首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of the endogenous micronutrient chelator, nicotianamine(NA), and of Cu nutrition on the distribution of Cu, Fe, Mn,Zn, and NA was investigated in eight different shoot organs,roots, and in xylem exudates of the NA-containing tomato wildtype Lycopersicon esculentum Mill. cv. Bonner Beste and itsNA-less mutant chloronerva. Contrary to the other heavy metals, copper transport in thexylem was inefficient in the mutant and was enhanced by an applicationof NA to the roots or leaves in proportion to the applied NAconcentration. Also, with NA application, the Cu concentrationin mutant roots decreased significantly, and increased in theshoot. Fe and Mn transport in the xylem was greater in the mutantthan in the wild type, and was decreased in the mutant by theapplication of NA to the leaves. Zn transport in the xylem wasthe same in both genotypes and was unaffected by NA application.After application of NA to leaves and roots of the mutant itwas possible to detect NA in the xylem exudate (up to 2nmolNA(g–1 root FWh–1). High Cu supply (3 µM) resulted in higher Cu and Mn concentrationsin all organs of the wild type as compared to mutant organs,but Fe concentrations were not influenced. Under high Cu supply(3µM) the NA concentrations of roots and the three youngestleaves of the wild type were higher than under normal Cu supply(0.3 µM). The highest concentrations were found in theshoot apex under both Cu conditions (up to 361 nmol NAg–1FW). It is concluded from our experiments and from the high stabilityconstant of the NA-Cu-complex (log K= 18.6) that NA is involvedin Cu translocation whereas for the translocation of Fe, Mn,and Zn, NA is not essential. Key words: Copper transport, micronutrients, mobilization, nicotianamine, xylem  相似文献   

2.
Nicotianamine,a Novel Enhancer of Rice Iron Bioavailability to Humans   总被引:1,自引:0,他引:1  

Background

Polished rice is a staple food for over 50% of the world''s population, but contains little bioavailable iron (Fe) to meet human needs. Thus, biofortifying the rice grain with novel promoters or enhancers of Fe utilization would be one of the most effective strategies to prevent the high prevalence of Fe deficiency and iron deficiency anemia in the developing world.

Methodology/Principal Findings

We transformed an elite rice line cultivated in Southern China with the rice nicotianamine synthase gene (OsNAS1) fused to a rice glutelin promoter. Endosperm overexpression of OsNAS1 resulted in a significant increase in nicotianamine (NA) concentrations in both unpolished and polished grain. Bioavailability of Fe from the high NA grain, as measured by ferritin synthesis in an in vitro Caco-2 cell model that simulates the human digestive system, was twice as much as that of the control line. When added at 1∶1 molar ratio to ferrous Fe in the cell system, NA was twice as effective when compared to ascorbic acid (one of the most potent known enhancers of Fe bioavailability) in promoting more ferritin synthesis.

Conclusions

Our data demonstrated that NA is a novel and effective promoter of iron utilization. Biofortifying polished rice with this compound has great potential in combating global human iron deficiency in people dependent on rice for their sustenance.  相似文献   

3.
Regulatory mechanisms leading to cellular Fe homeostasis wereinvestigated inPlantago (Plantago lanceolata L.) plants grownhydroponically at different temperature regimes either in thepresence or absence of iron. During the experimental periodof 6 d, growth was not affected by Fe availability, but wasdecreased by lowering the root zone temperature (RZT) from 24to 12°C. Cultivating plants at low RZT decreased the reductionactivity for ferric chelates in Fe-deficient plants. In thepresence of iron, the temperature regime did not affect Fe accumulationby root cells, but decreased translocation of Fe to the shoot,and chlorosis of young leaves was observed at suboptimal RZT.Under these conditions root-mediated reduction of ferric chelateswas increased. In cold-treated plants this effect was specificto Fe and could not be evoked by Mn2+and Zn + 2additions. Supplementingthe medium with the ferrous scavenger ferrozine caused a furtherenhancement in reduction rates, probably due to mobilizationof apoplastic Fe. These results can be explained plausibly ifdifferent sites of Fe sensing are postulated and if it is assumedthat both the absence and presence of iron could be a signalincreasing root reduction activity. Copyright 2000 Annals ofBotany Company Adaptation, iron uptake regulation, ferric reduction, Plantago lanceolata, root zone temperature, whole plant signalling  相似文献   

