首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SYNOPSIS. Amphibian metamorphosis is the developmental processinitiated by thyroid hormone which transforms a tadpole intoa frog. This transformation requires extensive remodeling ofalmost every tissue in the animal. One of the more well-studiedtadpole tissues that undergoes remodeling is the small intestine.This tissue requires a shortening in length as well as internalanatomical restructuring to function in the adult frog. Briefly,the tadpole epithelial cells undergo programmed cell death (orapoptosis) and are replaced by a layer of newly formed adultepithelium. About 20 thyroid hormone-regulated genes participatingin this intestinal remodeling have been identified. These genescan be divided into several groups based on the proposed functionsof their products. One of these groups contains several secretedand/or signaling molecules. Most prominent among these are theXenopus homologs of the hedgehog and stromelysin-3 genes. Basedon the expression profiles and cellular localization, hedgehogappears to be involved in adult epithelial morphogenesis. Stromelysin-3may participate in basal lamina modification which is potentiallyinvolved in the apoptosis of the larval epithelium and developmentof the adult epithelium. Here we will review in detail the potentialroles for these secreted factors as well as the proposed molecularmechanisms responsible for their physiological functions. Furthermore,we will examine the effect of these proteins on the extracellularenvironment and how this impacts upon cellular processes involvedin intestinal remodeling.  相似文献   

2.
3.
Since thyroid hormones play a pivotal role in amphibian metamorphosis we used PCR to amplify DNA fragments corresponding to a portion of the ligand-binding domain of the thyroid hormone receptor (TR) genes in several neotenic amphibians: the obligatory neotenic members of the family Proteidea the mudpuppy Necturus maculosus and Proteus anguinus as well as two members of the facultative neotenic Ambystoma genus: the axolotl Ambystoma mexicanum and the tiger salamander Ambystoma tigrinum. In addition, we looked for TR genes in the genome of an apode Typhlonectes compressicaudus. TR genes were found in all these species including the obligatory neotenic ones. The PCR fragments obtained encompass both the C and E domains and correspond to α and β genes. Their sequences appear to be normal, suggesting that there is no acceleration of evolutionary rates in the TR genes of neotenic amphibians. This result is not surprising for Ambystomatidae, which are known to respond to T3 (3,3′,5-triiodothyronine) but is not in agreement with biochemical and biological data showing that Proteidea cannot respond to thyroid hormones. Interestingly, by RT-PCR analysis we observed a high expression levels of TRα in gills, intestine, and muscles of Necturus as well as in the liver of Ambystoma mexicanum, whereas TRβ expression was only detected in Ambystoma mexicanum but not in Necturus. Such a differential expression pattern of TRα and TRβ may explain the neoteny in Proteidea. The cloning of thyroid-hormone-receptor gene fragments from these species will allow the molecular study of their failure to undergo metamorphosis. Received: 23 April 1996 / Accepted: 20 January 1997  相似文献   

4.
SYNOPSIS. Anuran metamorphosis is controlled by the complexinteraction of several hormones. Although thyroid hormone isthe major stimulatory hormone in metamorphosis and likely regulatesall of the metamorphic genes directly, other hormones are involvedin regulating thyroid hormone secretion and activity. Corticoids(in particular corticosterone) and the sex steroids (especially17ß estradiol) all potentially regulate thyroid hormoneactivity both by affecting hypothalamic and pituitary controlof thyroid hormone secretion and by interacting with thyroidhormones peripherally. Although there is likely a role for endogenouscorticoids in anuran metamorphosis, the role for endogenousestrogens remains to be shown. The role of these "modulators"must be fully understood, if our understanding of hormonal controlof metamorphosis is to be complete.  相似文献   

