首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Gene》1997,184(2):197-203
The tylLM region of the tylosin biosynthetic gene cluster of Streptomyces fradiae contains four open reading frames (orfs1*–4*). The function of the orf1* product is not known. The product of orf2* (tylM2) is the glycosyltransferase that adds mycaminose to the 5-hydroxyl group of tylactone, the polyketide aglycone of tylosin (Ty). A methyltransferase, responsible for 3-N-methylation during mycaminose production, is encoded by orf3* (tylM1). The product of orf4* (ccr) is crotonyl-CoA reductase, which converts acetoacetyl-CoA to butyryl-CoA for use as a 4C extender unit during tylactone production.  相似文献   

2.
Pteroside B was isolated in radioactive form after administration of [2-14C]mevalonate to Pteridium aquilinum var. latiusculum, demonstrating that the biosynthesis of the aglycone proceeds through the ordinary pathway to sesquiterpenoids. Kuhn-Roth oxidation of the radioactive aglycone was carried out to examine the distribution of the radioactivity among the 3 methyls of the aglycone. The biosynthetic implications of these results are discussed.  相似文献   

3.
A novel polyene compound NPP identified in a rare actinomycetes, Pseudonocardia autotrophica KCTC9441, was shown to contain an aglycone identical to nystatin but to harbor a unique di-sugar moiety, mycosaminyl-(α1-4)-N-acetyl-glucosamine, which led to higher solubility and reduced hemolytic activity. Although the nppDI was proved to be responsible for the transfer of first polyene sugar, mycosamine in NPP biosynthesis, the gene responsible for the second sugar extending glycosyltransferase (GT) as well as NPP post-PKS tailoring mechanism remained unknown. Here, we identified a NPP-specific second sugar extending GT gene named nppY, located at the edge of the NPP biosynthetic gene cluster. Targeted nppY gene deletion and its complementation proved that nppY is indeed responsible for the transfer of second sugar, N-acetyl-glucosamine in NPP biosynthesis. Site-directed mutagenesis on nppY also revealed several amino acid residues critical for NppY GT function. Moreover, a combination of deletions and complementations of two GT genes (nppDI and nppY) and one P450 hydroxylase gene (nppL) involved in the NPP post-PKS biosynthesis revealed that NPP aglycone is sequentially modified by the two different GTs encoded by nppDI and nppY, respectively, followed by the nppL-driven regio-specific hydroxylation at the NPP C10 position. These results set the stage for the biotechnological application of sugar diversification for the biosynthesis of novel polyene compounds in actinomycetes.  相似文献   

4.
The balhimycin biosynthetic gene cluster of the glycopeptide producer Amycolatopsis balhimycina includes a gene (orf1) with unknown function. orf1 shows high similarity to the mbtH gene from Mycobacterium tuberculosis. In almost all nonribosomal peptide synthetase (NRPS) biosynthetic gene clusters, we could identify a small mbtH-like gene whose function in peptide biosynthesis is not known. The mbtH-like gene is always colocalized with the NRPS genes; however, it does not have a specific position in the gene cluster. In all glycopeptide biosynthetic gene clusters the orf1-like gene is always located downstream of the gene encoding the last module of the NRPS. We inactivated the orf1 gene in A. balhimycina by generating a deletion mutant. The balhimycin production is not affected in the orf1-deletion mutant and is indistinguishable from that of the wild type. For the first time, we show that the inactivation of an mbtH-like gene does not impair the biosynthesis of a nonribosomal peptide.  相似文献   

5.
A gene cluster responsible for the biosynthesis of anticancer agent FK228 has been identified, cloned, and partially characterized in Chromobacterium violaceum no. 968. First, a genome-scanning approach was applied to identify three distinctive C. violaceum no. 968 genomic DNA clones that code for portions of nonribosomal peptide synthetase and polyketide synthase. Next, a gene replacement system developed originally for Pseudomonas aeruginosa was adapted to inactivate the genomic DNA-associated candidate natural product biosynthetic genes in vivo with high efficiency. Inactivation of a nonribosomal peptide synthetase-encoding gene completely abolished FK228 production in mutant strains. Subsequently, the entire FK228 biosynthetic gene cluster was cloned and sequenced. This gene cluster is predicted to encompass a 36.4-kb DNA region that includes 14 genes. The products of nine biosynthetic genes are proposed to constitute an unusual hybrid nonribosomal peptide synthetase-polyketide synthase-nonribosomal peptide synthetase assembly line including accessory activities for the biosynthesis of FK228. In particular, a putative flavin adenine dinucleotide-dependent pyridine nucleotide-disulfide oxidoreductase is proposed to catalyze disulfide bond formation between two sulfhydryl groups of cysteine residues as the final step in FK228 biosynthesis. Acquisition of the FK228 biosynthetic gene cluster and acclimation of an efficient genetic system should enable genetic engineering of the FK228 biosynthetic pathway in C. violaceum no. 968 for the generation of structural analogs as anticancer drug candidates.  相似文献   

