首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetic analysis and mechanistic aspects of autoxidation of catechins   总被引:3,自引:0,他引:3  
A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O(2)) is quantitatively reduced to H(2)O(2). The initial rate of autoxidation is suppressed by superoxide dismutase and H(+), but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O(2) to generate a superoxide anion (O(2)(*-)) and a semiquinone radical, as supported in part by electron spin resonance measurements. O(2)(*-) works as a stronger one-electron oxidant than O(2) against catechins and is reduced to H(2)O(2). The semiquinone radical is more susceptible to oxidation with O(2) than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O(2)(*-) and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed.  相似文献   

2.
Myohemerythrin (Mhr) is a non-heme iron O2 carrier (with two irons in the active site) that is typically found in the retractor muscle of marine 'peanut' worms. OxyMhr may either release O2, or undergo an autoxidation reaction in which hydrogen peroxide is released and diferric metMhr is produced. The autoxidation reaction can also be promoted by the addition of certain anions to Mhr solutions. This work, using recombinant Themiste zostericola Mhrs, contrasts the results of environmental effects on these reactions. For the O2 release reaction, deltaVdouble dagger(21.5 degrees C) = +28+/-3 cm3 mol(-1), deltaHdouble dagger(1 atm) = +22+/-1 kcal mol(-1), and deltaSdouble dagger(1 atm) = +28+/-4 eu. The autoxidation reaction (pH 8.0, 21.5 degrees C, 1 atm) displays different kinetic parameters: deltaVdouble dagger = -8+/-2 cm3 mol(-1), deltaHdouble dagger = +24.1+/-0.7 kcal mol(-1), and deltaSdouble dagger = +1+/-1 eu. Autoxidation in the presence of sodium azide is orders of magnitude faster than solvolytic autoxidation. The deltaVdouble dagger parameters for azide anation and azide-assisted autoxidation reaction are +15+/-2 and +59+/-2 cm3 mol(-1), respectively, indicating that the rate-limiting steps for the Mhr autoxidation and anation reactions (including O2 uptake) are not associated with ligand binding to the Fe2 center. The L103V and L103N oxyMhr mutants autoxidize approximately 10(3)-10(5) times faster than the wild-type protein, emphasizing the importance of leucine-103, which may function as a protein 'gate' in stabilizing bound dioxygen.  相似文献   

3.
The aim of this review is to assess the mode of action and role of antioxidants as protection from heavy metal stress in roots, mycorrhizal fungi and mycorrhizae. Based on their chemical and physical properties three different molecular mechanisms of heavy metal toxicity can be distinguished: (a) production of reactive oxygen species by autoxidation and Fenton reaction; this reaction is typical for transition metals such as iron or copper, (b) blocking of essential functional groups in biomolecules, this reaction has mainly been reported for non-redox-reactive heavy metals such as cadmium and mercury, (c) displacement of essential metal ions from biomolecules; the latter reaction occurs with different kinds of heavy metals. Transition metals cause oxidative injury in plant tissue, but a literature survey did not provide evidence that this stress could be alleviated by increased levels of antioxidative systems. The reason may be that transition metals initiate hydroxyl radical production, which can not be controlled by antioxidants. Exposure of plants to non-redox reactive metals also resulted in oxidative stress as indicated by lipid peroxidation, H(2)O(2) accumulation, and an oxidative burst. Cadmium and some other metals caused a transient depletion of GSH and an inhibition of antioxidative enzymes, especially of glutathione reductase. Assessment of antioxidative capacities by metabolic modelling suggested that the reported diminution of antioxidants was sufficient to cause H(2)O(2) accumulation. The depletion of GSH is apparently a critical step in cadmium sensitivity since plants with improved capacities for GSH synthesis displayed higher Cd tolerance. Available data suggest that cadmium, when not detoxified rapidly enough, may trigger, via the disturbance of the redox control of the cell, a sequence of reactions leading to growth inhibition, stimulation of secondary metabolism, lignification, and finally cell death. This view is in contrast to the idea that cadmium results in unspecific necrosis. Plants in certain mycorrhizal associations are less sensitive to cadmium stress than non-mycorrhizal plants. Data about antioxidative systems in mycorrhizal fungi in pure culture and in symbiosis are scarce. The present results indicate that mycorrhization stimulated the phenolic defence system in the Paxillus-Pinus mycorrhizal symbiosis. Cadmium-induced changes in mycorrhizal roots were absent or smaller than those in non-mycorrhizal roots. These observations suggest that although changes in rhizospheric conditions were perceived by the root part of the symbiosis, the typical Cd-induced stress responses of phenolics were buffered. It is not known whether mycorrhization protected roots from Cd-induced injury by preventing access of cadmium to sensitive extra- or intracellular sites, or by excreted or intrinsic metal-chelators, or by other defence systems. It is possible that mycorrhizal fungi provide protection via GSH since higher concentrations of this thiol were found in pure cultures of the fungi than in bare roots. The development of stress-tolerant plant-mycorrhizal associations may be a promising new strategy for phytoremediation and soil amelioration measures.  相似文献   