5.
There are two homologous thyroid hormone (TH) receptors (TRs α and β), which are members of the nuclear hormone receptor (NR) family. While TRs regulate different processes in vivo and other highly related NRs regulate distinct gene sets, initial studies of TR action revealed near complete overlaps in their actions at the level of individual genes. Here, we assessed the extent that TRα and TRβ differ in target gene regulation by comparing effects of equal levels of stably expressed exogenous TRs +/− T3 in two cell backgrounds (HepG2 and HeLa). We find that hundreds of genes respond to T3 or to unliganded TRs in both cell types, but were not able to detect verifiable examples of completely TR subtype-specific gene regulation. TR actions are, however, far from identical and we detect TR subtype-specific effects on global T3 response kinetics in HepG2 cells and many examples of TR subtype specificity at the level of individual genes, including effects on magnitude of response to TR +/− T3, TR regulation patterns and T3 dose response. Cycloheximide (CHX) treatment confirms that at least some differential effects involve verifiable direct TR target genes. TR subtype/gene-specific effects emerge in the context of widespread variation in target gene response and we suggest that gene-selective effects on mechanism of TR action highlight differences in TR subtype function that emerge in the environment of specific genes. We propose that differential TR actions could influence physiologic and pharmacologic responses to THs and selective TR modulators (STRMs).  相似文献   

6.
7.
8.
Thyroid hormone and thyroid hormone receptor (TR) play an essential role in metabolic regulation. However, the role of TR in adipogenesis has not been established. We reported previously that TR sumoylation is essential for TR-mediated gene regulation and that mutation of either of the two sites in TRα or any of the three sites in TRβ reduces TR sumoylation. Here, we transfected TR sumoylation site mutants into human primary preadiocytes and the mouse 3T3L1 preadipocyte cell line to determine the role of TR sumoylation in adipogenesis. Reduced sumoylation of TRα or TRβ resulted in fewer and smaller lipid droplets and reduced proliferation of preadipocytes. TR sumoylation mutations, compared with wild-type TR, results in reduced C/EBP expression and reduced PPARγ2 mRNA and protein levels. TR sumoylation mutants recruited NCoR and disrupted PPARγ-mediated perilipin1 (Plin1) gene expression, associated with impaired lipid droplet formation. Expression of NCoRΔID, a mutant NCoR lacking the TR interaction domain, partially “rescued” the delayed adipogenesis and restored Plin1 gene expression and adipogenesis. TR sumoylation site mutants impaired Wnt/β-catenin signaling pathways and the proliferation of primary human preadipocytes. Expression of the TRβ K146Q sumoylation site mutant down-regulated the essential genes required for canonical Wnt signal-mediated proliferation, including Wnt ligands, Fzds, β-catenin, LEF1, and CCND1. Additionally, the TRβ K146Q mutant enhanced the canonical Wnt signaling inhibitor Dickkopf-related protein 1 (DKK1). Our data demonstrate that TR sumoylation is required for activation of the Wnt canonical signaling pathway during preadipocyte proliferation and enhances the PPARγ signaling that promotes differentiation.  相似文献   

9.
10.
The unliganded nuclear receptor (NR) generally recruits the NR corepressor (N-CoR) and the silencing mediator of retinoid and thyroid hormone receptor via its direct binding to the extended helical motif within dual NR-interaction domains (IDs) of corepressors. Interestingly, N-CoR has a third ID (ID3) upstream of two IDs (ID1 and ID2) and its core motif (IDVII), rather than an extended helical motif, is known to be involved directly in the exclusive interaction of ID3 with the thyroid hormone receptor (TR). Here, we investigated the molecular determinants of the TR interaction with ID3 to understand the molecular basis of the N-CoR preference shown by the TR homodimer. Using a one- plus two-hybrid system, we identified the specific residues of N-CoR-ID2 and N-CoR-ID3 that are required for stable association of N-CoR with the TR homodimer. By swapping experiments and mutagenesis studies, we found that the C-terminally flanked residues of the core motif of ID3 contribute to the TR preference for N-CoR-ID3, suggesting that an extended three-turn helix might form within the ID3 via a C-terminal extension (IDVIITRQI) and participate directly in the TR-specific interaction. Structural modeling of the ID3 motif on TR-LBD is consistent with this conclusion. Notably, we identified a novel interaction between N-CoR-ID3 and orphan NR RevErb that is mediated by the residues crucial also in TR binding. These observations raise the intriguing possibility that NR homodimers such as TR and RevErb display preferential binding to the N-CoR corepressor via their specific interactions with ID3, which is normally absent from the silencing mediator of retinoid and thyroid hormone receptor.  相似文献   