4.
To understand the function of the Fe2+-complexing compound nicotianamine (NA) in the iron metabolism of plants we have localized iron and other elements in the NA-containing tomato wild type (Lycopersicon esculentum) and its NA-free mutant chloronerva by quantitative x-ray microanalysis. Comparison of element composition of the rhizodermal cell walls indicated that the wild type accumulated considerable amounts of iron and phosphorus in the cell wall, whereas in the mutant iron and phosphorus were detected in the cytoplasm and vacuoles of the rhizodermis. In mutant leaves containing high iron concentrations in the symplast, electron-dense inclusions were detected in chloroplasts and phloem. Such particles, consisting mainly of iron and phosphorus, were never found in the wild type and were very rarely detected in young chlorotic mutant leaves or after treatment of the mutant with NA. For further characterization the electron-dense inclusions in mutant leaves were isolated and compared by sodium dodecyl sulfate-gel electrophoresis and immunoblotting to ferritin from iron-loaded Phaseolus vulgaris leaves. Antibodies raised against purified Phaseolus leaf ferritin were used. Neither in mutant nor in wild type (iron loaded and control) was ferritin protein detected. These results suggest that the electron-dense inclusions in mutant leaves are not identical with ferritin. It is concluded that NA is necessary to complex ferrous iron in a soluble and available form within the cells. In the absence of NA the precipitation of excessive iron in the form of insoluble ferric phosphate compounds could protect the cells from iron overload.  相似文献   

5.
The cellular and intracellular localization of the non-proteogenic amino acid nicotianamine (NA) in leaves and root elongation zones was immunochemically investigated in pea (Pisum sativum L.) and tomato (Lycopersicon esculentum Mill.) plants grown under various iron regimes and in three mutants defective in the regulation of iron uptake. Strongest immunostaining was observed in the over-accumulating pea mutants brz and dgl, and in iron-loaded wild-type plants. Fe concentration and NA level paralleled staining intensity, indicating that NA synthesis is induced by high iron availability. While label was mainly present in the cytoplasm under normal (10 microM) Fe supply and under Fe deprivation, most of the labeling was present in the vacuole in iron-loaded plants. This pattern resembled the distribution of NA in Fe over-accumulating mutants, indicating the possible importance of vacuolar sequestration in the detoxification of excess Fe. Based on the dependence of the cellular distribution of NA on the iron nutritional status of the plant, a possible role of NA in buffering free Fe in root and leaf cells was inferred. We show here for the first time that the NA concentration is increased in response to iron overload, indicating that, besides other classes of intracellular metal-binding ligands, NA may play an essential role in iron tolerance.  相似文献   

6.
Antibodies produced against nicotianamine-keyhole limpet haemocyanin(NA-KLH) conjugate selectively labelled cells of the stele intomato root tips (Lycopersicon esculentum Mill. cv. Bonner Beste),where labelling was mostly confined to vacuoles. In competitionELISA this antibody preparation shows no cross-reactivitieswith precursors for nicotianamine (NA), L-methionine, s-adenosyl-L-methionine,and azetidine-2-carboxylic acid. The antibodies against NA recognizefree and metal-bound NA. The usefulness of fixation of NA byglutaraldehyde as a bifunctional reagent is checked by dot blotexperiments. The fixation and embedding procedure gave excellentultrastructural preservation of the cells. The combination ofthe embedding procedure with the specificity of the used antiserum,the absence of labelling of the NA-free mutant chloronerva,and this lack in immunocytochemical controls, give evidencethat it is possible to monitor the NA distribution in situ.Based on this first report on the cellular localization of NA,a low molecular weight iron chelator in plants, the possibleroles of NA in mineral metabolism are discussed. Key words: Immunocytochemical localization, Lycopersicon esculentum, micronutrient, nicotianamine, vacuoles  相似文献   