4.
The steady state kinetic mechanism of the bromide-assisted disproportionation of hydrogen peroxide, forming dioxygen, catalyzed by vanadium bromoperoxidase has been investigated and compared to the mechanism of monochlorodimedone (MCD) bromination under conditions of 0.0125-6 mM H2O2, 1-500 mM Br-, and pH 4.55-6.52. Under these conditions, 50 microM MCD was sufficient to inhibit at least 90% of the dioxygen formation during MCD bromination. The rate data is consistent with a substrate-inhibited Bi Bi Ping Pong mechanism, in which the substrate bromide, is also an inhibitor at pH 4.55 and 5.25, but not at pH 5.91 and 6.52. The kinetic parameter KmBr, KmH2O2, KisBr, and KiiBr determined for the reactions of bromide-assisted disproportionation fo hydrogen peroxide and MCD bromination are similar, indicating that the mechanisms of both reactions occur via the formation of a common intermediate, the formation of which is rate-limiting. Fluoride is a competitive inhibitor with respect to hydrogen peroxide in both reactions at pH 6.5. At high concentrations of hydrogen peroxide, the bromide-assisted disproportionation of hydrogen peroxide occurs during the bromination of MCD. The sum of the rates of MCD bromination and dioxygen formation during MCD bromination is equal to the rate of dioxygen formation in the absence of MCD. The apportionment of the reaction through the MCD bromination and dioxygen formation pathways depends on pH, with much lower hydrogen peroxide concentrations causing significant dioxygen formation at higher pH.  相似文献   

5.
The iron(II)-dioxygen bond in myoglobin and hemoglobin is a subject of wide interest. Studies range from examinations of physical-chemical properties dependent on its electronic structure, to investigations of the stability as a function of oxygen supply. Among these, stability properties are of particular importance in vivo. Like all known dioxygen carriers synthesized so far with transition metals, the oxygenated forms of myoglobin and hemoglobin are known to be oxidized easily to their ferric met-forms, which cannot bind molecular oxygen and are therefore physiologically inactive. The mechanistic details of this autoxidation reaction, which are of clinical, as well as of physical-chemical, interest, have long been investigated by a number of authors, but a full understanding of the heme oxidation has not been reached so far. Recent kinetic and thermodynamic studies of the stability of oxymyoglobin (MbO2) and oxyhemoglobin (HbO2) have revealed new features in the FeO2 bonding. In vivo, the iron center is always subject to a nucleophilic attack of the water molecule or hydroxyl ion, which can enter the heme pocket from the surrounding solvent and thereby irreversibly displace the bound dioxygen from MbO2 or HbO2 in the form of O2- so that the iron is converted to the ferric met-form. Since the autoxidation reaction of MbO2 or HbO2 proceeds through a nucleophilic displacement following one-electron transfer from iron(II) to the bound O2, this reaction may be viewed as a meeting point of the stabilization and the activation of molecular oxygen performed by hemoproteins. Along with these lines of evidence, we finally discuss the stability property of human HbO2 and provide with the most recent state of hemoglobin research. The HbA molecule contains two types of alphabeta contacts and seems to differentiate them quite properly for its functional properties. The alpha1beta2 or alpha2beta1 contact is associated with the cooperative oxygen binding, whereas the alpha1beta1 or alpha2beta2 contact is used for controlling the stability of the bound O2. We can thus form a unified picture for hemoglobin function by closely integrating the cooperative and the stable binding of molecular oxygen with iron(II) in aqueous solvent. These new views on the nature of FeO2 bonding and the possible role of globin moiety in stabilizing MbO2 and HbO2 are of primary importance, not only for a full understanding of various hemoprotein reactions with O2, but also for planning new molecular designs for synthetic oxygen carriers which may be able to function in aqueous solvent and at physiological temperature.  相似文献   

