首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms by which the body attempts to avoid tissue hypoxia when total body oxygen delivery is compromised during acute anemia are reviewed. When the hematocrit is reduced by isovolemic hemodilution the compensatory adjustments include an increase in cardiac output, redistribution of blood flow to some tissues, and an increase in the whole body oxygen extraction ratio. These responses permit whole body oxygen uptake to be maintained until the hematocrit has been lowered to about 10%. Several factors are discussed which contribute to the increase in cardiac output during acute anemia including the reduction in blood viscosity, sympathetic innervation of the heart, and increased venomotor tone. The latter has been shown to be dependent on intact aortic chemoreceptors. With respect to peripheral vascular responses, the rise in coronary and cerebral blood flows which occur following hemodilution is proportionally greater than the increase in cardiac output while the opposite is true for kidney, liver, spleen, and intestine. Skeletal muscle does not contribute to a redistribution of blood flow to more vital areas during acute anemia despite its relatively large anaerobic capacity. Overall, peripheral compensatory adjustments result in an increased oxygen extraction ratio during acute anemia which reflects a better matching of the limited oxygen supply to tissue oxygen demands. However, some areas such as muscle are relatively overperfused which limits an even more efficient utilization of the reduced oxygen supply. Studies of the response of the microcirculation and the extent to which sympathetic vascular controls are involved in peripheral blood flow regulation are necessary to further appreciate the complex pattern of physiological responses which help ensure survival of the organism during acute anemia.  相似文献   

2.
The importance of alpha-adrenergic receptors in the cardiac output and peripheral circulatory responses to carbon monoxide (CO) hypoxia was studied in anesthetized dogs. Phenoxybenzamine (3 mg/kg i.v.) was injected to block alpha-receptor activity and the data obtained were then compared with those from a previous study of CO hypoxia in unblocked animals. Values for cardiac output, hindlimb blood flow, vascular resistance, and oxygen uptake were obtained prior to and at 30 and 60 min of CO hypoxia which reduced arterial oxygen content by approximately 50%. alpha-Adrenergic blockade resulted in a lower (p less than 0.05) control value for cardiac output than observed in unblocked animals, but no differences were present between the two groups at 30 or 60 min of CO hypoxia. Similarly, limb blood flow was lower (p less than 0.05) during the control period in the alpha-blocked group but rose to the same level as that in the unblocked animals at 60 min of COH. No change in limb blood flow occurred during CO hypoxia in the unblocked group. These findings demonstrated that during CO hypoxia alpha-receptor mediated venoconstriction does not contribute to the cardiac output response and alpha-receptor mediated vasoconstriction probably does prevent a rise in hindlimb skeletal muscle blood flow.  相似文献   

3.
Previous studies have concluded that polycythemia decreases oxygen delivery primarily because of a large fall in cardiac output associated with a rise in systemic vascular resistance that has been attributed to increased blood viscosity. However, because other studies have shown that polycythemia may not reduce oxygen delivery, an alternative hypothesis is that cardiac output falls in response to a rising oxygen content, thereby maintaining oxygen delivery constant. To determine whether oxygen content participates in the regulation of cardiac output during polycythemia, we studied eight chronically instrumented dogs trained to exercise on a treadmill. The dogs underwent exchange transfusion with packed red blood cells containing methemoglobin, which caused an increase in hematocrit from 35 +/- 1 to 50 +/- 1% and in viscosity, with little change in oxygen content. The expected fall in exercise cardiac output failed to occur after exchange transfusion with red blood cells containing methemoglobin (7.5 +/- 4 vs. 6.8 +/- 0.5 l/min; P = not significant), and there was no rise in systemic vascular resistance. Methylene blue was then administered intravenously to facilitate conversion of methemoglobin to oxyhemoglobin, which increased oxygen content (12.8 +/- 0.9 vs. 18.4 +/- 0.9 vol%; P < 0.01) with no change in hematocrit or viscosity. Resting cardiac output did not change significantly, but there was a significant decrease in exercise output (6.8 +/- 0.5 vs. 5.8 +/- 0.4 l/min; P < 0.05). Thus we conclude that the fall in cardiac output seen in acute polycythemia results in part from the regulation of oxygen delivery and is not due solely to increased blood viscosity.  相似文献   

