首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chronobiology international》2013,30(6):1271-1286
Accumulating evidence suggests epilepsy and seizures may influence circadian rhythms and that circadian rhythms may influence epilepsy. It is also conceivable that seizure timing influences the timing of daily activities, sleeping, and wakefulness (i.e., chronotype). Only one group has studied the distribution of chronotypes of epileptics, showing significant differences between the diurnal activity patterns in two groups of patients with different epilepsy syndromes. The authors performed a questionnaire-based study of 200 epilepsy patients to compare the distribution of chronotypes and subjective sleep parameters of sleep duration and time of mid-sleep on free days to the distribution in the general population (n?=?4042). Within this large group of epilepsy patients, we also compared the chronotypes of subsamples with well-defined epilepsy syndromes, i.e., temporal lobe epilepsy [TLE; n?=?46], frontal lobe epilepsy [FLE; n?=?30], and juvenile myoclonic epilepsy [JME; n?=?38]. In addition, 27 patients who had had surgery for TLE were compared with those with TLE who had not had surgery. Both the Morningness-Eveningness Questionnaire and Munich Chronotype Questionnaire were used to determine chronotypes and subjective sleep parameters. Significant differences in morningness/eveningness distribution, timing of mid-sleep (corrected for sleep duration), and total sleep time on free days were found between epileptics and healthy controls. Those with epilepsy were more morning oriented, had earlier mid-sleep on free days, and longer sleep duration on free days (p?<?.001). However, distributions of chronotypes and sleep parameters between the groups of people with TLE, FLE, and JME did not differ. Persons who had surgery for TLE had similar morningness-eveningness parameters and similar sleep durations compared to those without surgery, but mid-sleep on free days was earlier in operated patients (p?=?.039). In conclusion, this is the first large study focusing on chronotypes in people with epilepsy. We show that the distribution of chronotypes and subjective sleep parameters of epileptics, in general, is different from that of healthy controls. Nevertheless, no differences are observed between patients with specified epilepsy syndromes, although they exhibit seizures with different diurnal patterns. Our results suggest that epilepsy, itself, rather than seizure timing, has a significant influence on chronotype behavior and subjective sleep parameters. (Author correspondence: )  相似文献   

2.
Characteristics of sleep and sleep problems were investigated in 43 individuals with 11q terminal deletion disorder (Jacobsen syndrome). Data were collected using a sleep questionnaire. Ten individuals (23%) had a sleep problem. Settling problems, frequent night waking and early waking occurred in 2 (4%), 7 (16%) and 2 (6%) individuals, respectively. Twenty-two individuals (54%) had a history of sleep problems. Twenty-five individuals (60%) showed restless sleep and 23 individuals (54%) slept in an unusual position. Apart from frequent coughs, no significant relationships were found between the presence of a sleep problem and other variables, such as age, level of ID, breathing problems, heart defects, constipation, daytime activity and behavioral diagnosis, restless sleep and sleeping in an unusual positions.  相似文献   

3.
Cholinergic neurons of the basal forebrain supply the neocortex with ACh and play a major role in regulating behavioral arousal and cortical electroencephalographic activation. Cortical ACh release is greatest during waking and rapid eye movement (REM) sleep and reduced during non-REM (NREM) sleep. Loss of basal forebrain cholinergic neurons contributes to sleep disruption and to the cognitive deficits of many neurological disorders. ACh release within the basal forebrain previously has not been quantified during sleep. This study used in vivo microdialysis to test the hypothesis that basal forebrain ACh release varies as a function of sleep and waking. Cats were trained to sleep in a head-stable position, and dialysis samples were collected during polygraphically defined states of waking, NREM sleep, and REM sleep. Results from 22 experiments in four animals demonstrated that means +/- SE ACh release (pmol/10 min) was greatest during REM sleep (0.77 +/- 0.07), intermediate during waking (0.58 +/- 0.03), and lowest during NREM sleep (0.34 +/- 0.01). The finding that, during REM sleep, basal forebrain ACh release is significantly elevated over waking levels suggests a differential role for basal forebrain ACh during REM sleep and waking.  相似文献   

