首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Kim KH  Cho YS  Park JM  Yoon SO  Kim KW  Chung AS 《FEBS letters》2007,581(17):3303-3310
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor modulating a variety of biological functions including cancer cell proliferation and differentiation. However, the role of PPARgamma and its ligands in tumor invasion is unclear. To evaluate a possible role for PPARgamma ligands in tumor invasion, we examined whether PPARgamma agonists including pioglitazone, troglitazone, rosiglitazone, and ciglitazone could affect the activity of matrix metalloproteinases (MMPs) in the HT1080 cell line, a well-studied and well-characterized cell line for MMP research. The gelatin zymography assay showed that ciglitazone activated pro-MMP-2 significantly. In addition, ciglitazone increased the expression of MMP-2, which was accompanied by an increase of membrane type 1-MMP (MT1-MMP) expression. The PPARgamma antagonist, GW9662 attenuated the ciglitazone-induced PPARgamma activation but it did not affect the pro-MMP2 activation by ciglitazone, suggesting that the action of ciglitazone on the pro-MMP-2 activation bypassed the PPARgamma pathway. Antioxidants and various inhibitors of signal transduction were used to investigate the mechanism of ciglitazone-induced pro-MMP-2 activation. We found that the sustained production of reactive oxygen species (ROS) was required for pro-MMP-2 activation by ciglitazone. We also found that PB98059, an inhibitor of MEK-ERK, significantly blocked ciglitazone-induced pro-MMP-2 activation and that extracellular signal-regulated kinase (ERK) was hyperphosphorylated by ciglitazone. Moreover, cell invasion was significantly increased by ciglitazone in the HT1080 cell lines, whereas cell motility was not affected. This study suggests that ciglitazone-induced pro-MMP-2 activation increases PPARgamma-independent tumor cell invasion through ROS production and ERK activation in some types of cancer cells.  相似文献   

5.
6.
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily that is activated by binding certain fatty acids, eicosanoids, and insulin-sensitizing thiazolidinediones (TZD). The TZD troglitazone (TRO) inhibits vascular smooth muscle cell proliferation and migration both in vitro and in vivo. The precise mechanism of its antiproliferative activity, however, has not been elucidated. We report here that PPARgamma ligands inhibit rat aortic vascular smooth muscle cell proliferation by blocking the events critical for G(1) --> S progression. Flow cytometry demonstrated that both TRO and another TZD, rosiglitazone, prevented G(1) --> S progression induced by platelet-derived growth factor and insulin. Movement of cells from G(1) --> S was also inhibited by the non-TZD, natural PPARgamma ligand 15-deoxy-(12,14)Delta prostaglandin J(2) (15d-PGJ(2)), and the mitogen-activated protein kinase pathway inhibitor PD98059. Inhibition of G(1) --> S exit by these compounds was accompanied by a substantial blockade of retinoblastoma protein phosphorylation. TRO and rosiglitazone attenuated both the mitogen-induced degradation of p27(kip1) and the mitogenic induction of p21(cip1). 15d-PGJ(2) and PD98059 inhibited both the degradation of p27(kip1) and the induction of cyclin D1 in response to mitogens. These effects resulted in the inhibition of mitogenic stimulation of cyclin-dependent kinases activated by cyclins D1 and E. These data demonstrate that PPARgamma ligands are antiproliferative drugs that act by modulating cyclin-dependent kinase inhibitors; they may provide a new therapeutic approach for proliferative vascular diseases.  相似文献   

7.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands inhibit cell proliferation and induce apoptosis in cancer cells. Here we wished to determine whether the PPARgamma ligand induces apoptosis and cell cycle arrest of the MDA-MB-231 cell, an estrogen receptor alpha negative breast cancer cell line. The treatment of MDA-MB-231 cell with PPARgamma ligands was shown to induce inhibition of cell growth in a dose-dependent manner as determined by MTT assay. Cell cycle analysis showed a G1 arrest in MDA-MB-231 cells exposed to troglitazone. An apoptotic effect by troglitazone demonstrated that apoptotic cells elevated by 2.5-fold from the control level at 10 microM, to 3.1-fold at 50 microM and to 3.5-fold at 75 microM. Moreover, troglitazone treatment, applied in a dose-dependent manner, caused a marked decrease in pRb, cyclin D1, cyclin D2, cyclin D3, Cdk2, Cdk4 and Cdk6 expression as well as a significant increase in p21 and p27 expression. These results indicate that troglitazone causes growth inhibition, G1 arrest and apoptotic death of MDA-MB-231 cells.  相似文献   

