首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The catalytic mechanism of Escherichia coli purine nucleoside phosphorylase (PNP) is revised using site-directed mutagenesis, kinetic studies and structure determinations.The experimental evidence on the role of the particular catalytic amino acid during catalysis has not been available. Therefore, the active site mutants Arg24Ala, Asp204Ala, Asp204Asn, Arg217Ala and Asp204Ala/Arg217Ala were prepared and their kinetics and thermodynamic studies were carried out. The activity tests with natural substrates and 7-methylguanosine confirmed the earlier hypothesis, that catalysis involves protonation of the purine base at position N7 by Asp204, which is triggered by Arg217.The crystal structures of the wild type in complexes with phosphate and sulphate, respectively, and of the Arg24Ala mutant in complex with phosphate/sulphate were determined. The structural data show that previously observed conformational change is a result of the phosphate binding and its interaction with Arg24.As E. coli PNP is a promising candidate for the tumour-directed gene therapy, our results may also help to design efficient mutants useful in gene therapy.  相似文献   

2.
Uridine phosphorylase (UP) is a key enzyme in the pyrimidine salvage pathway that catalyses the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate. Inhibiting liver UP in humans raises blood uridine levels and produces a protective effect ("uridine rescue") against the toxicity of the chemotherapeutic agent 5-fluorouracil without reducing its antitumour activity. We have investigated UP-substrate interactions by determining the crystal structures of native Escherichia coli UP (two forms), and complexes with 5-fluorouracil/ribose 1-phosphate, 2-deoxyuridine/phosphate and thymidine/phosphate. These hexameric structures confirm the overall structural similarity of UP to E.coli purine nucleoside phosphorylase (PNP) whereby, in the presence of substrate, each displays a closed conformation resulting from a concerted movement that closes the active site cleft. However, in contrast to PNP where helix segmentation is the major conformational change between the open and closed forms, in UP more extensive changes are observed. In particular a swinging movement of a flap region consisting of residues 224-234 seals the active site. This overall change in conformation results in compression of the active site cleft. Gln166 and Arg168, part of an inserted segment not seen in PNP, are key residues in the uracil binding pocket and together with a tightly bound water molecule are seen to be involved in the substrate specificity of UP. Enzyme activity shows a twofold dependence on potassium ion concentration. The presence of a potassium ion at the monomer/monomer interface induces some local rearrangement, which results in dimer stabilisation. The conservation of key residues and interactions with substrate in the phosphate and ribose binding pockets suggest that ribooxocarbenium ion formation during catalysis of UP may be similar to that proposed for E.coli PNP.  相似文献   

3.
The degradation of purine nucleoside is the first step of purine nucleoside uptake. This degradation is catalyzed by purine nucleoside phosphorylase, which is categorized into two classes: hexameric purine nucleoside phosphorylase (6PNP) and trimeric purine nucleoside phosphorylase (3PNP). Generally, 6PNP and 3PNP degrade adenosine and guanosine, respectively. However, the substrate specificity of 6PNP and 3PNP of Thermus thermophilus (tt6PNP and tt3PNP, respectively) is the reverse of that anticipated based on comparison to other phosphorylases. Specifically, in this paper we reveal by gene disruption that tt6PNP and tt3PNP are discrete enzymes responsible for the degradation of guanosine and adenosine, respectively, in T. thermophilus HB8 cells. Sequence comparison combined with structural information suggested that Asn204 in tt6PNP and Ala196/Asp238 in tt3PNP are key residues for defining their substrate specificity. Replacement of Asn204 in tt6PNP with Asp changed the substrate specificity of tt6PNP to that of a general 6PNP. Similarly, substitution of Ala196 by Glu and Asp238 by Asn changed the substrate specificity of tt3PNP to that of a general 3PNP. Our results indicate that the residues at these positions determine substrate specificity of PNPs in general. Sequence analysis further suggested most 6PNP and 3PNP enzymes in thermophilic species belonging to the Deinococcus-Thermus phylum share the same critical residues as tt6PNP and tt3PNP, respectively.  相似文献   

4.
Phosphoglycerate kinase (PGK) is a key glycolytic enzyme that catalyzes the reversible transfer of a phosphate from 1,3-bisphosphoglycerate to ADP to form 3-phosphoglycerate and ATP in the presence of magnesium. During catalysis, a conformational change occurs that brings the N- and C-domains of PGK closer together. Here we present the 1.8A crystal structure of unliganded PGK from Thermus caldophilus (Tca). Comparison of the structure of TcaPGK (open conformation) with that of Thermotoga maritima (Tma) PGK (closed conformation) revealed that the conformational change reflects a change in the interaction between the domains. We identified Arg148 as a key residue involved in open-to-closed transition. The open conformation of TcaPGK is stabilized by an interdomain salt bridge between Arg148 and Glu375. The binding of 3-PG (or maybe 1,3-BPG) disrupts this salt bridge and, in ternary complex, the formation of new salt bridge between Arg60 and Asp197 stabilizes the closed conformation.  相似文献   