7.
Heme is a cofactor for proteins participating in many important cellular processes, including respiration, oxygen metabolism and oxygen binding. The key enzyme in the heme biosynthesis pathway is ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), which catalyzes the insertion of ferrous iron into protoporphyrin IX. In higher plants, the ferrochelatase enzyme is localized not only in mitochondria, but also in chloroplasts. The plastidic type II ferrochelatase contains a C-terminal chlorophyll a/b (CAB) motif, a conserved hydrophobic stretch homologous to the CAB domain of plant light harvesting proteins and light-harvesting like proteins. This type II ferrochelatase, found in all photosynthetic organisms, is presumed to have evolved from the cyanobacterial ferrochelatase. Here we describe a detailed enzymological study on recombinant, refolded and functionally active type II ferrochelatase (FeCh) from the cyanobacterium Synechocystis sp. PCC 6803. A protocol was developed for the functional refolding and purification of the recombinant enzyme from inclusion bodies, without truncation products or soluble aggregates. The refolded FeCh is active in its monomeric form, however, addition of an N-terminal His6-tag has significant effects on its enzyme kinetics. Strikingly, removal of the C-terminal CAB-domain led to a greatly increased turnover number, kcat, compared to the full length protein. While pigments isolated from photosynthetic membranes decrease the activity of FeCh, direct pigment binding to the CAB domain of FeCh was not evident.  相似文献   

8.
Mugineic acid-family phytosiderophores (MAs) are low molecularweight chelators that are secreted by graminaceous plants, formcomplexes with soil Fe(III) and are essential for plant growth.Methods to detect MAs which include HPLC and radio-immunoassaywith polyclonal antibody require sophisticated equipment orradio-labelled MAs which are difficult to synthesize. Our objectivewas to develop a detection and quantitation system for MAs basedon monoclonal antibody specificity and technology. A monoclonalantibody was produced which reacts with nicotianamine (NA),deoxymugineic acid (DMA), mugineic acid (MA) and epi-hydroxymugineicacid (epi-HMA) in a competitive ELISA. Azetidine-2-carboxylicacid (A-2-C) was not reactive while N-(3-amino-3-carboxypropyl)azetidine-2-carboxylic acid (A-2-C dimer) was partially reactive.The range of detection using the competitive ELISA is from 2x 10–6 to 2 x 10–7 M MAs. Besides detection andquantification of MAs, the potential uses for the monoclonalantibody are numerous and include affinity chromatography andimmunocytochemistry. (Received September 26, 1991; Accepted December 16, 1991)  相似文献   

9.
Mammalian ferrochelatase, the terminal enzyme of the heme biosynthetic pathway, catalyzes the insertion of a ferrous ion into protoporphyrin and contains a labile [2Fe-2S] cluster center at the C-terminus. To clarify the roles of the iron-sulfur cluster in the expression of mammalian ferrochelatase, enzyme activity in human erythroleukemia K562 cells under iron-depleted conditions was examined. Treatment of cells with an iron chelator, desferrioxamine, resulted in a decrease in enzyme activity, in a dose- and time-dependent manner. Heme content decreased during desferrioxamine treatment of the cells. Addition of ferric ion-nitrilotriacetate [Fe (III)NTA] to desferrioxamine-containing cultures led to restoration of the reduction in the enzyme activity. While RNA blots showed that the amount of ferrochelatase mRNA remained unchanged during these treatments, the amount of ferrochelatase decreased with a concomitant decrease in enzyme activity. When full-length human ferrochelatase was expressed in Cos7 cells, the activity was found mainly in the mitochondria and was decreased markedly by treatment with desferrioxamine. The activity in Cos7 cells expressing human ferrochelatase in cytoplasm decreased with desferrioxamine, but to a lesser extent. When Escherichia coli ferrochelatase, which lacks the iron-sulfur cluster, was expressed in Cos7 cells, the activity did not change following any treatment. Conversely, the addition of Fe (III)NTA to the culture of K562 and Cos7 cells led to an increase in ferrochelatase activity. These results indicate that the expression of mammalian ferrochelatase is regulated by intracellular iron levels, via the iron-sulfur cluster center at the C-terminus, and this contributes to the regulation of the biosynthesis of heme at the terminal step.  相似文献   