8.
Lu MC  Yang SH  Hwang SL  Lu YJ  Lin YH  Wang SR  Wu YC  Lin SR 《Life sciences》2006,78(20):2378-2383
Squamocin is one of the annonaceous acetogenins and has been reported to have anticancer activity. Squamocin was found to inhibit the growth of K562 cells in a time- and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest in K562 cells following 24 h exposure to squamocin. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a dose-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that squamocin did not change the steady-state levels of Cdk2, Cdk4, cyclin A, cyclin B1, cyclin D3 and cyclin E, but decreased the protein levels of Cdk1 and Cdc25C. These results suggest that squamocin inhibits the proliferation of K562 cells via G2/M arrest in association with the induction of p21, p27 and the reduction of Cdk1 and Cdc25C kinase activities.  相似文献   

9.
This study investigates molecular mechanisms underlying cell cycle arrest when cells are exposed to high levels of oxygen (hyperoxia). Hyperoxia has previously been shown to increase expression of the cell cycle regulators p53 and p21. In the current study, we found that p53-deficient human lung adenocarcinoma H1299 cells failed to induce p21 or growth arrest in G(1) when exposed to 95% oxygen. Instead, cells arrested in S and G(2). Stable expression of p53 restored induction of p21 and G(1) arrest without affecting mRNA expression of the other Cip or INK4 G(1) kinase inhibitors. To confirm the role of p21 in G(1) arrest, we created H1299 cells with tetracycline-inducible expression of enhanced green fluorescent protein (EGFP), EGFP fused to p21 (EGFp21), or EGFP fused to p27 (EGFp27), a related cell cycle inhibitor. The amino terminus of p21 and p27 bind cyclin-dependent kinases (Cdk), whereas the carboxy terminus of p21 binds the sliding clamp proliferating cell nuclear antigen (PCNA). EGFp21 or EGFp27, but not EGFP by itself, restored G(1) arrest during hyperoxia. When separately overexpressed, the amino-terminal Cdk and carboxy-terminal PCNA binding domains of p21 each prevented cells from exiting G(1) during exposure. These findings demonstrate that exposure in vitro to hyperoxia exerts G(1) arrest through p53-dependent induction of p21 that suppresses Cdk and PCNA activity. Because PCNA also participates in DNA repair, these results raise the possibility that p21 also affects repair of oxidized DNA.  相似文献   

10.
Peripheral homeostasis and tolerance requires the suppression or removal of excessive or harmful T lymphocytes. This can occur either by apoptosis through active antigen-induced death or cytokine withdrawal. Alternatively, T cell activation can be suppressed by agents that activate the cAMP-dependent protein kinase (PKA) signaling pathway, such as prostaglandin E2. Stimulation of PKA inhibits lymphocyte proliferation and immune effector functions. Here we have investigated the mechanism by which activation of PKA induces inhibition of proliferation in human leukemic T cell lines. Using a variety of agents that stimulate PKA, we can arrest Jurkat and H9 leukemic T cells in the G(1) phase of the cell cycle, whereas cell viability is hardly affected. This G(1) arrest is associated with an inhibition of cyclin D/Cdk and cyclin E/Cdk kinase activity. Interestingly, expression of cyclin D3 is rapidly reduced by PKA activation, whereas expression of the Cdk inhibitor p27(kip1) is induced. Ectopic expression of cyclin D3 can override the growth suppression induced by PKA activation to some extent, indicating that growth inhibition of leukemic T cells by PKA activation is partially dependent on down-regulation of cyclin D3 expression. Taken together our data suggest that immunosuppression by protein kinase A involves regulation of both cyclin D3 and p27(kip1) expression.  相似文献   