5.
The three-dimensional structure of the trimeric purine nucleoside phosphorylase (PNP) from Cellulomonas sp. has been determined by X-ray crystallography. The binary complex of the enzyme with orthophosphate was crystallized in the orthorhombic space group P212121 with unit cell dimensions a=64.1 A, b=108.9 A, c=119.3 A and an enzymatically active trimer in the asymmetric unit. X-ray data were collected at 4 degrees C using synchrotron radiation (EMBL/DESY, Hamburg). The structure was solved by molecular replacement, with the calf spleen PNP structure as a model, and refined at 2.2 A resolution. The ternary "dead-end" complex of the enzyme with orthophosphate and 8-iodoguanine was obtained by soaking crystals of the binary orthophosphate complex with the very weak substrate 8-iodoguanosine. Data were collected at 100 K with CuKalpha radiation, and the three-dimensional structure refined at 2.4 A resolution. Although the sequence of the Cellulomonas PNP shares only 33 % identity with the calf spleen enzyme, and almost no identity with the hexameric Escherichia coli PNP, all three enzymes have many common structural features, viz. the nine-stranded central beta-sheet, the positions of the active centres, and the geometrical arrangement of the ligands in the active centres. Some similarities of the surrounding helices also prevail. In Cellulomonas PNP, each of the three active centres per trimer is occupied by orthophosphate, and by orthophosphate and base, respectively, and small structural differences between monomers A, B and C are observed. This supports cooperativity between subunits (non-identity of binding sites) rather than existence of more than one binding site per monomer, as previously suggested for binding of phosphate by mammalian PNPs. The phosphate binding site is located between two conserved beta- and gamma-turns and consists of Ser46, Arg103, His105, Gly135 and Ser223, and one or two water molecules. The guanine base is recognized by a zig-zag pattern of possible hydrogen bonds, as follows: guanine N-1...Glu204 O(epsilon1)...guanine NH2...Glu204 O(epsilon2). The exocyclic O6 of the base is bridged via a water molecule to Asn246 N(delta), which accounts for the inhibitory, but lack of substrate, activity of adenosine. An alternative molecular mechanism for catalysis by trimeric PNPs is proposed, in which the key catalytic role is played by Glu204 (Glu201 in the calf and human enzymes), while Asn246 (Asn243 in the mammalian enzymes) supports binding of 6-oxopurines rather than catalysis. This mechanism, in contrast to that previously suggested, is consistent with the excellent substrate properties of N-7 substituted nucleosides, the specificity of trimeric PNPs versus 6-oxopurine nucleosides and the reported kinetic properties of Glu201/Ala and Asn243/Ala point variants of human PNP.  相似文献   

6.
To achieve accurate DNA synthesis, DNA polymerases must rapidly sample and discriminate against incorrect nucleotides. Here we report the crystal structure of a high fidelity DNA polymerase I bound to DNA primer-template caught in the act of binding a mismatched (dG:dTTP) nucleoside triphosphate. The polymerase adopts a conformation in between the previously established "open" and "closed" states. In this "ajar" conformation, the template base has moved into the insertion site but misaligns an incorrect nucleotide relative to the primer terminus. The displacement of a conserved active site tyrosine in the insertion site by the template base is accommodated by a distinctive kink in the polymerase O helix, resulting in a partially open ternary complex. We suggest that the ajar conformation allows the template to probe incoming nucleotides for complementarity before closure of the enzyme around the substrate. Based on solution fluorescence, kinetics, and crystallographic analyses of wild-type and mutant polymerases reported here, we present a three-state reaction pathway in which nucleotides either pass through this intermediate conformation to the closed conformation and catalysis or are misaligned within the intermediate, leading to destabilization of the closed conformation.  相似文献   