4.
The role of the autonomic nervous system in spontaneous hypertension during each stage of the sleep-wake cycle remains unclear. The present study attempted to evaluate the differences in cardiac autonomic modulations among spontaneously hypertensive rats (SHR), normotensive Wistar-Kyoto rats (WKY), and Sprague-Dawley rats (SD) across sleep-wake cycles. Continuous power spectral analysis of electroencephalogram, electromyogram, and heart rate variability was performed in unanesthetized free moving rats during daytime sleep. Frequency-domain analysis of the stationary R-R intervals (RR) was performed to quantify the high-frequency power (HF), low-frequency power (LF)-to-HF ratio (LF/HF), and normalized LF (LF%) of heart rate variability. WKY and SD had similar mean arterial pressure, which is significantly lower than that of SHR during active waking, quiet sleep, and paradoxical sleep. Compared with WKY and SD, SHR had lower HF but similar RR, LF/HF, and LF% during active waking. During quiet sleep, SHR developed higher LF/HF and LF% in addition to lower HF. SHR ultimately exhibited significantly lower RR accompanied with higher LF/HF and LF% and lower HF during paradoxical sleep compared with WKY. We concluded that significant cardiac sympathovagal imbalance with an increased sympathetic modulation occurred in SHR during sleep, although it was less evident during waking.  相似文献   

5.
Upper airway dilator activity during sleep appears to be diminished under conditions of enhanced sleep propensity, such as after sleep deprivation, leading to worsening of obstructive sleep apnea (OSA). Non-rapid eye movement (NREM) sleep propensity originates in sleep-active neurons of the preoptic area (POA) of the hypothalamus and is facilitated by activation of POA warm-sensitive neurons (WSNs). We hypothesized that activation of WSNs by local POA warming would inhibit activity of the posterior cricoarytenoid (PCA) muscle, an airway dilator, during NREM sleep. In chronically prepared unrestrained cats, the PCA exhibited inspiratory bursts in approximate synchrony with inspiratory diaphragmatic activity during waking, NREM, and REM. Integrated inspiratory PCA activity (IA), peak activity (PA), and the lead time (LT) of the onset of inspiratory activity in PCA relative to diaphragm were significantly reduced in NREM sleep and further reduced during REM sleep compared with waking. Mild bilateral local POA warming (0.5-1.2 degrees C) significantly reduced IA, PA, and LT during NREM sleep compared with a prewarming NREM baseline. In some animals, effects of POA warming on PCA activity were found during waking or REM. Because POA WSN activity is increased during spontaneous NREM sleep and regulates sleep propensity, we hypothesize that this activation contributes to reduction of airway dilator activity in patients with OSA.  相似文献   

6.
Sleep initiation and sleep intensity in humans show a dissimilar time course. The propensity of sleep initiation (PSI), as measured by the multiple sleep latency test, remains at a relatively constant level throughout the habitual period of waking or exhibits a midafternoon peak. When waking is extended into the sleep period, PSI rises rapidly within a few hours. In contrast, sleep intensity, as measured by electroencephalographic slow-wave activity during naps, shows a gradual increase during the period of habitual waking. In the two-process model of sleep regulation, it corresponds to the rising limb of the homeostatic Process S. We propose that PSI is determined by the difference between Process S and the threshold H defining sleep onset, which is modulated by the circadian process C. In contrast to a previous version of the model, the parameters of H (amplitude, phase, skewness) differ from those of threshold L, which defines sleep termination. The present model is able to simulate the time course of PSI under baseline conditions as well as following recovery sleep after extended sleep deprivation. The simulations suggest that during the regular period of waking, a circadian process counteracts the increasing sleep propensity induced by a homeostatic process. Data obtained in the rat indicate that during the circadian period of predominant waking, a circadian process prevents a major intrusion of sleep.  相似文献   

7.
John J  Wu MF  Boehmer LN  Siegel JM 《Neuron》2004,42(4):619-634
Noradrenergic, serotonergic, and histaminergic neurons are continuously active during waking, reduce discharge during NREM sleep, and cease discharge during REM sleep. Cataplexy, a symptom associated with narcolepsy, is a waking state in which muscle tone is lost, as it is in REM sleep, while environmental awareness continues, as in alert waking. In prior work, we reported that, during cataplexy, noradrenergic neurons cease discharge, and serotonergic neurons greatly reduce activity. We now report that, in contrast to these other monoaminergic "REM-off" cell groups, histamine neurons are active in cataplexy at a level similar to or greater than that in quiet waking. We hypothesize that the activity of histamine cells is linked to the maintenance of waking, in contrast to activity in noradrenergic and serotonergic neurons, which is more tightly coupled to the maintenance of muscle tone in waking and its loss in REM sleep and cataplexy.  相似文献   