11.
12.
13.
We show in this work that the inhibition of Cdk4 (6) in Rb(-/-) 3T3 cells enhances the accumulation of the p27(kip1) cyclin-dependent kinase inhibitor when these cells are induced into quiescence. Two different forms of inhibition of Cdk4 (6), namely overexpression of the Cdk4 (6) inhibitor p16 and overexpression of a dominant negative mutant of Cdk4 (Cdk4(N158)), result in this effect. This suggests that the relevant activity of Cdk4 (6) that has to be inactivated in this setting is its kinase activity. The accumulation of p27(kip1) is due to enhanced translation of the protein, mediated by the 3'-untranslated region of the p27(kip1) mRNA. Moreover, the cells that overexpress p16(ink4a) or Cdk4(N158) show a delay in G(1) when made quiescent and restimulated to proliferate. This delay is overcome by transfection of a plasmid expressing antisense p27(kip1), which shows that the accumulation of p27(kip1) in these cells is related to their G(1) delay. In summary, we report a new functional link between two important cell cycle regulators, Cdk4 and p27(kip1), and provide a mechanistic explanation to the previously reported epistatic relations between these two proteins.  相似文献   

14.
p27(Kip1), an important regulator of Cdk2 activity and G1/S transition, is tightly regulated in a cell-type and condition-specific manner to integrate mitogenic and differentiation signals governing cell cycle progression. We show that p27 protein levels progressively declined from mid-G1 through late-G2 phase as density-arrested 3T3-L1 preadipocytes synchronously reentered the cell cycle during early stages of adipocyte differentiation. This dramatic fall in p27 protein accumulation was due, at least in part, to a decrease in protein stability. Specific inhibitors of the 26S proteasome were shown to completely block the decrease in p27 protein levels throughout G1, increase the abundance of ubiquitylated p27 protein, and inhibit G1/S transition resulting in G1 arrest. It is further demonstrated that p27 was phosphorylated on threonine 187 during S phase progression by Cdk2 and that phosphorylated p27 was polyubiquitylated and degraded. Furthermore, we demonstrate that Skp2 and Cks1 dramatically increased during S/G2 phase progression concomitantly with the maximal fall in p27 protein. Complete knockdown of Skp2 with RNA interference partially prevented p27 degradation equivalent to that observed with Cdk2 blockade suggesting that the SCF(Skp2) E3 ligase and other proteasome-dependent mechanisms contribute to p27 degradation during preadipocyte replication. Interestingly, Skp2-mediated p27 degradation was not essential for G1/S or S/G2 transition as preadipocytes shifted from quiescence to proliferation during adipocyte hyperplasia. Finally, evidence is presented suggesting that elevated p27 protein in the absence of Skp2 was neutralized by sequestration of p27 protein into Cyclin D1/Cdk4 complexes.  相似文献   

15.
There is growing evidence to show that hepatic oval cells contribute to liver regeneration, dysplastic nodule formation, and hepato-carcinogenesis. Peroxisome proliferator-activated receptors (PPARs) and their ligands play an important role in cell growth, inflammatory responses, and liver pathogenesis including fibrosis and cancer. However, little is known about the role of PPARgamma/its ligands in the growth and differentiation of hepatic oval cells. In this study, we found that OC15-5, a rat hepatic oval cell line, expressed PPARgamma at mRNA and protein levels, and a natural ligand for PPARgamma, 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), and a synthetic ligand, ciglitazone, inhibited growth of OC15-5 cells by arresting at G1-S in a dose-dependent manner. Apoptosis was also induced in OC15-5 cells by 15d-PGJ2 treatment. In OC15-5 cells treated with 15d-PGJ2, the expression of CDK inhibitor, p27(Kip1), was up-regulated, while that of p21(WAF1/Cip1), p18(INK4C) CDK2, CDK4, and cyclin E was unchanged. In addition, delayed up-regulation of AFP expression was observed in OC15-5 cells after 15d-PGJ2 or ciglitazone treatment. This is the first report to show that the PPARgamma ligand was involved in the growth, cell cycle, and differentiation of hepatic oval cells, raising the possibility that the PPARgamma ligands may regulate liver regeneration and hepato-carcinogenesis.  相似文献   