10.
Recently, ethylene was reported to be involved in the regulation of Fe(III)-chelate reducing capacity by cucumber (Cucuinis sativus L.) roots. Here, we studied the effect of two ethylene inhibitors, aminooxyacetic acid (AOA) and cobalt, on the Fe(III) reducing capacity in roots of mutant genotypes [E107 pea [Pisum sativum L. (brz, brz)] and chloronerva tomato (Lycopersicon esculentum L.) that exhibit high rates of Fe(III)-chelate reduction and excessive iron accumulation. The ethylene inhibitors, AOA and cobalt, markedly inhibited Fe(III)-chelate reducing capacity in roots of both genotypes. Over-expression of root Fe(III) reductase activity by both mutants appears to be related to ethylene. Possibly, both mutants are genetically defective in their ability to regulate root ethylene production. The large inhibitory effect of both ethylene inhibitors on Fe(III)-chelate reducing capacity in roots of the mutant tomato genotype, chloronerva, disputes the contention that the nicotianamine-Fe(II) complex is the repressior of the gene responsible for Fe(III)-chelate reductase activity, as previously suggested by others. However, since nicotianamine shares the same biosynthetic precursor as ethylene, i.e. S-adenosyl methionine, nicotianamine may affect Fe(III)-chelate reductase activity in dicot and non-grass monocot roots by influencing ethylene biosynthesis.  相似文献   

11.
Ferrochelatase of spinach chloroplasts   总被引:10,自引:5,他引:5       下载免费PDF全文
Spinach chloroplasts catalyse the incorporation of Fe(2+) into protoporphyrin, mesoporphyrin and deuteroporphyrin to form the corresponding haems. This ferrochelatase activity was detected by pyridine haemochrome formation with acetone-dried powders of chloroplasts, or from the formation of [(59)Fe]haems by intact chloroplasts. Decreasing the mitochondrial contamination of the chloroplasts by density-gradient centrifugation did not cause any loss of activity: spinach ferrochelatase appears to be principally a chloroplast enzyme. The characteristics of the enzyme were examined by using [(59)Fe]haem assay. The activity was pH-dependent: for both mesohaem and protohaem formation there were two pH maxima, a major peak at about pH7.8 and a smaller peak at about pH9.2. Lineweaver-Burk plots showed that the K(m) for Fe(2+) incorporation into protoporphyrin was 8mum and that for Fe(2+) incorporation into mesoporphyrin was 36mum. At non-saturating Fe(2+) concentrations the K(m) for protoporphyrin was 0.2mum and that for mesoporphyrin was 0.4mum. Ferrochelatase was not solubilized by treatment of chloroplasts with ultrasound but was solubilized by stirring in 1% (w/v) Tween 20 at pH10.4. Unlike the rat liver mitochondrial enzyme, chloroplast ferrochelatase was not stimulated by treatment with selected organic solvents. The spinach enzyme was inactive in aerobic conditions and it was shown by using an oxygen electrode that under such conditions the addition of Fe(2+) to buffer solutions caused a rapid uptake of dissolved oxygen, believed to be due to the oxidation of Fe(2+) to Fe(3+); Fe(3+) is not a substrate for ferrochelatase.  相似文献   

