首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Habitat restoration is a key measure to counteract negative impacts on biodiversity from habitat loss and fragmentation. To assess success in restoring not only biodiversity, but also functionality of communities, we should take into account the re‐assembly of species trait composition across taxa. Attaining such functional restoration would depend on the landscape context, vegetation structure, and time since restoration. We assessed how trait composition of plant and pollinator (bee and hoverfly) communities differ between abandoned, restored (formerly abandoned) or continuously grazed (intact) semi‐natural pastures. In restored pastures, we also explored trait composition in relation to landscape context, vegetation structure, and pasture management history. Abandoned pastures differed from intact and restored pastures in trait composition of plant communities, and as expected, had lower abundances of species with traits associated with grazing adaptations. Further, plant trait composition in restored pastures became increasingly similar to that in intact pastures with increasing time since restoration. On the contrary, the trait composition of pollinator communities in both abandoned and restored pastures remained similar to intact pastures. The trait composition for both bees and hoverflies was influenced by flower abundance and, for bees, by connectivity to other intact grasslands in the landscape. The divergent responses across organism groups appeared to be mainly related to the limited dispersal ability and long individual life span in plants, the high mobility of pollinators, and the dependency of semi‐natural habitat for bees. Our results, encompassing restoration effects on trait composition for multiple taxa along a gradient in both time (time since restoration) and space (connectivity), reveal how interacting communities of plants and pollinators are shaped by different trait–environmental relationships. Complete functional restoration of pastures needs for more detailed assessments of both plants dispersal in time and of resources available within pollinator dispersal range.  相似文献   

2.
Currently, a large‐scale restoration project aims to restore around 15 million hectares of Atlantic Forest in Brazil. This will increase forest cover and connectivity among remnant sites as well as restore environmental services. Currently, studies on recovery of fauna in restored areas of the Atlantic Forest are practically nonexistent. To address this knowledge vacuum, our study compares diversity patterns of fruit‐feeding butterflies in three forest areas with different restoration ages (11, 22, and 54 years), and uses a native forest area as reference. Results showed butterfly communities in maturing restored areas becoming more similar to the ones found in the native forest, with an increase in the proportional abundance of forest species, and a decrease of edge and grassland species. Moreover, we found a higher diversity among sites at the intermediate restoration age, with a community composed of both grassland and forest species. Butterfly species composition differed significantly among sites, showing interesting patterns of potential species replacement over time. Our results indicate that, although restored sites were located in a fragmented landscape, they provide suitable habitats for recolonization by fruit‐feeding butterfly assemblages. Hence, restored areas can be considered important habitat for forest animal species, increasing local biodiversity and, possibly, restoring some of the ecosystem services provided by them.  相似文献   

3.
Habitat loss and fragmentation are considered to be severe threats to biodiversity, and maintaining natural levels of landscape connectivity may be one of the best responses to these issues. Graph-based habitat availability (reachability) metrics have been shown to be an appropriate method for a multifaceted but coherent landscape connectivity assessment. These metrics can be partitioned into three commensurate fractions (intra, flux, connector) that quantify the different ways in which habitat patches contribute to the overall landscape connectivity and habitat availability. In particular, the connector fraction measures the contribution of patches to the connectivity between other habitat areas as irreplaceable connecting elements or stepping stones. Because many conservation efforts and initiatives are focused on conserving or restoring corridors and other linkages between habitat areas, it is critical to understand more thoroughly the conditions under which investing in these connecting elements is an efficient management strategy. For this purpose, we analysed the contribution of the connector fraction in different simulated habitat patterns under different levels of habitat amount and fragmentation and in natural habitats for endangered forest bird species in Catalonia (Spain). We show that a prominent role of individual stepping stone patches as irreplaceable providers of habitat connectivity and availability arises only under a relatively narrow set of conditions, characterised by low habitat amount, high habitat fragmentation and modest to intermediate species dispersal abilities. We suggest that to support connectivity-related investments, it is necessary to focus on those few species or dispersal distance ranges that are likely to be both most dependent on and most benefited by the conservation or restoration of stepping stone patches. We conclude that the total amount of reachable habitat for a particular species is rarely determined by the contribution of individual connectors as the only dominant factor. Therefore, conservationists should be cautious not to overemphasise the importance of connectivity investments and to balance them with other conservation alternatives and strategies to promote species conservation in heterogeneous landscapes.  相似文献   

