two Cys92 residues give rise to a relatively intense band centered at 2559 cm(-1) that is shifted to 2568 cm(-1) and strongly quenched upon ligand binding. In the Phe97-->Leu mutant, such ligand-linked changes are not observed and the strong peak at around 2560 cm(-1) persists in the liganded derivatives. In native HbI, the observed changes have been attributed to the decrease in polarity of the interface due to the ligand-induced extrusion of the Phe97 phenyl ring from the heme pocket to the interface and the subsequent release of several water molecules that are clustered in the vicinity of Cys92. In contrast, in the Phe97-->Leu mutant, the Leu residue does not leave the heme pocket upon ligand binding and the interface is unaltered. The Cys92/S-H infrared band, therefore, represents a sensitive probe of the structural rearrangements that take place in the intersubunit interface upon ligand binding to HbI. The heterotetrameric Scapharca hemoglobin HbII contains, in addition to the Cys92 residues in the interfaces, two extra sulfhydryl groups per tetramer (Cys9 in the B chain) that are exposed to solvent in the A helix. The frequency of the Cys9/S-H stretching vibration occurs at 2582 cm(-1) in the unliganded and at 2586 cm(-1) in the liganded derivative, pointing to the involvement of the A helix in the ligand-linked polymerization characteristic of HbII.  相似文献   

13.
Conserved phenylalanine 35 is one of the hydrophobic patch residues on the surface of cytochrome b5 (cyt b5). This patch is partially exposed on the surface of cyt b5 while its buried face is in direct van der Waals' contact with heme b. Residues Phe35 and Phe/Tyr74 also form an aromatic channel with His39, which is one of the axial ligands of heme b. By site-directed mutagenesis we have produced three mutants of cyt b5: Phe35-->Tyr, Phe35-->Leu, and Phe35-->His. We found that of these three mutants, the Phe35-->Tyr mutant displays abnormal properties. The redox potential of the Phe35-->Tyr mutant is 66 mV more negative than that of the wild-type cyt b5 and the oxidized Phe35-->Tyr mutant is more stable towards thermal and chemical denaturation than wild-type cyt b5. In this study we studied the most interesting mutant, Phe35-->Tyr, by X-ray crystallography, thermal denaturation, CD and kinetic studies of heme dissociation to explore the origin of its unusual behaviors. Analysis of crystal structure of the Phe35-->Tyr mutant shows that the overall structure of the mutant is basically the same as that of the wild-type protein. However, the introduction of a hydroxyl group in the heme pocket, and the increased van der Waals' and electrostatic interactions between the side chain of Tyr35 and the heme probably result in enhancement of stability of the Phe35-->Tyr mutant. The kinetic difference of the heme trapped by the heme pocket also supports this conclusion. The detailed conformational changes of the proteins in response to heat have been studied by CD for the first time, revealing the existence of the folding intermediate.  相似文献   

14.
Point mutations of a part of the H(4)-H(5) loop (Leu(354)-Ile(604)) of Na(+)/K(+)-ATPase have been used to study the ATP and TNP-ATP binding affinities. Besides the previously reported amino acid residues Lys(480), Lys(501), Gly(502), and Cys(549), we have found four more amino acid residues, viz., Glu(446), Phe(475), Gln(482), and Phe(548), completing the ATP-binding pocket of Na(+)/K(+)-ATPase. Moreover, mutation of Arg(423) has also resulted in a large decrease in the extent of ATP binding. This residue, localized outside the binding pocket, seems to play a key role in supporting the proper structure and shape of the binding site, probably due to formation of a hydrogen bond with Glu(472). On the other hand, only some minor effects were caused by mutations of Ile(417), Asn(422), Ser(445), and Glu(505).  相似文献   