6.
Ramoplanin, a non-ribosomally synthesized peptide antibiotic, is highly effective against several drug-resistant Gram-positive bacteria, including vancomycin-resistant Enterococcus faecium (VRE) and methicillin-resistant Staphylococcus aureus (MRSA), two important opportunistic human pathogens. Recently, the biosynthetic cluster from the ramoplanin producer Actinoplanes ATCC 33076 was sequenced, revealing an unusual architecture of fatty acid and non-ribosomal peptide synthetase biosynthetic genes (NRPSs). The first steps towards understanding how these biosynthetic enzymes cooperatively interact to produce the depsipeptide product are expression and isolation of each enzyme to probe its specificity and function. Here we describe the successful production of soluble enzymes from within the ramoplanin locus and the confirmation of their specific role in biosynthesis. These methods may be broadly applicable to the production of biosynthetic enzymes from other natural product biosynthetic gene clusters, especially those that have been refractory to production in heterologous hosts despite standard expression optimization methods.  相似文献   

7.
The problem of whether phloroglucinol is a direct biosynthetic precursor of flavonoids was reinvestigated. Phloroglucinol-2,4,6-14C was found to be incorporated into rutin in Buckwheat (Fagopyrum esculentum) but most of the activity was found in the sugar moiety, the remainder being approximately equally distributed among the A- and B-rings of the aglycone, quercetin. This indicates extensive degradation of the added phloroglucinol prior to its utilization in the biosynthesis of the flavonoid. The hypothesis of a bio-Fries rearrangement of phloroglucinyl cinnamate to a chalcone, and hence to flavonoids, was also eliminated by comparing the efficiency of incorporation of 14C-labelled phloroglucinyl cinnamate and those of labelled phloroglucinol and cinnamic acid.  相似文献   

8.
We previously revealed that Orf8 and Orf6, which were identified in the brassicicene C biosynthetic gene cluster in Alternaria brassicicola strain ATCC96836, were fusicoccadiene (FD) synthase and 16-O-methyltransferase, respectively. In the present Letter, the early biosynthetic steps after the formation of FD were investigated. Plasmids carrying the FD synthase gene, one (or two) of five cytochrome P450 genes (orf1, orf2, orf5, orf7, and orf11) identified in the cluster and a cytochrome P450 reductase gene cloned from strain ATCC96836 were constructed and introduced into Saccharomyces cerevisiae. Based on the structures of the compounds produced by the transformants, Orf1 is suggested to be an 8β-hydroxylation enzyme that yields FD 8β-ol (4), followed by 16-hydroxylation by Orf7 to produce FD 8β16-diol (5).  相似文献   

9.
雷莫拉宁生物合成基因簇中orf20与已知的卤化酶基因高度同源.本研究在大肠杆菌中构建同框敲除质粒pSM-3,将其转入游动放线菌Actinoplanes sp.ATCC 33076,通过同源重组双交换的方法将orf20基因内部编码64个氨基酸的序列敲除,筛选得到双交换阻断突变株SIPI-A.2001 dorf20(Δor...  相似文献   

10.
ECO-orf27 associated with the cluster of ECO-0501 (LW01) from Amycolatopsis orientalis is deduced to encode a type II thioesterase. Disruption of ECO-orf27 reduced LW01 production by 95?%. Complementation of the disrupted mutant with intact ECO-orf27 restored the production of LW01 suggesting that ECO-orf27 is crucial for LW01 biosynthesis. ECO-TE I, the gene encoding type I thioesterase from LW01 polyketide synthases, cannot complement ECO-orf27 deficient mutant distinguishing ECO-orf27 from type I thioesterase gene. Type II thioesterase gene pikAV from Streptomyces venezuelae could complement ECO-orf27 in A. orientalis indicating that the two genes are equivalent in their function. Overexpression of ECO-orf27 resulted in a 20?% increase in LW01 production providing an alternative approach for yield improvement.  相似文献   