16.
Exposure of hematopoietic cells to DNA-damaging agents induces p53-independent cell cycle arrest at a G(1) checkpoint. Previously, we have shown that this growth arrest can be overridden by cytokine growth factors, such as erythropoietin or interleukin-3, through activation of a phosphatidylinositol 3-kinase (PI 3-kinase)/Akt-dependent signaling pathway. Here, we show that gamma-irradiated murine myeloid 32D cells arrest in G(1) with active cyclin D-cyclin-dependent kinase 4 (Cdk4) but with inactive cyclin E-Cdk2 kinases. The arrest was associated with elevated levels of the Cdk inhibitors p21(Cip1) and p27(Kip1), yet neither was associated with Cdk2. Instead, irradiation-induced inhibition of cyclin E-Cdk2 correlated with absence of the activating threonine-160 phosphorylation on Cdk2. Cytokine treatment of irradiated cells induced Cdk2 phosphorylation and activation, and cells entered into S phase despite sustained high-level expression of p21 and p27. Notably, the PI 3-kinase inhibitor, LY294002, completely blocked cytokine-induced Cdk2 activation and cell growth in irradiated 32D cells but not in nonirradiated cells. Together, these findings demonstrate a novel mechanism underlying the DNA damage-induced G(1) arrest of hematopoietic cells, that is, inhibition of Cdk2 phosphorylation and activation. These observations link PI 3-kinase signaling pathways with the regulation of Cdk2 activity.  相似文献   

17.
18.
19.
It is well documented that Ras functions as a molecular switch for reentry into the cell cycle at the border between G0 and G1 by transducing extracellular growth stimuli into early G1 mitogenic signals. In the present study, we investigated the role of Ras during the late stage of the G1 phase by using NIH 3T3 (M17) fibroblasts in which the expression of a dominant negative Ras mutant, p21(Ha-Ras[Asn17]), is induced in response to dexamethasone treatment. We found that delaying the expression of Ras(Asn17) until late in the G1 phase by introducing dexamethasone 3 h after the addition of epidermal growth factor (EGF) abolished the downregulation of the p27kip1 cyclin-dependent kinase (CDK) inhibitor which normally occurred during this period, with resultant suppression of cyclin Ds/CDK4 and cyclin E/CDK2 and G1 arrest. The immunodepletion of p27kip1 completely eliminated the CDK inhibitor activity from EGF-stimulated, dexamethasone-treated cell lysate. The failure of p27kip1 downregulation and G1 arrest was also observed in cells in which Ras(Asn17) was induced after growth stimulation with a phorbol ester or alpha-thrombin and was mimicked by the addition late in the G1 phase of inhibitors for phosphatidylinositol-3-kinase. Ras-mediated downregulation of p27kip1 involved both the suppression of synthesis and the stimulation of the degradation of the protein. Unlike the earlier expression of Ras(Asn17) at the border between G0 and G1, its delayed expression did not compromise the EGF-stimulated transient activation of extracellular signal-regulated kinases or inhibit the stimulated expression of a principal D-type cyclin, cyclin D1, until close to the border between G1 and S. We conclude that Ras plays temporally distinct, phase-specific roles throughout the G1 phase and that Ras function late in G1 is required for p27kip1 downregulation and passage through the restriction point, a prerequisite for entry into the S phase.  相似文献   

20.
Little is known about cell-cycle checkpoint activation by oxidative stress in mammalian cells. The effects of hyperoxia on cell-cycle progression were investigated in asynchronous human T47D-H3 cells, which contain mutated p53 and fail to arrest at G1/S in response to DNA damage. Hyperoxic exposure (95% O(2), 40-64 h) induced an S-phase arrest associated with acute inhibition of Cdk2 activity and DNA synthesis. In contrast, exit from G2/M was not inhibited in these cells. After 40 h of hyperoxia, these effects were partially reversible during recovery under normoxic conditions. The inhibition of Cdk2 activity was not due to degradation of Cdk2, cyclin E or A, nor impairment of Cdk2 complex formation with cyclin A or E and p21(Cip1). The loss of Cdk2 activity occurred in the absence of induction and recruitment of cdk inhibitor p21(Cip1) or p27(Kip1) in cyclin A/Cdk2 or cyclin E/Cdk2 complexes. In contrast, Cdk2 inhibition was associated with increased Cdk2-Tyr15 phosphorylation, increased E2F-1 recruitment, and decreased PCNA contents in Cdk2 complexes. The latter results indicate a p21(Cip1)/p27(Kip1)-independent mechanism of S-phase checkpoint activation in the hyperoxic T47D cell model investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号