4.
1. Dogfish were acclimated to 7, 12 or 17 degrees C and exposed to progressive hypoxia at the temperature to which they had been acclimated. During normoxia, the Q10 values for oxygen uptake, heart rate, cardiac output and respiratory frequency over the full 10 degrees C range were: 2.1, 2.1, 2.1 and 2.5 respectively. Increased acclimation temperature had no effect on cardiac stroke volume or systemic vascular resistance, although there was a decrease in branchial vascular resistance, pHa and pHv. 2. Progressive hypoxia had no effect on heart rate or oxygen uptake at 7 degrees C, whereas at 12 degrees C and 17 degrees C there was bradycardia, and a reduction in O2 uptake, with the critical oxygen tension for both variables being higher at the higher temperature. Cardiac stroke volume increased during hypoxia at each temperature, such that cardiac output did not change significantly at 12 and 17 degrees C. Neither pHa nor pHv changed significantly during hypoxia at any of the three temperatures. 3. The influence of acclimation temperatures on experimental results from poikilotherms is pointed out. Previously-published results show quantitative differences. 4. The significance of the present results with respect to the functioning and location of oxygen receptors is discussed. It is argued that as the metabolic demand and critical oxygen tension of the whole animal are increased at high acclimation temperatures the same must be the case with the oxygen receptor. This would raise the stimulation threshold and could account for the bradycardia seen during hypoxia becoming manifest at higher values of PI,O2, Pa,O2 and Pv,O2 as the acclimation temperature is raised.  相似文献   

5.
The present study investigated the circulatory responses to two mental tasks. Forty males and females performed a mental subtraction task and a color-word task. During each task, the systolic and diastolic blood pressure, mean arterial pressure, heart rate, stroke volume, cardiac output, and total peripheral resistance were measured as cardiovascular indices for a 5-min baseline, a 5-min task period, and a 10-min recovery period. As for the results, three hemodynamic reactivity patterns were verified: Pattern C, characterized by increased cardiac output and decreased total peripheral resistance; Pattern M, characterized by a moderate increase in both cardiac output and total peripheral resistance; and Pattern V, characterized by increased total peripheral resistance and decreased cardiac output. Also, four response types were found among all subjects: Type 1: cardiovascular responses showed the cardiac pattern for both tasks; Type 2: cardiovascular responses changed between the cardiac pattern and the mixed pattern with a change of tasks; Type 3: cardiovascular responses showed the mixed pattern for both tasks; Type 4: cardiovascular responses changed between the mixed pattern and the vascular pattern with a change of tasks. The comparison between types showed that Type 3 and Type 4 had an elevation in their blood pressure by an increased total peripheral resistance. On the other hand, Type 1 and Type 2 tended to have an increased blood pressure by a rise in their cardiac output. And Type 3 and Type 4 showed higher blood pressure and higher scores on the Type A behavior pattern questionnaire. In conclusion, at least four types of circulation response to the mental tasks existed, with Type 3 and Type 4 having higher blood pressure responses and tending to have an elevated blood pressure by a rise in their total peripheral resistance.  相似文献   