8.
I Hilakivi 《Medical biology》1987,65(2-3):97-104
Neurophysiological, neurochemical and neuropharmacological evidence indicates that cerebral monoamines are important regulators of wakefulness and sleep besides cerebral amino acid-ergic and peptidergic systems. The cerebral monoamines noradrenaline, dopamine and acetylcholine are positively involved in electroencephalographic aspects of waking and paradoxical or REM sleep. A high level of noradrenergic transmission facilitates waking, and a lower, moderate level facilitates REM sleep. Serotonin is involved in the regulation of synthesis, storage and release of sleep inducing factors, and in the gating mechanisms of REM sleep. Histamine neurons play a role in the regulation of vigilance during waking state. These neurotransmitter systems are important targets for drug actions.  相似文献   

9.
BackgroundElucidating the neurobiological effects of sleep and waking remains an important goal of the neurosciences. Recently, animal studies indicated that sleep is important for cell membrane and myelin maintenance in the brain and that these structures are particularly susceptible to insufficient sleep. Here, we tested the hypothesis that a day of waking and sleep deprivation would be associated with changes in diffusion tensor imaging (DTI) indices of white matter microstructure sensitive to axonal membrane and myelin alterations.MethodsTwenty-one healthy adult males underwent DTI in the morning [7:30AM; time point (TP)1], after 14 hours of waking (TP2), and then after another 9 hours of waking (TP3). Whole brain voxel-wise analysis was performed with tract based spatial statistics.ResultsA day of waking was associated with widespread increases in white matter fractional anisotropy, which were mainly driven by radial diffusivity reductions, and sleep deprivation was associated with widespread fractional anisotropy decreases, which were mainly explained by reductions in axial diffusivity. In addition, larger decreases in axial diffusivity after sleep deprivation were associated with greater sleepiness. All DTI changes remained significant after adjusting for hydration measures.ConclusionsThis is the first DTI study of sleep deprivation in humans. Although previous studies have observed localized changes in DTI indices of cerebral microstructure over the course of a few hours, further studies are needed to confirm widespread DTI changes within hours of waking and to clarify whether such changes in white matter microstructure serve as neurobiological substrates of sleepiness.  相似文献   

10.
目的:探讨视频脑电图诊断癫痫患者睡眠障碍、认知障碍的临床价值。方法:选取2014年1月~2016年12月在我院神经内科进行诊治的癫痫患者236例作为癫痫组,另选取同期的健康患者家属或者其他健康体检者236例作为正常对照组,对两组进行视频脑电图联合睡眠参数分析;并对癫痫组视频脑电图联合认知参数进行分析。结果:癫痫组睡眠Ⅰ~Ⅱ期时间显著长于正常对照组且具有统计学差异(P=0.000),睡眠Ⅲ~Ⅳ期时间显著短于正常对照组且具有统计学差异(P=0.000),睡眠时相转换频率、觉醒指数均显著高于正常对照组且均具有统计学差异(P=0.000);清醒期、睡眠期不同痫样放电指数(IED)的WAIS-RC IQ和WMS-RC MQ均具有统计学差异(P0.05),10%IED≤50%者的WAIS-RC IQ和WMS-RC MQ均显著低于1%IED≤10%者且均具有统计学差异(P0.05),IED 10%可能是痫样放电影响患者认知功能的最低阈值。结论:视频脑电图在癫痫患者睡眠障碍、认知障碍识别中具有重要的临床价值。  相似文献   

11.

The purpose of this review is to outline the mechanisms responsible for the induction and maintenance of slow-wave sleep (SWS, also named non–rapid eye movement or non-REM sleep). The latest hypothesis on the mechanisms by which cortical activity switches from an activated state during waking to a synchronised state during SWS is presented. It is proposed that the activated cortical state during waking is induced by the activity of multiple waking systems, including the serotonergic, noradrenergic, cholinergic and hypocretin systems located at different subcortical levels. In contrast, the neurons inducing SWS are mainly localized in the ventrolateral preoptic (VLPO) and median preoptic nuclei. These neurons use the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). The notion that the switch from waking to SWS is due to the inhibition of the waking systems by the VLPO sleep-active neurons is introduced. At the onset of sleep, the sleep neurons are activated by the circadian clock localized in the suprachiasmatic nucleus and a powerful hypnogenic factor, adenosine, which progressively accumulates in the brain during waking.