15.
The exchange of residues 67 and 205 of the S2 pocket of human cysteine cathepsins K and L induces a permutation of their substrate specificity toward fluorogenic peptide substrates. While the cathepsin L-like cathepsin K (Tyr67Leu/Leu205Ala) mutant has a marked preference for Phe, the Leu67Tyr/Ala205Leu cathepsin L variant shows an effective cathepsin K-like preference for Leu and Pro. A similar turnaround of inhibition was observed by using specific inhibitors of cathepsin K [1-(N-Benzyloxycarbonyl-leucyl)-5-(N-Boc-phenylalanyl-leucyl)carbohydrazide] and cathepsin L [N-(4-biphenylacetyl)-S-methylcysteine-(D)-Arg-Phe-beta-phenethylamide]. Molecular modeling studies indicated that mutations alter the character of both S2 and S3 subsites, while docking calculations were consistent with kinetics data. The cathepsin K-like cathepsin L was unable to mimic the collagen-degrading activity of cathepsin K against collagens I and II, DQ-collagens I and IV, and elastin-Congo Red. In summary, double mutations of the S2 pocket of cathepsins K (Y67L/L205A) and L (L67Y/A205L) induce a switch of their enzymatic specificity toward small selective inhibitors and peptidyl substrates, confirming the key role of residues 67 and 205. However, mutations in the S2 subsite pocket of cathepsin L alone without engineering of binding sites to chondroitin sulfate are not sufficient to generate a cathepsin K-like collagenase, emphasizing the pivotal role of the complex formation between glycosaminoglycans and cathepsin K for its unique collagenolytic activity.  相似文献   

16.
PO +Dehydrophenylalanine (delta Phe) having the E-configuration (delta EPhe ; phenyl and C = O cis) was incorporated into [Leu5]-enkephalin in order to restrict its conformation. Compared with the Z-isomer, in the radio-ligand receptor binding assays, [D-Ala2, delta EPhe4 , Leu5] enkephalin showed drastically decreased potency for the delta and mu opiate receptors, i.e., 260- and 150-fold loss of affinity, respectively. The results strongly indicate that the opiate receptors require the Z-configuration (phenyl and C = O, trans) of the delta Phe4 residue and may require a specific interrelationship between the aromatic rings of the Tyr1 and Phe4 residues in the molecule for binding. The conformation of [Leu5]-enkephalin specific for the delta receptors was analyzed and a comparison made with its crystal structure recently elucidated.  相似文献   

17.
Crystal structures of the 64M-2 antibody Fab fragment complexed with DNA photoproducts of dT(6-4)T and dTT(6-4)TT, and of the 64M-3 Fab fragment complexed with dT(6-4)T were determined. The 5'-thymine base of the bound dT(6-4)T ligand is in a half-chair conformation, and its base plane is nearly perpendicular to the planar 3'-pyrimidone base. The 64M-2 and 64M-3 Fabs have a common structure suitable for accommodating the dT(6-4)T ligand. In each of the antigen binding sites of the 64M-2 and 64M-3 Fabs, basic residues of His 35H and Arg 95H are located at the bottom of the binding pocket, and are hydrogen-bonded to the base moieties of dT(6-4)T. Two water molecules are involved in the interactions that intervene between the base moieties and the binding site. Aromatic residues of Trp 33H and Tyr 100iH form a side-wall of the pocket and are in van der Waals interactions with the base moieties. The Trp 33H side-chain is placed in parallel to the 3'-pyrimidone base, and the Tyr 100iH side-chain is nearly perpendicular to the 5'-thymine base. His 27dL, Tyr 32L, Leu 93L, and Ser 58H forming another side-wall are located in the vicinity of the sugar-phosphate backbone. In the 64M-2 Fab complex with dTT(6-4)TT, 5'- and 3'-side phosphate groups are also involved in interaction with Fab residues.  相似文献   

18.
A quadruple mutant of sperm whale myoglobin was constructed to mimic the structure found in Ascaris suum hemoglobin. The replacements include His(E7)-->Gln, Leu(B10)-->Tyr, Thr(E10)--> Arg, and Ile(G8)-->Phe. Single, double, and triple mutants were characterized to dissect out the effects of the individual substitutions. The crystal structures of the deoxy and oxy forms of the quadruple mutant were determined and compared with that of native Ascaris hemoglobin. Tyr(B10) myoglobin displays low O(2) affinity, high dissociation rate constants, and heterogeneous kinetic behavior, suggesting unfavorable steric interactions between the B10 phenol side chain and His(E7). In contrast, all mutants containing the Tyr(B10)/Gln(E7) pair show high O(2) affinity, low dissociation rate constants, and simple, monophasic kinetic behavior. Replacement of Ile(107) with Phe enhances nanosecond geminate recombination singly and in combination with the Tyr(B10)/Gln(E7)/Arg(E10) mutation by limiting access to the Xe4 site. These kinetic results and comparisons with native Ascaris hemoglobin demonstrate the importance of distal pocket cavities in governing the kinetics of ligand binding. The approximately 150-fold higher O(2) affinity of Ascaris hemoglobin compared with that for Tyr(B10)/Gln(E7)-containing myoglobin mutants appears to be the result of favorable proximal effects in the Ascaris protein, due to a staggered orientation of His(F8), the lack of a hydrogen bonding lattice between the F4, F7, and F8 residues, and the presence of a large polar Trp(G5) residue in the interior portion of the proximal heme pocket.  相似文献   