6.
We studied the effects of HCI-induced metabolic acidaemia on cardiac output, contractile function, myocardial blood flow, and myocardial oxygen consumption in nine unanaesthetized newborn lambs. Through a left thoracotomy, catheters were placed in the aorta, left atrium and coronary sinus. A pressure transducer was placed in the left ventricle. Three to four days after surgery, we measured cardiac output, dP/dt, left ventricular end diastolic and aortic mean blood pressures, heart rate, aortic and coronary sinus blood oxygen contents, and left ventricular myocardial blood flow during a control period, during metabolic acidaemia, and after the aortic pH was restored to normal. We calculated systemic vascular resistance, myocardial oxygen consumption and left ventricular work. Acidaemia was associated with reduction in cardiac output, maximal dP/dt, and aortic mean blood pressure. Left ventricular end diastolic pressure and systemic vascular resistance increased, and heart rate did not change significantly. The reduction in myocardial blood flow and oxygen consumption was accompanied by fall in cardiac work. Cardiac output returned to control levels after the pH had been normalized but maximal dP/dt was incompletely restored. Myocardial blood flow and oxygen consumption increased beyond control levels. This study demonstrates that HCI-induced metabolic acidaemia in conscious newborn lambs is associated with a reduction in cardiac output which could have been mediated by the reduction in contractile function and/or the increase in systemic vascular resistance. The decreases in myocardial blood flow and oxygen consumption appear to reflect diminished cardiac work. The restoration of a normal cardiac output after normalization of the pH appears to have resulted from the increases in heart rate and left ventricular filling pressures in conjunction with an incomplete restoration of contractile function.  相似文献   

7.
We tested the hypotheses that, in hypoxic young pigs, reductionsin cardiac output restrict systemic oxygen transport to a greaterextent than does hypoxia alone and that compensatory responses to thisrestriction are more effective in higher than in lower priorityvasculatures. To study this, 10- to 14-day-old instrumented awakehypoxic (arterial oxygen tension = 39 Torr) pigs were exposed toreduced venous return by inflation of a right atrial balloon-tipped catheter. Blood flow was measured withradionuclide-labeled microspheres, and oxygen metabolism was determinedwith arterial and venous oxygen contents from appropriate vessels.Hypoxia resulted in a reduction in oxygen tension; increases in cardiacoutput and perfusion to brain (72% over baseline), heart, adrenalglands, and liver without reductions to other organs except for thespleen; reductions in systemic and intestinal oxygen delivery; andincreases in systemic and intestinal oxygen extraction without changesin systemic, cerebral, or intestinal oxygen uptake. Duringhypoxia, decreasing venous return was associated with increases inarterial lactic acid concentration and central venous pressure;attenuation of the hypoxia-related increase in cardiac output;sustained increases in brain (72% over baseline) and heart perfusion;reductions in lung (bronchial artery), pancreatic, renal, splenic, andintestinal (50% below baseline) perfusion; decreases insystemic and gastrointestinal oxygen delivery; sustained increases insystemic and intestinal oxygen extraction; and decreases in intestinaloxygen uptake, without changes in cerebral oxygenmetabolism. We conclude that when venous return to theheart is reduced in hypoxic young pigs, the hypoxia-related increase incardiac output was attenuated and the relative reduction in cardiacoutput was associated with preserved cerebral oxygen uptake andcompromised intestinal oxygen uptake. Regional responses to hypoxiacombined with relative reductions in cardiac output differ from that ofhypoxia alone, with the greatest effects on lower priority organs suchas the gastrointestinal tract.

  相似文献   

8.
心力衰竭状态下的动脉压力感受器反射   总被引:3,自引:0,他引:3  
Wang W  Zhu GQ  Gao L  Tan W  Qian ZM 《生理学报》2004,56(3):269-281
心力衰竭是以心脏泵血功能降低(心输出量减少)为始动因素的临床综合征。心输出量降低首先引起动脉压力感受性反射失负荷,进而通过迷走-交感机制加快心率;同时,支配血管床的交感传出活动增强,进而增加总外周阻力。本文主要论述在心力衰竭状态下压力感受性反射在循环功能异常调控中的作用机制。本综述及我们近年的研究表明:(1)在心力衰竭状态下压力感受性反射功能明显减弱;(2)中枢血管紧张素Ⅱ和活性氧在压力感受性反射功能失调中发挥关键作用;(3)心交感传入刺激和化学感受性反射能抑制压力感受性反射;(4)适当的运动可以部分纠正异常的心血管反射活动。  相似文献   

9.
The data obtained show that, at the initial stages of hypothermia, a decrease in the oxygen consumption and carbon dioxide production, cardiac output, and heart rate occurred in accordance with the temperature coefficient. Suppression of the tissue gas exchange was unrelated to disorders in the lung gas exchange but determined rather by a progressing weakening of heart activity, decrease in the cardiac output, and increase in the general vascular peripheral resistance.  相似文献   