4.
Ongoing habitat loss and fragmentation is considered a threat to biodiversity as it can create small, isolated populations that are at increased risk of extinction. Tree‐dependent species are predicted to be highly sensitive to forest and woodland loss and fragmentation, but few studies have tested the influence of different types of landscape matrix on gene flow and population structure of arboreal species. Here, we examine the effects of landscape matrix on population structure of the sugar glider (Petaurus breviceps) in a fragmented landscape in southeastern South Australia. We collected 250 individuals across 12 native Eucalyptus forest remnants surrounded by cleared agricultural land or exotic Pinus radiata plantations and a large continuous eucalypt forest. Fifteen microsatellite loci were genotyped and analyzed to infer levels of population differentiation and dispersal. Genetic differentiation among most forest patches was evident. We found evidence for female philopatry and restricted dispersal distances for females relative to males, suggesting there is male‐biased dispersal. Among the environmental variables, spatial variables including geographic location, minimum distance to neighboring patch, and degree of isolation were the most important in explaining genetic variation. The permeability of a cleared agricultural matrix to dispersing gliders was significantly higher than that of a pine matrix, with the gliders dispersing shorter distances across the latter. Our results added to previous findings for other species of restricted dispersal and connectivity due to habitat fragmentation in the same region, providing valuable information for the development of strategies to improve the connectivity of populations in the future.  相似文献   

5.
An important question for tropical forest restoration is whether degraded lands can be actively managed to attract birds. We censused birds and measured vegetation structure at 27 stations in young (6–9‐yr old) actively and passively restored pasture and old growth forest at Las Cruces Biological Station in southern Costa Rica. During 481 10‐min point counts, we detected a high diversity—186 species—of birds using the restoration area. Surprisingly, species richness and detection frequency did not differ among habitats, and proportional similarity of bird assemblages to old growth forest did not differ between restoration treatments. Bird detection frequency was instead explained by exotic grass cover and understory stem density—vegetation structures that were not strongly impacted by active restoration. The similarity of bird assemblages in actively and passively restored forest may be attributed to differential habitat preferences within and among feeding guilds, low structural contrast between treatments, or the effect of nucleation from actively restored plots into passively restored areas. Rapid recovery of vegetation in this recently restored site is likely due to its proximity to old growth forest and the lack of barriers to effective seed dispersal. Previous restoration studies in highly binary environments (i.e., open pasture vs. tree plantation) have found strong differences in bird abundance and richness. Our data contradict this trend, and suggest that tropical restoration ecologists should carefully consider: (1) when the benefits of active restoration outweigh the cost of implementation; and (2) which avian guilds should be used to measure restoration success given differential responses to habitat structure.  相似文献   

6.
Mutualistic interactions repeatedly preserved across fragmented landscapes can scale‐up to form a spatial metanetwork describing the distribution of interactions across patches. We explored the structure of a bird seed‐dispersal (BSD) metanetwork in 16 Neotropical forest fragments to test whether a distinct subset of BSD‐interactions may mediate landscape functional connectivity. The metanetwork is interaction‐rich, modular and poorly connected, showing high beta‐diversity and turnover of species and interactions. Interactions involving large‐sized species were lost in fragments < 10 000 ha, indicating a strong filtering by habitat fragmentation on the functional diversity of BSD‐interactions. Persistent interactions were performed by small‐seeded, fast growing plant species and by generalist, small‐bodied bird species able to cross the fragmented landscape. This reduced subset of interactions forms the metanetwork components persisting to defaunation and fragmentation, and may generate long‐term deficits of carbon storage while delaying forest regeneration at the landscape level.  相似文献   