11.
Thyroid hormone receptor (TR) α and β mediate thyroid hormone action at target tissues. TR isoforms have specific roles in development and in adult tissues. The mechanisms underlying TR isoform-specific action, however, are not well understood. We demonstrate that posttranslational modification of TR by conjugation of small SUMO to TRα and TRβ plays an important role in triiodothyronine (T3) action and TR isoform specificity. TRα was sumoylated at lysines 283 and 389, and TRβ at lysines 50, 146, and 443. Sumoylation of TRβ was ligand-dependent, and sumoylation of TRα was ligand-independent. TRα-SUMO conjugation utilized the E3 ligase PIASxβ and TRβ-SUMO conjugation utilized predominantly PIAS1. SUMO1 and SUMO3 conjugation to TR was important for T3-dependent gene regulation, as demonstrated in transient transfection assay and studies of endogenous gene regulation. The functional role of SUMO1 and SUMO3 in T3 induction in transient expression assays was closely matched to the pattern of TR and cofactor recruitment to thyroid hormone response elements (TREs) as determined by ChIP assays. SUMO1 was required for the T3-induced recruitment of the co-activator CREB-binding protein (CBP) and release of nuclear receptor co-repressor (NCoR) on a TRE but had no significant effect on TR DNA binding. SUMO1 was required for T3-mediated recruitment of NCoR and release of CBP from the TSHβ-negative TRE. SUMO3 was required for T3-stimulated TR binding to the TSHβ-negative TRE and recruitment of NCoR. These findings demonstrate that conjugation of SUMO to TR has a TR-isoform preference and is important for T3-dependent gene induction and repression.  相似文献   

12.
13.
14.
Batrachochytrium dendrobatidis (Bd), a chytrid fungus, has increasingly been implicated as a major factor in the worldwide decline of amphibian populations. The fungus causes chytridiomycosis in susceptible species leading to massive die-offs of adult amphibians. Although Bd infects the keratinized mouthparts of tadpoles and negatively affects foraging behavior, these infections are non-lethal. An important morphogen controlling amphibian metamorphosis is thyroid hormone (T3). Tadpoles may be infected with Bd and the fungus may be exposed to T3 during metamorphosis. We hypothesize that exposure of Bd to T3 may induce the expression of factors associated with host colonization and pathogenicity. We utilized a proteomics approach to better understand the dynamics of the Bd-T3 interaction. Using liquid chromatography-mass spectrometry (LC-MS), we generated a data set of a large number of cytoplasmic and membrane proteins following exposure of Bd to T3. From these data, we identified a total of 263 proteins whose expression was significantly changed following T3 exposure. We provide evidence for expression of an array of proteins that may play key roles in both genomic and non-genomic actions of T3 in Bd. Additionally, our proteomics study shows an increase in several proteins including proteases and a class of uncommon crinkler and crinkler-like effector proteins suggesting their importance in Bd pathogenicity as well as those involved in metabolism and energy transfer, protein fate, transport and stress responses. This approach provides insights into the mechanistic basis of the Bd-amphibian interaction following T3 exposure.  相似文献   

15.
16.
17.
Thyroid hormone receptors are encoded by the TRalpha (NR1A1) and TRbeta (NR1A2) loci. These genes are transcribed into multiple variants whose functions are unclear. Analysis by gene inactivation in mice has provided new insights into the functional complexity of these products. Different strategies designed to modify the TRalpha locus have led to strikingly different phenotypes. In order to analyze the molecular basis for these alterations, we generated mice devoid of all known isoforms produced from the TRalpha locus (TRalpha(0/0)). These mice are viable and exhibit reduced linear growth, bone maturation delay, moderate hypothermia, and reduced thickness of the intestinal mucosa. Compounding TRalpha(0) and TRbeta(-) mutations produces viable TRalpha(0/0)beta(-/-) mice, which display a more severe linear growth reduction and a more profound hypothermia as well as impaired hearing. A striking phenotypic difference is observed between TRalpha(0/0) and the previously described TRalpha(-/-) mice, which retain truncated TRDeltaalpha isoforms arising from a newly described promoter in intron 7. The lethality and severe impairment of the intestinal maturation in TRalpha(-/-) mice are rescued in TRalpha(0/0) animals. We demonstrate that the TRDeltaalpha protein isoforms, which are natural products of the TRalpha locus, are the key determinants of these phenotypical differences. These data reveal the functional importance of the non-T3-binding variants encoded by the TRalpha locus in vertebrate postnatal development and homeostasis.  相似文献   