10.
The circulatory and metabolic effects of inhalation of oxygen in high concentration were investigated in 50 patients with acute myocardial infarction. The heart rate, arterial blood pressure, cardiac out-put, blood gas tensions, pH, and lactate and pyruvate levels were measured. In general, oxygen inhalation produced a fall in cardiac output and stroke volume and a rise in blood pressure and systemic vascular resistance. In a small number of patients with very low cardiac out-puts there was a rise in output. A substantial rise in arterial oxygen tension was obtained even in patients with low initial values. The raised arterial blood lactate levels which were frequently present were reduced after oxygen. The therapeutic implications of these effects are discussed.  相似文献   

11.
Arterial hypertension was reproduced in 20 dogs by suturing the adrenal glands with ligature. Arterial pressure showed a significant fall in 2 weeks; cardiac output diminished, and the general peripheral resistance displayed a sharp elevation. The phasic syndrome of hypodynamia, a reduction of the contractility index, of the volumetric rate of cardiac output, of the cardiac index, and of the rate of increase of the intraventricular pressure pointed to reduction of the myocardial contractility. Three months after the suturing there was an even greater elevation of arterial pressure, and hemodynamic shifts were analogous to the two-week hypertension period.  相似文献   

12.
Thirty-two 4-week-old male Wistar rats were infected with Plasmodium berghei malaria. On Days 12 through 14, blood volume, arterial blood pressure, right ventricular pressure, heart rate, cardiac output, stroke volume, hematocrit, and vascular resistances were determined. All of the cardiovascular parameters measured, with the exception of calculated pulmonary vascular resistance, changed progressively as the peripheral blood parasitemia increased. With a rising parasitemia, cardiac output increased, despite a reduced heart rate. The highest parasitemia of 63% was accompanied by a doubling of the normal cardiac output. The relationship between parasitemia and cardiac output can be described by the equation, cardiac output = (6.14) x % parasitemia + 452 ml/min/kg. The mean arterial blood pressure was lower than controls when parasitemia exceeded 20%, whereas systolic right ventricular pressure was elevated only at the highest parasitemias. When noninfected control rats were compared with those animals having parasitemias greater than 40%, in the infected animals, mean arterial pressure was 28% lower (P less than 0.01) and systolic right ventricular pressure rose by 21% (P less than 0.02). A 50% decline was observed in the total peripheral vascular resistance (P less than 0.01), although the pulmonary resistance was apparently unchanged. With P. berghei infection, there is also a marked anemia, an increase in plasma volume, and a 16% increase in blood volume (% body weight). It is concluded from these results that although the hemodynamic changes previously reported in the literature indicate that infection with malaria may result in focal blockages in microvessels and poor tissue perfusion, the total systemic effect, in the rat, is an increase in cardiac output secondary to a reduced peripheral resistance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The haemodynamic effects of salbutamol infusions at rates of 10,20, and 40 micrograms/min were measured in 11 patients with acute myocardial infarction complicated by left ventricular failure. Four patients also had cardiogenic shock. Consistent increases were observed in cardiac outputs at all doses (up to 56% at 40 micrograms/min), while the mean systemic arterial pressure fell slightly (average 5 mm Hg), implying a reduction in peripheral vascular resistance. Changes in right atrial pressure and indirect left atrial pressure (measured as pulmonary artery end-diastolic pressure) were small and not significant. Analysis of data from individual patients showed that the greatest increment in cardiac output was reached at 10 micrograms/min in two cases, 20 microgram/min in three, and 40 micrograms/min in the remaining six. Heart rate at these doses increased by an average of only 10 beats/min. Salbutamol failed to reduce left ventricular filling pressure and cannot be recommended for the treatment of pulmonary oedema in acute myocardial infarction. The increase in cardiac output, however, was considerable, so that the drug may be important in the management of low-output states. This action is probably a result of peripheral arteriolar dilatation (itself a result of beta 2-adrenoreceptor stimulation) and is achieved with little alteration in the principal determinants of myocardial oxygen requirement.  相似文献   