6.
Glucose oxidase (GO) and copper amine oxidase (CAO) catalyze the reduction of molecular oxygen to hydrogen peroxide. If a closed-shell cofactor (like FADH(2) in GO and topaquinone (TPQ) in CAO) is electron donor in dioxygen reduction, the formation of a closed-shell species (H(2)O(2)) is a spin forbidden process. Both in GO and CAO, formation of a superoxide ion that leads to the creation of a radical pair is experimentally suggested to be the rate-limiting step in the dioxygen reduction process. The present density functional theory (DFT) studies suggest that in GO, the creation of the radical pair induces a spin transition by spin orbit coupling (SOC) in O(2)(-)(rad), whereas in CAO, it is induced by exchange interaction with the paramagnetic metal ion (Cu(II)). In the rate-limiting step, this spin-transition is suggested to transform the O(2)(-)(rad)-FADH(2)(+)(rad) radical pair in GO and the Cu(II)-TPQ (triplet) species in CAO, from a triplet (T) to a singlet (S) state. For CAO, a mechanism for the O[bond]O cleavage step in the biogenesis of TPQ is also suggested.  相似文献   

7.
Nitric oxide (NO*) reacts with superoxide (O2-*) forming peroxynitrite (PXN) (ONOO-), a strong oxidant which reacts with several biomolecules leading to enormous implications in biological process, holds enormous implications for the understanding of free radicals. The ONOO- formation in vivo has significant implications in free radical biology. It exerts a defensive role in large number of pathophysiological reactions and also acts as signaling molecule in activation of several protooncogenes. It decomposes rapidly to an intermediate and reacts with several biomolecules. Evidence for PXN formation in vivo has been obtained immunohistochemically through detection of a characteristic reaction product with protein tyrosine residues and 3-nitrotyrosine. This "biomarker" of PXN formation has now been identified in various pathologies such as Lou Gehrig's disease, Parkinson's disease, cancer, atherosclerosis as well as in biological aging. 3-nitrotyrosine formation has been documented in various tissues, e.g. even in non-diseased embryonic heart during normal development. Therefore, there is a great opportunity in the postgenomic period to understand the interplay of these molecular interactions with biological events such as apoptosis, gene regulation etc. This review deals with biological significance of peroxynitrite, its precursors, reactions with large range of biomolecules, including aminoacids, proteins, lipids, nucleic acids, antioxidants as well as cytotoxic aspects.  相似文献   

8.
Superoxide dismutase can either inhibit or stimulate autoxidation of different hydroquinones, suggesting multiple roles for O2.-. Inhibitory actions of superoxide dismutase include termination of O2.(-)-propagated reaction chains and metal chelation by the apoprotein. Together, chelation of metals and termination of O2.(-)-propagated chains can effectively prevent reduction of oxygen. Chain termination by superoxide dismutase can thus account for negligible accumulation of H2O2 without invoking a superoxide:semiquinone oxidoreductase activity for this enzyme. One stimulatory action of superoxide dismutase is to decrease thermodynamic limitations to reduction of oxygen. Whether superoxide dismutase inhibits or accelerates an autoxidation depends on the reduction potentials of the quinone and the availability of metal coordination for inner sphere electron transfers.  相似文献   