11.
Wang Y  Chen Y  Shen Q  Yin X 《Gene》2011,483(1-2):11-21
The biosynthetic gene cluster for laspartomycins, a family of 11 amino acid peptide antibiotics, has been cloned and sequenced from Streptomyces viridochromogenes ATCC 29814. Annotation of a segment of 88912bp of S. viridochromogenes genomic sequence revealed the putative lpm cluster and its flanking regions which harbor 43 open reading frames. The lpm cluster, which spans approximately 60 kb, consists of 21 open reading frames. Those include four NRPS genes (lpmA/orf18, lpmB/orf25, lpmC/orf26 and lpmD/orf27), four genes (orfs 21, 22, 24 and 29) involved in the lipid tail biosynthesis and attachment, four regulatory genes (orfs 13, 19, 32 and 33) and three putative exporters or self-resistance genes (orfs 14, 20 and 30). In addition, the gene involved in the biosynthesis of the nonproteinogenic amino acid Pip was also identified in the lpm cluster while the genes necessary for the biosynthesis of the rare residue diaminopropionic acid (Dap) were found to reside elsewhere on the chromosome. Interestingly, the dabA, dabB and dabC genes predicted to code for the biosynthesis of the unusual amino acid diaminobutyric acid (Dab) are organized into the lpm cluster even though the Dab residue was not found in the laspartomycins. Disruption of the NRPS lpmC gene completely abolished laspartomycin production in the corresponding mutant strain. These findings will allow molecular engineering and combinatorial biosynthesis approaches to expand the structural diversity of the amphomycin-group peptide antibiotics including the laspartomycins and friulimicins.  相似文献   

12.
The GE81112 tetrapeptides (1–3) represent a structurally unique class of antibiotics, acting as specific inhibitors of prokaryotic protein synthesis. Here we report the cloning and sequencing of the GE81112 biosynthetic gene cluster from Streptomyces sp. L-49973 and the development of a genetic manipulation system for Streptomyces sp. L-49973. The biosynthetic gene cluster for the tetrapeptide antibiotic GE81112 (getA-N) was identified within a 61.7-kb region comprising 29 open reading frames (open reading frames), 14 of which were assigned to the biosynthetic gene cluster. Sequence analysis revealed the GE81112 cluster to consist of six nonribosomal peptide synthetase (NRPS) genes encoding incomplete di-domain NRPS modules and a single free standing NRPS domain as well as genes encoding other biosynthetic and modifying proteins. The involvement of the cloned gene cluster in GE81112 biosynthesis was confirmed by inactivating the NRPS gene getE resulting in a GE81112 production abolished mutant. In addition, we characterized the NRPS A-domains from the pathway by expression in Escherichia coli and in vitro enzymatic assays. The previously unknown stereochemistry of most chiral centers in GE81112 was established from a combined chemical and biosynthetic approach. Taken together, these findings have allowed us to propose a rational model for GE81112 biosynthesis. The results further open the door to developing new derivatives of these promising antibiotic compounds by genetic engineering.  相似文献   

13.
The paulomycins are a group of glycosylated compounds featuring a unique paulic acid moiety. To locate their biosynthetic gene clusters, the genomes of two paulomycin producers, Streptomyces paulus NRRL 8115 and Streptomyces sp. YN86, were sequenced. The paulomycin biosynthetic gene clusters were defined by comparative analyses of the two genomes together with the genome of the third paulomycin producer Streptomyces albus J1074. Subsequently, the identity of the paulomycin biosynthetic gene cluster was confirmed by inactivation of two genes involved in biosynthesis of the paulomycose branched chain (pau11) and the ring A moiety (pau18) in Streptomyces paulus NRRL 8115. After determining the gene cluster boundaries, a convergent biosynthetic model was proposed for paulomycin based on the deduced functions of the pau genes. Finally, a paulomycin high-producing strain was constructed by expressing an activator-encoding gene (pau13) in S. paulus, setting the stage for future investigations.  相似文献   

14.
Two genes, orf6 and orf9 located in the L-oleandrose sugar biosynthetic gene cluster of Streptomyces antibioticus Tü99. NovU has been characterized as C-5 methyltrnaferase involved in noviose biosynthetic pathway. We have cloned and heterologously expressed the orf6, orf9, and novU genes in S. venezuelae YJ003-OTBP1. This established the function of orf6 and orf9 as 4-ketoreductase and 3-epimerase, respectively. All of analytical data of the noviosylated 10-deoxymethynolide also is in support of proving their functions. Furthermore biosynthetic pathway 5,5-gem-dimethyl-6-deoxyglucose (TDP-Lnoviose) has been proposed.  相似文献   

15.
The biosynthetic gene cluster of porothramycin, a sequence-selective DNA alkylating compound, was identified in the genome of producing strain Streptomyces albus subsp. albus (ATCC 39897) and sequentially characterized. A 39.7 kb long DNA region contains 27 putative genes, 18 of them revealing high similarity with homologous genes from biosynthetic gene cluster of closely related pyrrolobenzodiazepine (PBD) compound anthramycin. However, considering the structures of both compounds, the number of differences in the gene composition of compared biosynthetic gene clusters was unexpectedly high, indicating participation of alternative enzymes in biosynthesis of both porothramycin precursors, anthranilate, and branched L-proline derivative. Based on the sequence analysis of putative NRPS modules Por20 and Por21, we suppose that in porothramycin biosynthesis, the methylation of anthranilate unit occurs prior to the condensation reaction, while modifications of branched proline derivative, oxidation, and dimethylation of the side chain occur on already condensed PBD core. Corresponding two specific methyltransferase encoding genes por26 and por25 were identified in the porothramycin gene cluster. Surprisingly, also methyltransferase gene por18 homologous to orf19 from anthramycin biosynthesis was detected in porothramycin gene cluster even though the appropriate biosynthetic step is missing, as suggested by ultra high-performance liquid chromatography-diode array detection-mass spectrometry (UHPLC-DAD-MS) analysis of the product in the S. albus culture broth.  相似文献   