14.
Although insulin resistance is recognized as a potent and prevalent risk factor for coronary heart disease, less is known as to whether insulin resistance causes an altered cardiac phenotype independent of coronary atherosclerosis. In this study, we investigated the relationship between insulin resistance and cardiac contractile dysfunctions by generating a new insulin resistance animal model with rats on high cholesterol-fructose diet. Male Sprague-Dawley rats were given high cholesterol-fructose (HCF) diet for 15 wk; the rats developed insulin resistance syndrome characterized by elevated blood pressure, hyperlipidemia, hyperinsulinemia, impaired glucose tolerance, and insulin resistance. The results show that HCF induced insulin resistance not only in metabolic-response tissues (i.e., liver and muscle) but also in the heart as well. Insulin-stimulated cardiac glucose uptake was significantly reduced after 15 wk of HCF feeding, and cardiac insulin resistance was associated with blunted Akt-mediated insulin signaling along with glucose transporter GLUT4 translocation. Basal fatty acid transporter FATP1 levels were increased in HCF rat hearts. The cardiac performance of the HCF rats exhibited a marked reduction in cardiac output, ejection fraction, stroke volume, and end-diastolic volume. It also showed decreases in left ventricular end-systolic elasticity, whereas the effective arterial elasticity was increased. In addition, the relaxation time constant of left ventricular pressure was prolonged in the HCF group. Overall, these results indicate that insulin resistance reduction of cardiac glucose uptake is associated with defects in insulin signaling. The cardiac metabolic alterations that impair contractile functions may lead to the development of cardiomyopathy.  相似文献   

15.
The effect of lethal burn injury on the parameters of hemodynamics and respiration was investigated in intact rabbits and those with disconnected aortal and sinocarotid reflexogenic zones. The rabbits of both groups demonstrated similar changes in cardiac output and total oxygen consumption. Unlike intact animals, the burn in rabbits with disconnected reflexogenic zones did not lead to a marked increase in the peripheral vascular resistance. Accordingly, the systemic arterial blood pressure in them fell to a considerably greater extent than that in the intact animals. The life span of the rabbits exposed to burns was less as compared to the intact ones. A reflex compensatory nature of the increased peripheral vascular resistance in burn shock is suggested.  相似文献   

16.
Clifford Wilson 《CMAJ》1964,91(18):964-970
The possible relationship between the renal mechanism of volume control and blood pressure regulation is discussed. Expansion of the extracellular fluid (ECF) and plasma volumes was demonstrated following renal artery constriction in the rat; after about one month ECF volume returned to normal although hypertension persisted. Measurements of cardiac output in the unanesthetized rat by an implanted electromagnetic flowmeter showed an initial rise in cardiac output after renal artery constriction, returning to normal in 10 to 15 days. A homeostatic hypothesis for the production of renal hypertension is put forward in which changes in ECF volume, capacity vessel tone and myocardial contractility participate in the development of hypertension by elevating cardiac output. Autoregulation of peripheral flow then occurs and the consequent restoration of blood pressure at a renal pressure receptor results in return to normal of cardiac output by negative feedback. Thus in chronic hypertension the high peripheral resistance is maintained by autoregulation.  相似文献   

17.
Arterial blood pressure was monitored in voluntarily diving tufted ducks. Mean arterial blood pressure while diving increased during the pre-dive tachycardia, fell to resting levels on submersion, then gradually increased before peaking on surfacing. Estimated total peripheral resistance fell during the pre-dive and post-dive tachycardia, presumably to allow the oxygen stores to be loaded and replenished respectively and/or for carbon dioxide levels to be reduced. Changes in mean arterial blood pressure and total peripheral resistance suggest that peripheral vasoconstriction occurs in some vascular beds during a dive. An increase in arterial blood pressure (and therefore perfusion pressure) may be employed to increase blood flow and oxygen delivery to the active leg muscles.Abbreviations ecg Electrocardiogram, f H, heart rate - MABP mean arterial blood pressure - P b blood pressure(s) - TPR total peripheral resistance - V b cardiac output  相似文献   