9.
The kinetic parameters of the redox transitions subsequent to the two-electron transfer implied in the glutathione (GSH) reductive addition to 2- and 6-hydroxymethyl-1,4-naphthoquinone bioalkylating agents were examined in terms of autoxidation, GSH consumption in the arylation reaction, oxidation of the thiol to glutathione disulfide (GSSG), and free radical formation detected by the spin-trapping electron spin resonance method. The position of the hydroxymethyl substituent in either the benzenoid or the quinonoid ring differentially influenced the initial rates of hydroquinone autoxidation as well as thiol oxidation. Thus, GSSG- and hydrogen peroxide formation during the GSH reductive addition to 6-hydroxymethyl-1,4-naphthoquinone proceeded at rates substantially higher than those observed with the 2-hydroxymethyl derivative. The distribution and concentration of molecular end products, however, was the same for both quinones, regardless of the position of the hydroxymethyl substituent. The [O2]consumed/[GSSG]formed ratio was above unity in both cases, thus indicating the occurrence of autoxidation reactions other than those involved during GSSG formation. EPR studies using the spin probe 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO) suggested that the oxidation of GSH coupled to the above redox transitions involved the formation of radicals of differing structure, such as hydroxyl and thiyl radicals. These were identified as the corresponding DMPO adducts. The detection of either DMPO adduct depended on the concentration of GSH in the reaction mixture: the hydroxyl radical adduct of DMPO prevailed at low GSH concentrations, whereas the thiyl radical adduct of DMPO prevailed at high GSH concentrations. The production of the former adduct was sensitive to catalase, whereas that of the latter was sensitive to superoxide dismutase as well as to catalase. The relevance of free radical formation coupled to thiol oxidation is discussed in terms of the thermodynamic and kinetic properties of the reactions involved as well as in terms of potential implications in quinone cytotoxicity.  相似文献   

10.
The reactions of fully reduced and mixed-valence bovine heart cytochrome c oxidase with dioxygen have been reinvestigated in the absence and presence of metal ions (Zn(2+), Ni(2+), and Cd(2+)) by time-resolved optical absorption spectroscopy using the CO flow-flash technique. The time-resolved data were recorded on a microsecond to millisecond time scale at 442, 610, and 820 nm and subjected to quantitative amplitude analysis based on a conventional unidirectional sequential mechanism. The amplitudes of the sequential intermediates are derived from the absorbance changes associated with the different exponentials and from the kinetic equations of the sequential scheme. The general relationship between the pre-exponential factors and the absorbance of the successive intermediates in the sequential scheme is presented. A comparison of the experimental amplitudes of the individual intermediates with the model amplitudes at the three wavelengths indicates that the low spin heme a is incompletely oxidized during the formation of the sequential P(R) intermediate (P(R,s)). The conversion of the sequential F intermediate to the oxidized enzyme occurs on two millisecond time scales. The amplitude analysis of the single-wavelength data does not support the conventional sequential mechanism for the reduction of dioxygen to water catalyzed by cytochrome c oxidase.  相似文献   

11.
Cyanide added to mitochondria in the presence of copper and acetaldehyde evokes a chemiluminescence which follows series pseudo-first-order kinetics: (formula; see text) An evaluation of the effects of protein (mitochondria), copper, cyanide, acetaldehyde, and oxygen on the kinetic parameters shows that k1 is influenced by protein, cyanide (at low concentrations), and oxygen while k2 is influenced by cyanide, acetaldehyde (at low, less than 11.9 mM, and high, greater than 35.6 mM, concentrations), and oxygen. The integral light increases linearly with the square root of total copper(II) and with the square of the total acetaldehyde. The sustained emissions appear to reflect an initial oxidative event mediated by a novel mixed copper(II)-cyanide complex/acetaldehyde cyanohydrin chelate. Cu(I) formed by the reduction of Cu(II), probably by mitochondrial vicinal sulfhydryls, reacts with dioxygen to form an O2-copper complex which reacts with acetaldehyde to form the acetyl-1-hydroxyhydroperoxyl radical. This radical disproportionates by the Russell mechanism to generate electronically excited singlet and triplet carbonyl functions and singlet oxygen species whose emissive relaxations to the ground state display as the observed chemiluminescence. The kinetic evidence indicates that there are two Cu(I)-oxygen cyanide complexes transferring O2- to acetaldehyde. This evidence addresses the mechanisms of autoxidation of low-molecular-weight Cu(I) complexes with dioxygen. A suggested role for the involvement of vicinal sulfhydryl groups in the reactions is shown, kinetically, by the influence of copper and acetaldehyde on the integral light.  相似文献   