7.
Land use changes have profound effects on populations of Neotropical primates, and ongoing climate change is expected to aggravate this scenario. The titi monkeys from eastern Brazil (Callicebus personatus group) have been particularly affected by this process, with four of the five species now allocated to threatened conservation status categories. Here, we estimate the changes in the distribution of these titi monkeys caused by changes in both climate and land use. We also use demographic‐based, functional landscape metrics to assess the magnitude of the change in landscape conditions for the distribution predicted for each species. We built species distribution models (SDMs) based on maximum entropy for current and future conditions (2070), allowing for different global circulation models and contrasting scenarios of glasshouse gas concentrations. We refined the SDMs using a high‐resolution map of habitat remnants. We then calculated habitat availability and connectivity based on home‐range size and the dispersal limitations of the individual, in the context of a predicted loss of 10% of forest cover in the future. The landscape configuration is predicted to be degraded for all species, regardless of the climatic settings. This include reductions in the total cover of forest remnants, patch size and functional connectivity. As the landscape configuration should deteriorate severely in the future for all species, the prevention of further loss of populations will only be achieved through habitat restoration and reconnection to counteract the negative effects for these and several other co‐occurring species.  相似文献   

8.
High‐diversity reforestation can help jumpstart tropical forest restoration, but obtaining viable seedlings is a major constraint: if nurseries do not offer them, it is hard to plant all the species one would like. From 2007 to 2009, we investigated five different seed acquisition strategies employed by a well‐established tree nursery in southeastern Brazil, namely (1) in‐house seed harvesters; (2) hiring a professional harvester; (3) amateur seed harvesters; or (4) a seed production cooperative, as well as (5) participating in a seed exchange program. In addition, we evaluated two strategies not dependent on seeds: harvesting seedlings from native tree species found regenerating under Eucalyptus plantations, and in a native forest remnant. A total of 344 native tree and shrub species were collected as seeds or seedlings, including 2,465 seed lots. Among these, a subset of 120 species was obtained through seed harvesting in each year. Overall, combining several strategies for obtaining planting stocks was an effective way to increase species richness, representation of some functional groups (dispersal syndromes, planting group, and shade tolerance), and genetic diversity of seedlings produced in forest tree nurseries. Such outcomes are greatly desirable to support high‐diversity reforestation as part of tropical forest restoration. In addition, community‐based seed harvesting strategies fostered greater socioeconomic integration of traditional communities in restoration projects and programs, which is an important bottleneck for the advance of ecological restoration, especially in developing countries. Finally, we discuss some of the limitations of the various strategies for obtaining planting stocks and the way forward for their improvement.  相似文献   

9.
There is a vast body of literature aiming to predict, for a large number of taxa, the spatial distribution of suitable areas given the expected future changes of climatic conditions. However, such studies often overlook the role of landscape functional connectivity. This is particularly relevant for species with low vagility, as ground-dwelling insects, inhabiting areas with high human pressure due to habitat destruction and fragmentation, namely in the islands. In this study, we developed an individual-based model (IBM) that simulates individual movement according to landscape resistance and mortality probability, in order to derive the landscape movement map, and applied it to five endemic ground-dwelling insects of Terceira Island (Azores). We then confronted the movement maps of each species against the species distribution models previously developed for both current and future climatic conditions, quantifying the amount of important movement areas that are enclosed by the distribution polygons. We further sought to identify where habitat restoration would increase the overall connectivity among large habitat patches. Our results showed that, for both timeframes, the distribution models enclosed small amounts of areas predicted to be important for animal movement. Additionally, we predicted strong reductions (up to 94%) of these important areas for functional connectivity. We also identified areas in-between native forest of primary importance for restoration that may significantly increase the probability of persistence of our model species. We anticipate that this study will be useful to both conservation planners and ecologists seeking to understand species movement and dispersal both is islands and elsewhere.  相似文献   