16.
A putative indigoidine biosynthetic gene cluster was located in the genome of Streptomyces chromofuscus ATCC 49982. The silent 9.4-kb gene cluster consists of five open reading frames, named orf1, Sc-indC, Sc-indA, Sc-indB, and orf2, respectively. Sc-IndC was functionally characterized as an indigoidine synthase through heterologous expression of the enzyme in both Streptomyces coelicolor CH999 and Escherichia coli BAP1. The yield of indigoidine in E. coli BAP1 reached 2.78 g/l under the optimized conditions. The predicted protein product of Sc-indB is unusual and much larger than any other reported IndB-like protein. The N-terminal portion of this enzyme resembles IdgB and the C-terminal portion is a hypothetical protein. Sc-IndA and/or Sc-IndB were co-expressed with Sc-IndC in E. coli BAP1, which demonstrated the involvement of Sc-IndB, but not Sc-IndA, in the biosynthetic pathway of indigoidine. The yield of indigoidine was dramatically increased by 41.4 % (3.93 g/l) when Sc-IndB was co-expressed with Sc-IndC in E. coli BAP1. Indigoidine is more stable at low temperatures.  相似文献   

17.
The daptomycin biosynthetic gene cluster of Streptomyces roseosporus was analyzed by Tn5099 mutagenesis, molecular cloning, partial DNA sequencing, and insertional mutagenesis with cloned segments of DNA. The daptomycin biosynthetic gene cluster spans at least 50 kb and is located about 400 to 500 kb from one end of the ~7,100-kb linear chromosome. We identified two peptide synthetase coding regions interrupted by a 10- to 20-kb region that may encode other functions in lipopeptide biosynthesis.  相似文献   

18.
Nine biological species, or mating populations (MPs), denoted by letters A to I, and at least 29 anamorphic Fusarium species have been identified within the Gibberella fujikuroi species complex. Members of this species complex are the only species of the genus Fusarium that contain the gibberellin (GA) biosynthetic gene cluster or at least parts of it. However, the ability of fusaria to produce GAs is so far restricted to Fusarium fujikuroi, although at least six other MPs contain all the genes of the GA biosynthetic gene cluster. Members of Fusarium proliferatum, the closest related species, have lost the ability to produce GAs as a result of the accumulation of several mutations in the coding and 5′ noncoding regions of genes P450-4 and P450-1, both encoding cytochrome P450 monooxygenases, resulting in metabolic blocks at the early stages of GA biosynthesis. In this study, we have determined additional enzymatic blocks at the first specific steps in the GA biosynthesis pathway of F. proliferatum: the synthesis of geranylgeranyl diphosphate and the synthesis of ent-kaurene. Complementation of these enzymatic blocks by transferring the corresponding genes from GA-producing F. fujikuroi to F. proliferatum resulted in the restoration of GA production. We discuss the reasons for Fusarium species outside the G. fujikuroi species complex having no GA biosynthetic genes, whereas species distantly related to Fusarium, e.g., Sphaceloma spp. and Phaeosphaeria spp., produce GAs.  相似文献   

19.
The gene cluster (ery) governing the biosynthesis of the macrolide antibiotic erythromycin A by Saccharopolyspora erythraea contains, in addition to the eryA genes encoding the polyketide synthase, two regions containing genes for later steps in the pathway. The region 5′ of eryA that lies between the known genes ermE (encoding the erythromycin resistance methyltransferase) and eryBIII (encoding a putative S-adenosylmethionine-dependent methyltransferase), and that contains the gene eryBI (orf2), has now been sequenced. The inferred product of the eryBI gene shows striking sequence similarity to authentic β-glucosidases. Specific mutants were created in eryBI, and the resulting strains were found to synthesise erythromycin A, showing that this gene, despite its position in the biosynthetic gene cluster, is not essential for erythromycin biosynthesis. A?mutant in eryBIII and a double mutant in eryBI and eryBIII were obtained and the analysis of novel erythromycins produced by these strains confirmed the proposed function of EryBIII as a C-methyltransferase. Also, a chromosomal mutant was constructed for the previously sequenced ORF19 and shown to accumulate erythronolide B, as expected for an eryB mutant and consistent with its proposed role as an epimerase in dTDP-mycarose biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号