12.
The concentration of iron within cells has to be precisely regulated because shortage as well as surplus may be precarious for the survival of the cell. The maintenance of iron homeostasis in shoot organs requires an efficient signalling of the leaf cells’ iron status to the uptake sites of the roots. This ‘iron signal’ may be transferred by the phloem. The handling of iron in the symplast and during phloem transport calls for mechanisms taking into account the specific physicochemical properties of this element.Seedlings of Ricinus communis were used as model plants to investigate characteristic features of phloem loading, and of speciation and valence of iron during transport in the sieve tubes. When the storage endosperm is removed from the cotyledons, phloem is loaded from the reserve pool of the mesophyll cells. In this situation, iron and the other micronutrients copper, manganese and zinc are loaded in a constant stoichiometric ratio of 1:1 to the endogenous complexor nicotianamine (NA). Application of the chelators 1,4-di(4-phenylsulphonate)-1,10-phenanthroline (BPDS) and ethylenediaminetetraacetic acid to the cotyledon apoplast did not decrease the loading rate of iron, indicating symplastic loading. Supply of ferrous ions in various concentrations to the apoplast revealed the existence of two loading systems. One of them is linearly dependent upon the concentration, and remained unsaturated up to an apoplastic concentration of 200 μM. The other one, whose activity steeply inclines already with a slight increase of the apoplastic concentration, is saturable at a supply of 100 μM. The loading of iron is slowed down with time depending on whether iron is supplied to the apoplast as a complex with NA or citrate instead of as free ferrous ions. This effect may be caused by competition of these chelators with an iron uptake receptor in the plasmalemma of the mesophyll cells. In spite of the close relationship between iron and NA during phloem loading, the Fe-NA complex seems not to be the predominant transport species in the sieve tubes. A molecule of much larger mass than NA probably serves as a transport vehicle, as concluded from microdialysis experiments. Only 4% of the total iron in the sieve tube exudate was found to exist as Fe(II) and about 45% as Fe(III). The residue of more than 50% was tightly bound and not accessible even in the presence of the reductant sodium dithionite and the chelator BPDS. The conclusions regarding the nature of the transport species and the results on the valence of iron in the sieve tubes were confirmed by calculations with the software programs GEOCHEM [Sposito G, Mattigod SV (1979) A computer program for calculating chemical equilibria in soil solutions and other natural water systems. Kearney Foundation of Soil Sci, Univ. of California, Riverside, CA] and PHREEQC [Parkhurst (1995) PHREEQC-A computer program for speciation, reaction-path, adjective-transport, and inverse geochemical calculations. US Geological Survey]. A model is outlined on the basis of the experimental findings on the fate of iron from mobilisation in the endosperm to trans-chelation in the sieve tubes.  相似文献   

13.
The influence of nicotianamine (NA) and iron on the activities of 4 iron-containing and two iron-free enzymes in leaves and roots of the NA-free tomato mutant chloronerva and its NA-containing wild-type ( Lycopersicon esculentum Mill. cv. Bonner Beste) was investigated. Aconitase (EC 4.2.1.3) activity in both leaves and roots was much higher in the mutant under normal iron supply (10 μ M FeEDTA) and in wild-type under iron deficiency than in wild-type supplied with 10 μ M FeEDTA. Application of NA to chloronerva leaves led to a decrease of aconitase activity in leaves and roots. NA had no effect on the enzyme activity when added to the assay medium.
Similar results were obtained for the iron-containing enzymes catalase (EC 1.11.1.6), ascorbate-dependent peroxidase (EC 1.11.1.11) and guaiacol-dependent peroxidase (EC 1.11.1.7) in roots. NA treatment of the mutant leaves decreased enzyme activities in roots down to wild-type values. In vivo NA application had no effect on enzyme activities in leaf extracts.
The activities of the iron-free enzymes NAD+-malate dehydrogenase (EC 1.1.1.37) and phosphofructokinase (EC 2.7.1.11) in root and leaf extracts were not influenced by the iron supply to the plants.  相似文献   

14.
Intact chloroplasts were isolated from mesophyll and bundlesheath protoplasts of a C4 plant, Panicum miliaceum L., to measurethe uptake of [1-14C]pyruvate into their sorbitol-impermeablespaces at 4?C by the silicone oil filtering centrifugation method.When incubated in the dark, both chloroplasts showed similarslow kinetics of pyruvate uptake, and the equilibrium internalconcentrations were almost equal to the external levels. Whenincubated in the light, only mesophyll chloroplasts showed remarkableenhancement of the uptake, the internal concentration reaching10–30 times of the external level after 5 min incubation.The initial uptake rate of the mesophyll chloroplasts was enhancedabout ten fold by light and was saturated with increasing pyruvateconcentration; Km and Vmax were 0.2–0.4 mM and 20–40µmol(mg Chl)–1 h–1, respectively. The lightenhancement was abolished by DCMU and uncoupling reagents suchas carbonylcyanide-m-chlorophenylhydrazone and nigericin. Theseresults indicate the existence of a light-dependent pyruvatetransport system in the envelope of mesophyll chloroplasts ofP. miliaceum. The uptake activity of mesophyll chloroplastsboth in the light and the dark was inhibited by sulfhydryl reagentssuch as mersalyl and p-chloromercuriphenylsulfonate, but thebundle sheath activity was insensitive to the reagents. Thesefindings are further evidence for the differentiation of mesophylland bundle sheath chloroplasts of a C4 plant with respect tometabolite transport. (Received July 3, 1986; Accepted October 8, 1986)  相似文献   