10.
Microbat studies are uncommon in the Wet Tropics of north-east Queensland, despite the group comprising 20% of the bioregion's mammal fauna. The significance of fragmentation and habitat connectivity to the echolocating insectivore group is unknown. Over a 12-month period in 2021–2022, microbat presence was recorded in a 25-year-old restored wildlife corridor 1.2 km in length. We deployed Anabat detectors in the restored corridor, in adjacent open paddocks and in mature rainforest at either end of the corridor. Species in reference forest and corridor vegetation were consistently ‘clutter-adapted’ bats, with low aspect ratio wings; there was little overlap with high aspect ratio species of the open pasture. Low aspect ratio microbats appear to respond to the similarity in structure between restored and adjacent natural vegetation. Re-establishing structural and functional connectivity may improve the local persistence of ‘clutter-adapted’ microbats.  相似文献   

11.
For butterflies, tolerance to the matrix may be an important criterion of habitat occurrence in fragmented landscapes. Here we examine the relative effects of habitat fragmentation and the surrounding agricultural matrix on the functional composition of fruit-feeding butterflies of the Atlantic rain forest in southeastern Brazil. Generalized linear models were used to detect the effects of landscape metrics on butterfly richness and abundance of the total assemblage and functional groups. Circular statistics were used to analyze the patterns of monthly abundance of the total assemblage and functional groups in the forest remnants and the surrounding matrices. In total, 650 butterflies representing 57 species were captured; species composition differed significantly between the forest fragments and the surrounding matrices. We recorded 22 forest specialists, 18 matrix specialists, 11 common species with matrix preference and six common species with forest preference. Forest connectivity favored the richness of forest specialists, while habitat fragmentation enhances the richness and abundance of matrix-tolerant species. Circular analysis revealed that forest specialists were more abundant in the rainy season while matrix-tolerant species proliferated in the dry season. Although maintaining connectivity of forest fragments may increase the mobility and dispersion of forest species, our results showed that landscape fragmentation modify butterfly assemblage by promoting an increase of matrix tolerant species with detriment of forest specialists.  相似文献   

12.
Habitat loss and resultant fragmentation are major threats to biodiversity, particularly in tropical and subtropical ecosystems. It is increasingly urgent to understand fragmentation effects, which are often complex and vary across taxa, time and space. We determined whether recent fragmentation of Atlantic forest is causing population subdivision in a widespread and important Neotropical seed disperser: Artibeus lituratus (Chiroptera: Phyllostomidae). Genetic structure within highly fragmented forest in Paraguay was compared to that in mostly contiguous forest in neighbouring Misiones, Argentina. Further, observed genetic structure across the fragmented landscape was compared with expected levels of structure for similar time spans in realistic simulated landscapes under different degrees of reduction in gene flow. If fragmentation significantly reduced successful dispersal, greater population differentiation and stronger isolation by distance would be expected in the fragmented than in the continuous landscape, and genetic structure in the fragmented landscape should be similar to structure for simulated landscapes where dispersal had been substantially reduced. Instead, little genetic differentiation was observed, and no significant correlation was found between genetic and geographic distance in fragmented or continuous landscapes. Furthermore, comparison of empirical and simulated landscapes indicated empirical results were consistent with regular long‐distance dispersal and high migration rates. Our results suggest maintenance of high gene flow for this relatively mobile and generalist species, which could be preventing or significantly delaying reduction in population connectivity in fragmented habitat. Our conclusions apply to A. lituratus in Interior Atlantic Forest, and do not contradict broad evidence that habitat fragmentation is contributing to extinction of populations and species, and poses a threat to biodiversity worldwide.  相似文献   

13.
The Upper Guinean forests of Ghana, West Africa, are considered among the most threatened and fragmented in the world. Little is known about the genetic consequences of fragmentation on Ghana’s forest-associated species, but this genetic signature is generally expected to differ across species. We compared patterns of mtDNA cytochrome oxidase I (COI) variation of three Nymphalid forest butterfly species that differ with respect to their relative dispersibilities (Aterica galene: high habitat fidelity, low dispersal ability; Euphaedra medon: high habitat fidelity, strong dispersal ability; Gnophodes betsimena: relaxed habitat fidelity, low dispersal ability). Individuals were collected from two large forest reserves and five small sacred forest groves. Patterns of differentiation across species were broadly coincident with our predicted hierarchy of relative species dispersibility and suggested that genetic connectivity is most compromised by strict fidelity to forest habitat rather than by raw capacity for sustained flight. Connectivity was uncorrelated with geographic distance, but instead seemed best explained by urbanization and the sequential pattern of forest loss. Genetic diversity was dramatically different among species and not easily explained by either species-specific traits or effects of fragmentation. Aterica galene, the species most impacted by fragmentation, exhibited very high diversity, whereas G. betsimena, a broadly distributed, very common species, with relaxed habitat fidelity, was genetically depauperate. There was limited evidence of genetic erosion from the sacred groves despite these small forest patches accounting for less than 1–10 % of the total area of the forest reserves, which indicates these forest relics have high conservation value.  相似文献   