18.
One goal of diabetic regenerative medicine is to instructively convert mature pancreatic exocrine cells into insulin-producing cells. We recently reported that ligand-bound thyroid hormone receptor α (TRα) plays a critical role in expansion of the β-cell mass during postnatal development. Here, we used an adenovirus vector that expresses TRα driven by the amylase 2 promoter (AdAmy2TRα) to induce the reprogramming of pancreatic acinar cells into insulin-producing cells. Treatment with l-3,5,3-triiodothyronine increases the association of TRα with the p85α subunit of phosphatidylinositol 3-kinase (PI3K), leading to the phosphorylation and activation of Akt and the expression of Pdx1, Ngn3, and MafA in purified acinar cells. Analyses performed with the lectin-associated cell lineage tracing system and the Cre/loxP-based direct cell lineage tracing system indicate that newly synthesized insulin-producing cells originate from elastase-expressing pancreatic acinar cells. Insulin-containing secretory granules were identified in these cells by electron microscopy. The inhibition of p85α expression by siRNA or the inhibition of PI3K by LY294002 prevents the expression of Pdx1, Ngn3, and MafA and the reprogramming to insulin-producing cells. In immunodeficient mice with streptozotocin-induced hyperglycemia, treatment with AdAmy2TRα leads to the reprogramming of pancreatic acinar cells to insulin-producing cells in vivo. Our findings suggest that ligand-bound TRα plays a critical role in β-cell regeneration during postnatal development via activation of PI3K signaling.  相似文献   

19.
Abstract

The ability of non-thyroidal stimuli to affect the binding affinity and capacity of solubilized nuclear receptors for thyroid hormones was studied in a normal homeostatic system (erythropoiesis) and a pathobiologic one (lung-ozone interaction). No significant effects on affinity were found, as Kd control values for receptors derived from rat bone marrow averaged 57 (±28) pM while experimental (hypoxic) values averaged 89 (±55) pM. Kd control values in rat lung were found to average 142 (±22) pM while average values derived from experimental protocols with ozone and methimazole were 267 (±44) pM and 161 (±35) pM respectively. Finally, Kd control values for receptors derived from cultured MEL cells averaged 19 (±2.6) pM while experimental values during exposure to DMSO or IGFl were 23 (±3.6) pM and 26 (±11) pM respectively. In contrast, binding capacity (expressed as fmoles of hormone bound per unit protein of solubilized receptor) was markedly perturbed in several tisses by various agents: ozone effects on lung were shown by an average control value of 3.3 (±0.4) as opposed to an experimental average of 28 (±1.9); and hypoxia effects on erythroid tissue were displayed by an  相似文献   

20.
两栖动物幼体变态过程是受甲状腺激素所精密调控的。对中国林蛙Rana chensinensis变态前期、临近变态期、变态高峰期和变态完成期的蝌蚪进行了外部形态指标(全长、体长、尾长和后肢长等)的测定,采用解剖和组织学方法对其甲状腺进行了组织学观察,并对蝌蚪外部形态指标与甲状腺形态机能之间的相关性进行了统计分析。结果显示,中国林蛙蝌蚪甲状腺分泌甲状腺激素机能活性的峰值出现于变态高峰期的前肢伸出期。统计分析表明,蝌蚪外部形态指标全长和后肢长的发育信息也可以反映其甲状腺分泌甲状腺激素的机能活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号