12.
Quercetin (3,3',4',5,7-pentahydroxyflavone), one of the most abundant dietary flavonoids, has been investigated for its ability to bind Fe(II), Fe(III), Cu(I) and Cu(II) in acidic to neutral solutions. In particular, analysis by UV-visible spectroscopy allows to determine the rate constants for the formation of the 1:1 complexes. In absence of added metal ion, quercetin undergoes a slow autoxidation in neutral solution with production of low hydrogen peroxide (H(2)O(2)) concentrations. Autoxidation is accelerated by addition of the metal ions according to: Cu(I) > Cu(II)>Fe(II) Fe(III). In fact, the iron-quercetin complexes seem less prone to autoxidation than free quercetin in agreement with the observation that EDTA addition, while totally preventing iron-quercetin binding, slightly accelerates quercetin autoxidation. By contrast, the copper-quercetin complexes appear as reactive intermediates in the copper-initiated autoxidation of quercetin. In presence of the iron ions, only low concentrations of H(2)O(2) can be detected. By contrast, in the presence of the copper ions, H(2)O(2) is rapidly accumulated. Whereas Fe(II) is rapidly autoxidized to Fe(III) in the presence or absence of quercetin, Cu(I) bound to quercetin or its oxidation products does not undergo significant autoxidation. In addition, Cu(II) is rapidly reduced by quercetin. By HPLC-MS analysis, the main autoxidation products of quercetin are shown to be the solvent adducts on the p-quinonemethide intermediate formed upon two-electron oxidation of quercetin. Finally, in strongly acidic conditions (pH 1-2), neither autoxidation nor metal complexation is observed but Fe(III) appears to be reactive enough to quickly oxidize quercetin (without dioxygen consumption). Up to ca. 7 Fe(III) ions can be reduced per quercetin molecule, which points to an extensive oxidative degradation.  相似文献   

13.
The human polymorphonuclear leukocyte generates O2-. and H2O2 when it is treated with uric acid. A transition metal catalyzed reaction between O2-. and H2O2 can give the hydroxyl radical and myeloperoxidase forms hypochlorous acid from H2O2 and chloride. Therefore, the uric acid-induced secretion of oxidants may be responsible for a large part of the inflammation associated with gout.  相似文献   

14.
Urate oxidase (EC 1.7.3.3 or UOX) catalyzes the conversion of uric acid using gaseous molecular oxygen to 5-hydroxyisourate and hydrogen peroxide in absence of any cofactor or transition metal. The catalytic mechanism was investigated using X-ray diffraction, electron spin resonance spectroscopy (ESR), and quantum mechanics calculations. The X-ray structure of the anaerobic enzyme-substrate complex gives credit to substrate activation before the dioxygen fixation in the peroxo hole, where incoming and outgoing reagents (dioxygen, water, and hydrogen peroxide molecules) are handled. ESR spectroscopy establishes the initial monoelectron activation of the substrate without the participation of dioxygen. In addition, both X-ray structure and quantum mechanic calculations promote a conserved base oxidative system as the main structural features in UOX that protonates/deprotonates and activate the substrate into the doublet state now able to satisfy the Wigner's spin selection rule for reaction with molecular oxygen in its triplet ground state.  相似文献   

15.
The role of metals in the reactivity of HO2/O2- with compounds of biological interest is discussed. A scheme that illustrates the various reactions that a transition metal complex can undergo when reacting with HO2/O2- is presented in terms of ligand and pH effects. The decomposition of hydrogen peroxide catalysed by ferrous ion is reviewed in terms of new rate data for the reactions of ferric ion with perhydroxyl (HO2) and superoxide (O2-) radicals. The new results support a mechanism proposed by Barb and his coworkers (W.G. Barb, J.H. Baxendale, P. George & K.R. Hargrave, Trans. Faraday Soc. 47, 462-500 (1951] and negates the occurrence of the Haber-Weiss reaction in this system. In the presence of MnII complexes, O2- reacts to form MnO2+ transients and MnIII complexes. Their reactivities with ascorbate, Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) and NADH-NADPH is discussed.  相似文献   