14.
《农业工程》2014,34(1):44-52
In urbanized areas, habitat loss and fragmentation resulting from urban growth and human activities may threaten the biological diversity. It is essential to maintain the connectivity in some isolated and fragmented habitat patches. In 2005, the orchard-based conservation with the legal binding was implemented in Shenzhen to mitigate the ecological threats from forest destruction and to protect the ecological diversity. It is critical to evaluate the efficiency of orchard habitat from the species’ perspective for providing the reference for the habitat management. Based on graph-theoretic methods, we compared the habitats with or without orchards and evaluated the contribution of orchards to the whole network connectivity and its three fractions (intra, flux and connector), and then analyzed the species that could benefit the most from the habitat supplement. We identified the important landscape elements for serving the prioritized conservation. The results showed that orchard-based conservation was an efficient way in maintaining the functional connectivity, which mainly contributed to the intrapatch connectivity and species dispersal flux. The value of orchard incorporation was strongly related with the dispersal ability of threatened species. Our findings indicated that the orchard conservation would be more valuable for species with relatively weak dispersal abilities. We showed the key patches and links that most contribute to uphold functional connectivity in the reserve network. We believe that the assessment based on habitat functional connectivity can effectively serve the practical guidelines of habitat conservation and management in urban areas.  相似文献   

15.
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.  相似文献   

16.
Habitat fragmentation may strongly reduce individuals’ dispersal among resource patches and hence influence population distribution and persistence. We studied the impact of landscape heterogeneity on the dispersal of the golden‐crowned sifaka (Propithecus tattersalli), an endangered social lemur species living in a restricted and highly fragmented landscape. We combined spatial analysis and population genetics methods to describe population units and identify the environmental factors which best predict the rates and patterns of genetic differentiation within and between populations. We used non‐invasive methods to genotype 230 individuals at 13 microsatellites in all the main forest fragments of its entire distribution area. Our analyses suggest that the Manankolana River and geographical distance are the primary structuring factors, while a national road crossing the region does not seem to impede gene flow. Altogether, our results are in agreement with a limited influence of forest habitat connectivity on gene flow patterns (except for North of the species’ range), suggesting that dispersal is still possible today among most forest patches for this species. Within forest patches, we find that dispersal is mainly among neighbouring social groups, hence confirming previous behavioural observations.  相似文献   

17.
Native pollinators are increasingly needed on conventional farms yet rarely fostered via management. One solution is habitat restoration in marginal areas, but colonization may be constrained if resident pollinator richness is low or if restored areas fail to provide sufficient floral or nesting resources. We quantified restoration outcomes for native bees, and associated resources, on three conventional farms with forb‐grass prairie plantings on marginal areas of varying sizes, in a heavily farmed region of central North America. We tested bee abundance and richness in restored prairie versus the dominant habitats of the region—crops, forest remnants, and edges of fields and roads. Restored prairie supported 2× more species (95 of 119 total species) and 3× more bees (72% of captured individuals) compared to the other cover types. All richness and abundance differences among habitat types were associated with higher floral resources in restored prairie. Thirty percent of the bee species were unique to prairie, consistent with long‐distance dispersal but begging the question of origin given the absence of prairie regionally. Our results suggest that road and field edges may be the source, as these areas had more floral and nesting resources than forest or crop fields combined and supported 55% of all species despite covering only approximately 5% of the sampled farms. Habitat scarcity is not the only constraint on native bees in agricultural landscapes, with increasing concern over disease and chemicals. However, we observed that restored areas on marginal lands of conventional farms can support abundant and species‐rich populations of native bees.  相似文献   