  相似文献   

12.
The two-process model is a scheme for the timing of sleep that consists of homeostatic (Process S) and circadian (Process C) variables. The two-process model exhibits abnormal sleep patterns such as internal desynchronization or sleep fragmentation. Early infants with autism often experience sleep difficulties. Large day-by-day changes are found in the sleep onset and waking times in autistic children. Frequent night waking is a prominent property of their sleep. Further, the sleep duration of autistic children is often fragmented. These sleep patterns in infants with autism are not fully understood yet. In the present study, the sleep patterns in autistic children were reproduced by a modified two-process model using nonlinear analysis. A nap term was introduced into the original two-process model to reproduce the sleep patterns in early infants. The nap term and the time course of Process S are mentioned in the present study. Those parameters led to bifurcation of the sleep-wake cycle in the modified two-process model. In a certain range of these parameter sets, a small external noise was amplified, and an irregular sleep-wake cycle appeared. The short duration of sleep led to another irregular sleep onset or waking. Consequently, an irregular sleep-wake cycle appeared in early infantile autism.  相似文献   

13.
The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep (primarily stages 2 and 3) showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than waking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.  相似文献   

14.
The relation between reduced nutritional intake, with consequent weight loss, and sleep disturbance was studied by comparing certain sleep encephalogram patterns in a group of inpatients with anorexia nervosa before, during, and after a regimen of refeeding with a normal diet to a matched population mean weight. At low body weights patients had less sleep and more restlessness, especially in the last four hours of the night. During refeeding and weight gain slow-wave sleep initially increased and then tended to decrease during the final stage of restoration of weight back to matched population mean levels. With the overall weight gain, however, there was a significant increase in length of sleep and rapid eye movement sleep, the latter increasing especially during the later stages of weight gain. These results reaffirm that insomnia, and especially early morning waking, is associated with low body weight in anorexia nervosa, and their implications are discussed with particular reference to a hypothetical association between various anabolic profiles and the need for differing components of sleep.  相似文献   

15.
This study aimed to examine the influence of specific sleep disorders on dream content. The authors hypothesized that: (a) waking somatic concerns influence dream content and (b) somatic stimulation associated with specific sleep disorders influence dream content items. The subjects (N = 124) were included if they demonstrated obstructive sleep apnea, narcolepsy, an EEG arousal disorder during sleep, or periodic leg movements during sleep (PLMS), based on standard polysomnography. The 42-item Wahler Physical Symptom Inventory was used to quantify somatic concerns. Dream content and frequency was assessed with a 37-item Dream Questionnaire. Ten symptom-dream pairs were selected as mutually relevant and subjected to chi-square analysis. 84.6% of all subjects reported having bad dreams (N = 105). A significant proportion of patients who complain of excessive perspiration dream about perspiring, and significant proportions of those who report difficulty breathing while awake dream about feelings of choking and suffocation. Recurring dreams and dreams of paralysis are significantly more prominent in patients with narcolepsy. Patients with sleep apnea do not dream of choking/feelings of suffocation with greater frequency than nonapneics. These findings suggest that somatic stimulation associated with specific sleep disorders appears to have an inconsistent influence on certain dream content items. Furthermore, dream mentation appears to feature waking concerns, rather that being related to events associated with during sleep disorders. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
In two previous studies we demonstrated that radiofrequency electromagnetic fields (RF EMF) similar to those emitted by digital radiotelephone handsets affect brain physiology of healthy young subjects exposed to RF EMF (900 MHz; spatial peak specific absorption rate [SAR] 1 W/kg) either during sleep or during the waking period preceding sleep. In the first experiment, subjects were exposed intermittently during an 8 h nighttime sleep episode and in the second experiment, unilaterally for 30 min prior to a 3 h daytime sleep episode. Here we report an extended analysis of the two studies as well as the detailed dosimetry of the brain areas, including the assessment of the exposure variability and uncertainties. The latter enabled a more in depth analysis and discussion of the findings. Compared to the control condition with sham exposure, spectral power of the non-rapid eye movement sleep electroencephalogram (EEG) was initially increased in the 9-14 Hz range in both experiments. No topographical differences with respect to the effect of RF EMF exposure were observed in the two experiments. Even unilateral exposure during waking induced a similar effect in both hemispheres. Exposure during sleep reduced waking after sleep onset and affected heart rate variability. Exposure prior to sleep reduced heart rate during waking and stage 1 sleep. The lack of asymmetries in the effects on sleep EEG, independent of bi- or unilateral exposure of the cortex, may indicate involvement of subcortical bilateral projections to the cortex in the generation of brain function changes, especially since the exposure of the thalamus was similar in both experiments (approx. 0.1 W/kg).  相似文献   