19.
Grant MA  Baikeev RF  Gilbert GE  Rigby AC 《Biochemistry》2004,43(49):15367-15378
The binding of factor IX to cell membranes requires a structured N-terminal omega-loop conformation that exposes hydrophobic residues for a highly regulated interaction with a phospholipid. We hypothesized that a peptide comprised of amino acids Gly4-Gln11 of factor IX (fIX(G4)(-)(Q11)) and constrained by an engineered disulfide bond would assume the native factor IX omega-loop conformation in the absence of Ca(2+). The small size and freedom from aggregation-inducing calcium interactions would make fIX(G4)(-)(Q11) suitable for structural studies for eliciting details about phospholipid interactions. fIX(G4)(-)(Q11) competes with factor IXa for binding sites on phosphatidylserine-containing membranes with a K(i) of 11 microM and inhibits the activation of factor X by the factor VIIIa-IXa complex with a K(i) of 285 microM. The NMR structure of fIX(G4)(-)(Q11) reveals an omega-loop backbone fold and side chain orientation similar to those found in the calcium-bound factor IX Gla domain, FIX(1-47)-Ca(2+). Dicaproylphosphatidylserine (C(6)PS) induces HN, Halpha backbone, and Hbeta chemical shift perturbations at residues Lys5, Leu6, Phe9, and Val10 of fIX(G4)(-)(Q11), while selectively protecting the NHzeta side chain resonance of Lys5 from solvent exchange. NOEs between the aromatic ring protons of Phe9 and specific acyl chain protons of C(6)PS indicate that these phosphatidylserine protons reside 3-6 A from Phe9. Stabilization of the phosphoserine headgroup and glycerol backbone of C(6)PS identifies that phosphatidylserine is in a protected environment that is spatially juxtaposed with fIX(G4)(-)(Q11). Together, these data demonstrate that Lys5, Leu6, Phe9, and Val10 preferentially interact with C(6)PS and allow us to correlate known hemophilia B mutations of factor IX at Lys5 or Phe9 with impaired phosphatidylserine interaction.  相似文献   

20.
Human galanin is a 30 amino acid neuropeptide that elicits a range of biological activities by interaction with G protein-coupled receptors. We have generated a model of the human GALR1 galanin receptor subtype (hGALR1) based on the alpha carbon maps of frog rhodopsin and investigated the significance of potential contact residues suggested by the model using site-directed mutagenesis. Mutation of Phe186 within the second extracellular loop to Ala resulted in a 6-fold decrease in affinity for galanin, representing a change in free energy consistent with hydrophobic interaction. Our model suggests interaction between Phe186 of hGALR1 and Ala7 or Leu11 of galanin. Receptor subtype specificity was investigated by replacement of residues in hGALR1 with the corresponding residues in hGALR2 and use of the hGALR2-specific ligands hGalanin(2-30) and [D-Trp2]hGalanin(1-30). The His267Ile mutant receptor exhibited a pharmacological profile corresponding to that of hGALR1, suggesting that His267 is not involved in a receptor-ligand interaction. The mutation Phe115Ala resulted in a decreased binding affinity for hGalanin and for hGALR2-specific analogues, indicating Phe115 to be of structural importance to the ligand binding pocket of hGALR1 but not involved in direct ligand interaction. Analysis of Glu271Trp suggested that Glu271 of hGALR1 interacts with the N-terminus of galanin and that the Trp residue in the corresponding position in hGALR2 is involved in receptor subtype specificity of binding. Our model supports previous reports of Phe282 of hGALR1 interacting with Trp2 of galanin and His264 of hGALR1 interacting with Tyr9 of galanin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号