18.
We explored the effects of recent forest fragmentation on fine-scale patterns of population structuring and genetic diversity in populations of White-ruffed Manakins (Corapipo altera) inhabiting premontane forest fragments of varying size in southwestern Costa Rica. Habitat fragmentation is a major conservation concern for avian populations worldwide, but studies of the genetic effects of fragmentation on Neotropical birds are limited. We sampled 159 manakins from nine forest fragments of varying size within an 18 km radius, and genotyped these birds at 13 microsatellite loci. Bayesian clustering methods revealed that birds from all fragments comprised a single genetic population, and an MCMC approach showed that the fragments were likely to be at migration-drift equilibrium. F-statistics showed only modest levels of differentiation between forest fragments. We calculated allelic diversity indices for each fragment but found no correlation between genetic diversity and fragment size. These results suggest that manakins may retain substantial connectivity via inter-fragment dispersal despite habitat fragmentation.  相似文献   

19.
In the next century, global climate change is predicted to have large influences on species' distributions. Much of the research in this area has focused on predicting the areas where conditions will be suitable for the species in future, and thus the potential distribution of the species. However, it is equally important to predict the relative abilities of species to migrate into new suitable areas as conditions shift, while accounting for dynamic processes, such as dispersal, maturation, mortality, and reproduction, as well as landscape characteristics, such as level of habitat fragmentation and connectivity. In this study, we developed a spatially explicit individual‐based model that addresses these factors. As a motivating case study, we based aspects of the model on southwest Australia, a global biodiversity hotspot, but stress that the results obtained are generalizable beyond this region. Using the model, we enhanced current understanding of climate change impacts by investigating how and to what extent the functional traits of plant species affect their ability to move with climate change across landscapes with various levels of fragmentation. We also tested the efficacy of strategic restoration, such as planting corridors to increase connectivity among fragments. We found that even if the landscape is fully intact, only an average of 34.2% of all simulated functional groups had a good chance of successfully tracking climate change. However, our study highlights the power of strategic restoration as a tool for increasing species persistence. Corridors linking fragments increased species persistence rates by up to 24%. The lowest persistence rates were found for trees, a functional group with high dispersal but also long generation times. Our results indicate that for trees intervention techniques, such as assisted migration might be required to prevent species losses.  相似文献   

20.
Successful forest expansion into grassland can be limited by seed dispersal and adverse conditions for tree seedlings in the grassland environment. In the high‐elevation Andes, human‐induced fragmentation has exacerbated the patchy distribution of Polylepis forests, threatening their unique biological communities and spurring restoration interest. Studies of Polylepis forest extent in Peru suggest that forest borders have remained stable over the past century despite decreasing anthropogenic disturbance, suggesting that tree seedling recruitment is being limited in the open grassland habitat. We studied natural seedling dispersion patterns of Polylepis sericea and Polylepis weberbaueri (Rosaceae) at forest–grassland edges across a range of environmental conditions to examine seedling recruitment and colonization of grasslands in Huascaran National Park (Peru). Using data from 2367 seedlings found in 48 forest–grassland edge plots (15 m × 15 m) at forest patches between 3900–4500 masl, we employed generalized mixed modelling to identify the significant associations of seedling densities with environmental covariates. In addition, we compared these associations to patterns of adult presence on the landscape. Seedling densities were associated with a combination of variables varying within (distance to forest edge) and among (elevation and dry season solar irradiation) plots across the landscape. For both species, seedling densities decreased with increasing distance away from the forest in a manner consistent with short‐distance seed dispersal by wind. Our results suggest that such short‐distance dispersal may slow forest expansion, but that there also appear to be substantial post‐dispersal limitations to seedling establishment in the grassland. Polylepis sericea densities decreased with elevation, while P. weberbaueri increased with elevation and decreased with solar irradiation. Associations of adult presence with elevation and solar irradiation mirrored those of seedling densities. Management of areas with forest patches dominated by these species should consider these differences in their environmental tolerances, particularly during species selection and zonation for reforestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号