16.
Cassano AG  Anderson VE  Harris ME 《Biochemistry》2004,43(32):10547-10559
Heavy atom isotope effects are a valuable tool for probing chemical and enzymatic reaction mechanisms; yet, they are not widely applied to examine mechanisms of nucleophilic activation. We developed approaches for analyzing solvent (18)O nucleophile isotope effects ((18)k(nuc)) that allow, for the first time, their application to hydrolysis reactions of nucleotides and nucleic acids. Here, we report (18)k(nuc) for phosphodiester hydrolysis catalyzed by Mg(2+) and by the Mg(2+)-dependent RNase P ribozyme and deamination by the Zn(2+)-dependent protein enzyme adenosine deaminase (ADA). Because ADA incorporates a single solvent molecule into the product inosine, this reaction can be used to monitor solvent (18)O/(16)O ratios in complex reaction mixtures. This approach, combined with new methods for analysis of isotope ratios of nucleotide phosphates by whole molecule mass spectrometry, permitted determination of (18)k(nuc) for hydrolysis of thymidine 5'-p-nitrophenyl phosphate and RNA cleavage by the RNase P ribozyme. For ADA, an inverse (18)k(nuc) of 0.986 +/- 0.001 is observed, reflecting coordination of the nucleophile by an active site Zn(2+) ion and a stepwise mechanism. In contrast, the observed (18)k(nuc) for phosphodiester reactions were normal: 1.027 +/- 0.013 and 1.030 +/- 0.012 for the Mg(2+)- and ribozyme-catalyzed reactions, respectively. Such normal effects indicate that nucleophilic attack occurs in the rate-limiting step for these reactions, consistent with concerted mechanisms. However, these magnitudes are significantly less than the (18)k(nuc) observed for nucleophilic attack by hydroxide (1.068 +/- 0.007), indicating a "stiffer" bonding environment for the nucleophile in the transition state. Kinetic analysis of the Mg(2+)-catalyzed reaction indicates that a Mg(2+)-hydroxide complex is the catalytic species; thus, the lower (18)k(nuc), in large part, reflects direct metal ion coordination of the nucleophilic oxygen. A similar value for the RNase P ribozyme catalyzed reaction provides support for nucleophilic activation by metal ion catalysis.  相似文献   

17.
Iron, metalloenzymes and cytotoxic reactions.   总被引:6,自引:0,他引:6  
There is considerable evidence implicating iron and other redox-active transition metals as progenitors of reactive intermediates of oxygen (ROI), molecules which lead to oxidative stress and contribute to various neurodegenerative processes. An important aspect of such metal-mediated damage to biomolecules is the site-specific nature of such pathological activity. Iron sequestering molecules, such as ferritin, transferrin, lactotransferrin, melanotransferrin, hemosiderin and heme can serve as cytoprotectants against metal-mediated oxidant damage. Metalloenzymes also constitute an important group of iron sequestering molecules. Metalloenzyme-catalyzed reactions in which metal ions at the enzyme active site undergo redox-cycling in association with O2 are site-specific in nature, and may represent a potential source of ROI-mediated damage to biomolecules. Dysregulation of brain iron and alterations in the levels of metalloenzymes involved in reactions with O2 derived molecules can contribute to neuronal damage. Iron may increase the cytotoxicity of neuronal dopamine by increasing its rate of oxidation to quinones and semiquinones, thereby reducing the level of this neurotransmitter. Interestingly, dopamine also may play an important role in the maintenance of transition-metal homeostasis as an iron chelator, since it can form both catecholate and hydroxamate groups, molecules employed by many microorganisms to sequester iron.  相似文献   

18.
1. The behaviour of retinol in aqueous colloidal dispersions has been studied because, if membranes are a physiological site of action of vitamin A, the reactions of colloidal retinol may be relevant to the functions of the vitamin in vivo. 2. Dispersions of retinol in NaCl exhibit characteristic spectral changes, and they consume O(2), within minutes of preparation. 3. The maximum rate of O(2) uptake is approximately linearly dependent on the concentration of O(2). 4. At limiting concentrations of O(2), the spectral changes are accelerated by catalase, indicating that H(2)O(2) is one of the reaction products. 5. The autoxidation, which is relatively unaffected by light, has the characteristics of a radical-catalysed reaction. O(2) uptake is preceded by an exceptionally short induction period; the reaction is catalysed by Fe(2+) ions and is inhibited by diphenylpicrylhydrazyl. 6. The maximum rate of autoxidation, which is less in water or sucrose solution than in saline, depends on the degree of aggregation of retinol molecules induced by cations. 7. In the absence of O(2), the cation-induced aggregates exhibit a spectral red-shift, which difference-spectra indicate is caused by formation of a species with lambda(max.) 370-380nm. 8. This species, from which retinol can be quantitatively recovered, is apparently the oxygen-sensitive form of retinol that initiates the rapid autoxidation. 9. The possible biological significance of the production of a highly reactive form of retinol in micellar aggregates is discussed.  相似文献   