18.
Hemodynamic studies in unanesthetized rats with chronic one-kidney-Goldblatt hypertension showed a 25% increase in cardiac output and a 42% increase in peripheral resistance. Removal of renal artery constriction under either anesthesia and minor surgical trauma produced an immediate 20% drop in arterial pressure. At the end of the 6 observation period the pressure dropped 30% but still remained at a moderate hypertensive level. The hemodynamic measurement at that time suggested that the pressure drop was the result of a decrease in cardiac output. However, the data obtained 1 hour after removal of the constriction suggested that a vasodilating mechanism may also contribute to pressure normalization in the early phase of reversal of renal hypertension. In the sham-operated hypertensive rats the pressure remained unchanged, while the cardiac output dropped due to compensation by a proportional increase in peripheral resistance. In contrast, in the unclipped animals the same drop in cardiac output produced an equivalent fall in pressure because no change in peripheral resistance occurred. This was not due to an insufficiency of the baroreceptor reflex since bilateral splanchnicectomy performed at that time produced a striking hypotensive response, indicating an overactivity of the sympathetic system possibly due to the baroreceptor still reset to operate at a hypertensive level.  相似文献   

19.
We have previously demonstrated that blood pressure elevation by acute blood volume expansion is volume-dependent during the infusion period and resistance-dependent in the post-infusion period in normal anesthetized dogs, and that such an increase in blood pressure is associated with a potentiation of the pressor response to norepinephrine. To evaluate the possible renal contribution to these hemodynamic changes, blood volume expansion was performed for 1 h with dextran dissolved in lactated Ringer's solution (20 ml/kg) in 15 nephrectomized dogs. The mean blood pressure, cardiac output and total peripheral resistance at the end of infusion were 126%, 225% and 60%, respectively; 3 h after volume expansion they were 126%, 151%, and 92% respectively. However, in 4 dogs, there was an increase in mean blood pressure (138%) 3 h after volume expansion. This was thought to result from an increase in the total peripheral resistance (133%) associated with the recovery of cardiac output (106%). The pressor response to norepinephrine (0.5 microgram/kg) was potentiated after volume expansion. These results indicate that the handling of volume by the kidney contributed to the maintenance of an elevated level of cardiac output. However, nephrectomy did not seem to interfere with the hemodynamic switching of the causative factor for blood pressure elevation from increased cardiac output to increased total peripheral resistance. Neither was the potentiation of pressor response to norepinephrine affected.  相似文献   

20.
It is generally believed that oxygen uptake during incremental exercise--until VO2max, increases linearly with power output (see eg. Astrand & Rodahl, 1986). On the other hand, it is well established that the oxygen uptake reaches a steady state only during a low power output exercise, but during a high power output exercise, performed above the lactate threshold (LT), the oxygen uptake shows a continuous increase until the end of the exercise. This effect has been called the slow component of VO2 kinetics (Whipp & Wasserman, 1972). The presence of a slow component in VO2 kinetics implies that during an incremental exercise test, after the LT has been exceeded, the VO2 to power output relationship has to become curvilinear. Indeed, it has recently been shown that during the incremental exercise, the exceeding of the power output, at which blood lactate begins to accumulate (LT), causes a non-proportional increase in VO2 (Zoladz et al. 1995) which indicates a drop in muscle mechanical efficiency. The power output at which VO2 starts to rise non-proportionally to the power output has been called "the change point in VO2" (Zoladz et al. 1998). In this paper, the significance of the factors most likely involved in the physiological mechanism responsible for the change point in oxygen uptake (CP-VO2) and for the slow component of VO2 kinetics, including: increase of activation of additional muscle groups, intensification of the respiratory muscle activity, recruitment of type II muscle fibres, increase of muscle temperature, increase of the basal metabolic rate, lactate and hydrogen ion accumulation, proton leak through the inner mitochondrial membrane, slipping of the ATP synthase and a decrease in the cytosolic phosphorylation potential, are discussed. Finally, an original own model describing the sequence of events leading to the non-proportional increase of oxygen cost of work at a high exercise intensity is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号