15.
Leaf, stem, and root extracts of near-isogenic tomato plantscv. Craigella, resistant and susceptible to Verticillium albo-atrum,showed constitutive 1,3-ß-glucanase activity whichincreased following inoculation with the pathogen. Partiallypurified enzyme extracts were obtained by dialysing a 30–80%ammonium sulphate fraction of the tissue brei. The enzyme hadpH and temperature optima of 5?5 and 44 ?C respectively, withhigh activity between 50 and 60 ?C. The response to laminarinconcentration was linear between 1?2 and 7?5 mg ml–1.Root inoculation of susceptible plants with 106 propagules ml–1V. albo-atrum led to a umform 300 per cent increase in all steminternodes except the terminal one, which was 500 per cent ofthe controls. No spatial relationship of enzyme activity tothe localization of fungus within the stem was apparent. Petioles,leaves, and roots of susceptible infected plants similarly showedan increase in activity but less than that in stems. Changedlevels of stern enzyme activity at different times after inoculationwere associated with reductions in the number of vessels containinghyphae. Extracts of plants of the resistant isoline showed increasedglucanase activity over controls, but this was substantiallylower than that in susceptible plants and was associated withthe greatly reduced mycelial colonization in resistant plants. It is concluded that single gene resistance in tomato to Verticilliumis not associated with innately higher levels of 1,3-ß-glucanasein healthy plants. The increased activity in infected plantsis proportional to the overall quantity of pathogen in the plantor of pathogenic metabolites.  相似文献   

16.
Mesophyll chloroplasts were isolated from leaves of a Na+-requiringNAD-malic enzyme type, dicotyledonous C4 plant, Amaranthus tricolorL. The chloroplasts converted pyruvate to phosphoenolpyruvateunder illumination, and the conversion was stimulated by Na+.This observation may explain the requirement for Na+ of someC4 plants. 2 Present address: Institute for Life Science Research, NihonNohyaku Co., Ltd., Kawachi-Nagano, Osaka, 586 Japan  相似文献   

17.
The Effect of Ferrous Iron on the Uptake of Manganese by Juncus effusus L.   总被引:1,自引:0,他引:1  
Juncus effusus L was grown in solution culture at five levelsof ferrous iron The concentration and amount of manganese inthe shoots decreased with increased iron concentration in thesolution, except at the highest iron concentration (128 p pm) where there was a significant increase in manganese concentrationIt is suggested that this increase is due to a chemical interactionin the culture solution The importance of a Fe Mn ratio of twoas a general rule in plant nutrition is questioned Juncus effusus L., iron, manganese, mineral nutrition  相似文献   

18.
19.
NADP-malic enzyme (EC 1.1.1.40 [EC] ), which is involved in Crassulaceanacid metabolism (CAM), was purified to electrophoretic homogeneityfrom the leaves of the inducible CAM plant Mesembryanthemumcrystallinum. The NADP-malic enzyme, which was purified 1,146-fold,has a specific activity of 68.8 µmol (mg protein)–1min–1. The molecular weight of the subunits of the enzymewas 64 kDa. The native molecular weight of the enzyme was determinedby gel-filtration to be 390 kDa, indicating that the purifiedNADP-malic enzyme is a hexamer of identical subunits. The optimalpH for activity of the enzyme was around 7.2. Double-reciprocalplots of the enzymatic activity as a function of the concentrationof L-malate yielded straight lines both at pH 7.2 and at pH7.8 and did not reveal any evidence for cooperativity of bindingof L-malate. The Km value for L-malate was 0.35 mM. Hill plotsof the activity as a function of the concentration of NADP+indicated positive cooperativity in the binding of NADP+ tothe enzyme with a Hill coefficient (nH) of 2.0. An S0.5 value(the concentration giving half-maximal activity) of 9.9 µMfor NADP+ was obtained. Oxaloacetate inhibited the activityof the NADP-malic enzyme. Effects of succinate and NaHCO3 onthe activity of NADP-malic enzyme were small. (Received October 30, 1991; Accepted May 1, 1992)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号