17.
Whether we are awake or asleep is believed to mark a sharp divide between the types of conscious states we undergo in either behavioural state. Consciousness in sleep is often equated with dreaming and thought to be characteristically different from waking consciousness. Conversely, recent research shows that we spend a substantial amount of our waking lives mind wandering, or lost in spontaneous thoughts. Dreaming has been described as intensified mind wandering, suggesting that there is a continuum of spontaneous experience that reaches from waking into sleep. This challenges how we conceive of the behavioural states of sleep and wakefulness in relation to conscious states. I propose a conceptual framework that distinguishes different subtypes of spontaneous thoughts and experiences independently of their occurrence in sleep or waking. I apply this framework to selected findings from dream and mind-wandering research. I argue that to assess the relationship between spontaneous thoughts and experiences and the behavioural states of sleep and wakefulness, we need to look beyond dreams to consider kinds of sleep-related experience that qualify as dreamless. I conclude that if we consider the entire range of spontaneous thoughts and experiences, there appears to be variation in subtypes both within as well as across behavioural states. Whether we are sleeping or waking does not appear to strongly constrain which subtypes of spontaneous thoughts and experiences we undergo in those states. This challenges the conventional and coarse-grained distinction between sleep and waking and their putative relation to conscious states.This article is part of the theme issue ‘Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation’.  相似文献   

18.
Abstract— The levels in brain of lactate, pyruvate, creatine phosphate, ATP, ADP and AMP were examined in sleeping and waking adult rats. The animals were monitored electrophysiologically and the biochemical measurements were made after approx. 25 min of sleep or wakefulness. The previous treatment of the animals had a marked effect on the levels of brain metabolites during sleep. In animals not acclimatized to the observation chamber, brain levels of lactate and pyruvate rose during sleep above those in the waking state: creatine phosphate and ATP were depressed somewhat. When the animals were acclimatized by being placed in the observation chamber for at least 2 h on four or more consecutive days prior to the experiment, sleep was accompanied by a depression of brain levels of lactate and pyruvate and slight elevations of brain levels of creatine phosphate and ATP. No significant differences in the EEG recordings were noted between the sleeping rats of the acclimatized and non-acclimatized groups. These observations on the effect of acclimatization on brain metabolism during sleep may have clinical relevance in man.  相似文献   

19.
目的:比较视频脑电图(VEEG)与常规脑电图(REEG)在癫痫患儿诊断和定位中的应用价值,为癫痫诊断提供依据。方法:对2014年1月~2016年12月间本院收治的有临床症状拟诊断为癫痫的102例患儿的临床资料进行回顾性分析,比较VEEG与REEG两种方法痫样放电检出率、临床发作检出率、睡眠期检出率以及痫灶定位中的诊断价值。结果:102例患儿中,VEEG检测到痫样放电80例,痫样放电检出率为78.43%,REEG检测到痫样放电42例,痫样放电检出率为41.18%,VEEG痫样放电检出率显著高于REEG(P0.05)。VEEG临床发作检出率为48.75%,显著高于REEG临床发作检出率的14.29%(P0.05)。VEEG检测出睡眠期痫样放电检出率为46.25%,高于觉醒期痫样放电检出率的12.50%(P0.05)。VEEG睡眠期各电图时相痫样放电检出率比较,组间差异均有统计学意义(均P0.05)。根据VEEG确定39例癫痫患儿痫样放电起源部位为额区9例、颞区10例、额颞区9例、枕区4例、中央区4例、颞枕后区3例。结论:VEEG对癫痫患儿的脑部痫样放电检出率和临床发作检出率均明显优于REEG,同时定位诊断效果更优,值得临床推广应用。  相似文献   

20.
目的:探索富亮氨酸胶质瘤失活1蛋白(LGI1)抗体相关自身免疫性脑炎的临床特点及治疗。方法:报道l例LG I1抗体阳性相关自身免疫性脑炎的临床资料,并结合相关文献讨论该病的临床病理特点。结果:老年男性,亚急性起病,反复多次发作并进行性加重,以近记忆下降、癫痫、认知和睡眠障碍为主要表现;头颅MRI示脑萎缩;LGI1抗体阳性。结论:本病患者具有认知功能、睡眠障碍及癫痫等,血清和脑脊液中抗LGI1抗体阳性,但无低钠血症,头颅影像学检查正常;急性发作期给予免疫抑制剂治疗后可获良好效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号