19.
Iron can be a detrimental catalyst in biological free radical oxidations. Because of the high physiological ratio of [O2]/[H2O2] (> or = 10(3)), we hypothesize that the Fenton reaction with pre-existing H2O2 is only a minor initiator of free radical oxidations and that the major initiators of biological free radical oxidations are the oxidizing species formed by the reaction of Fe2+ with dioxygen. We have employed electron paramagnetic resonance spin trapping to examine this hypothesis. Free radical oxidation of: 1) chemical (ethanol, dimethyl sulfoxide); 2) biochemical (glucose, glyceraldehyde); and 3) cellular (L1210 murine leukemia cells) targets were examined when subjected to an aerobic Fenton (Fe2+ + H2O2 + O2) or an aerobic (Fe2+ + O2) system. As anticipated, the Fenton reaction initiates radical formation in all the above targets. Without pre-existing H2O2, however, Fe2+ and O2 also induce substantial target radical formation. Under various experimental ratios of [O2]/[H2O2] (1-100 with [O2] approximately 250 microM), we compared the radical yield from the Fenton reaction vs. the radical yield from Fe2+ + O2 reactions. When [O2]/[H2O2] < 10, the Fenton reaction dominates target molecule radical formation; however, production of target-molecule radicals via the Fenton reaction is minor when [O2]/[H2O2] > or = 100. Interestingly, when L1210 cells are the oxidation targets, Fe2+ + O2 is observed to be responsible for formation of nearly all of the cell-derived radicals detected, no matter the ratio of [O2]/[H2O2]. Our data demonstrate that when [O2]/[H2O2] > or = 100, Fe2+ + O2 chemistry is an important route to initiation of detrimental biological free radical oxidations.  相似文献   

20.
The reaction of nitric oxide (*NO) with ubiquinol-0 and ubiquinol-2, short-chain analogs of coenzyme Q, was examined in anaerobic and aerobic conditions in terms of formation of intermediates and stable molecular products. The chemical reactivity of ubiquinol-0 and ubiquinol-2 towards *NO differed only quantitatively, the reactions of ubiquinol-2 being slightly faster than those of ubiquinol-0. The ubiquinol/*NO reaction entailed oxidation of ubiquinol to ubiquinone and reduction of *NO to NO-, the latter identified by its reaction with metmyoglobin to form nitroxylmyoglobin and indirectly by measurement of nitrous oxide (N2O) by gas chromatography. Both the rate of ubiquinone accumulation and *NO consumption were linearly dependent on ubiquinol and *NO concentrations. The stoichiometry of *NO consumed per either ubiquinone formed or ubiquinol oxidized was 1.86 A 0.34. The reaction of *NO with ubiquinols proceeded with intermediate formation of ubisemiquinones that were detected by direct EPR. The second order rate constants of the reactions of ubiquinol-0 and ubiquinol-2 with *NO were 0.49 and 1.6 x 10(4) M(-1)s(-1), respectively. Studies in aerobic conditions revealed that the reaction of *NO with ubiquinols was associated with O2 consumption. The formation of oxyradicals - identified by spin trapping EPR- during ubiquinol autoxidation was inhibited by *NO, thus indicating that the O2 consumption triggered by *NO could not be directly accounted for in terms of oxyradical formation or H2O2 accumulation. It is suggested that oxyradical formation is inhibited by the rapid removal of superoxide anion by *NO to yield peroxynitrite, which subsequently may be involved in the propagation of ubiquinol oxidation. The biological significance of the reaction of ubiquinols with *NO is discussed in terms of the cellular O2 gradients, the steady-state levels of ubiquinols and *NO, and the distribution of ubiquinone (largely in its reduced form) in biological membranes with emphasis on the inner mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号