7.
The Escherichia coli udp gene encodes uridine phosphorylase (UP), which catalyzes the reversible phosphorolysis of uridine to uracil and ribose-1-phosphate. The X-ray structure of E. coli UP resolved by two different groups produced conflicting results. In order to cast some light on the E. coli UP catalytic site, we mutagenized several residues in UP and measured by RP-HPLC the phosphorolytic activity of the mutant UP proteins in vitro. Mutations Thr94Ala, Phe162Ala, and Tyr195Gly caused a drastic decrease in UP activity. These three residues were suggested to be involved in the nucleoside binding site. However, surprisingly, Tyr195Ala caused a relative increase in enzymatic activity. Both Met197Ala and Met197Ser conserved low activity, suggesting a minor role for this residue in the UP active site. Glu196Ala completely lost UP activity, whereas the more conservative Glu196Asp mutation was still partially active, confirming the importance of maintaining the correct charge in the surroundings of this position. Glu198 was mutated to either Gly, Asp and Gln. All three substitutions caused complete loss of enzymatic activity suggesting an important role of Glu198 both in ribose binding and in interaction with phosphate ions. Arg30Ala and Arg91Ala eliminated UP activity, whereas Arg30Lys and Arg91Lys presented a very low activity, confirming that these residues might interact with and stabilize the phosphate ions. Ile69Ala did not decrease UP activity, whereas His8Ala lowered the activity to about 20%. Both amino acids were suggested to take part in subunit interactions. Our results confirm the structural similarity between E. coli UP and E. coli purine nucleoside phosphorylase (PNP).  相似文献   

8.
The crystal structure of human purple acid phosphatase recombinantly expressed in Escherichia coli (rHPAP(Ec)) and Pichia pastoris (rHPAP(Pp)) has been determined in two different crystal forms, both at 2.2A resolution. In both cases, the enzyme crystallized in its oxidized (inactive) state, in which both Fe atoms in the dinuclear active site are Fe(III). The main difference between the two structures is the conformation of the enzyme "repression loop". Proteolytic cleavage of this loop in vivo or in vitro results in significant activation of the mammalian PAPs. In the crystals obtained from rHPAP(Ec), the carboxylate side-chain of Asp145 of this loop acts as a bidentate ligand that bridges the two metal atoms, in a manner analogous to a possible binding mode for a phosphate ester substrate in the enzyme-substrate complex. The carboxylate side-chain of Asp145 and the neighboring Phe146 side-chain thus block the active site, thereby inactivating the enzyme. In the crystal structure of rHPAP(Pp), the enzyme "repression loop" has an open conformation similar to that observed in other mammalian PAP structures. The present structures demonstrate that the repression loop exhibits significant conformational flexibility, and the observed alternate binding mode suggests a possible inhibitory role for this loop.  相似文献   

9.
Purine nucleoside phosphorylase (PNP) from Escherichia coli is a homohexamer that catalyses the phosphorolytic cleavage of the glycosidic bond of purine nucleosides. The first crystal structure of the ternary complex of this enzyme (with a phosphate ion and formycin A), which is biased by neither the presence of an inhibitor nor sulfate as a precipitant, is presented. The structure reveals, in some active sites, an unexpected and never before observed binding site for phosphate and exhibits a stoichiometry of two phosphate molecules per enzyme subunit. Moreover, in these active sites, the phosphate and nucleoside molecules are found not to be in direct contact. Rather, they are bridged by three water molecules that occupy the "standard" phosphate binding site.  相似文献   

10.
Purine nucleoside phosphorylase catalyzes reversible phosphorolysis of purine nucleosides and 2'-deoxypurine nucleosides to the free base and ribose (or 2'-deoxyribose) 1-phosphate. Whereas the human enzyme is specific for 6-oxopurine ribonucleosides, the Escherichia coli enzyme accepts additional substrates including 6-oxopurine ribonucleosides, 6-aminopurine ribonucleosides, and to a lesser extent purine arabinosides. These differences have been exploited in a potential suicide gene therapy treatment for solid tumors. In an effort to optimize this suicide gene therapy approach, we have determined the three-dimensional structure of the E. coli enzyme in complex with 10 nucleoside analogs and correlated the structures with kinetic measurements and computer modeling. These studies explain the preference of the enzyme for ribose sugars, show increased flexibility for active site residues Asp204 and Arg24, and suggest that interactions involving the 1- and 6-positions of the purine and the 4'- and 5'-positions of the ribose provide the best opportunities to increase prodrug specificity and enzyme efficiency.  相似文献   

11.
Integrin alpha(1)beta(1) is one of four collagen-binding integrins in humans. Collagens bind to the alphaI domain and in the case of alpha(2)I collagen binding is competitively inhibited by peptides containing the RKKH sequence and derived from the metalloproteinase jararhagin of snake venom from Bothrops jararaca. In alpha(2)I, these peptides bind near the metal ion-dependent adhesion site (MIDAS), where a collagen (I)-like peptide is known to bind; magnesium is required for binding. Published structures of the ligand-bound "open" conformation of alpha(2)I differs significantly from the "closed" conformation seen in the structure of apo-alpha(2)I near MIDAS. Here we show that two peptides, CTRKKHDC and CARKKHDC, derived from jararhagin also bind to alpha(1)I and competitively inhibit collagen I binding. Furthermore, calorimetric and fluorimetric measurements show that the structure of the complex of alpha(1)I with Mg(2+) and CTRKKHDC differs from structure in the absence of peptide. A comparison of the x-ray structure of apo-alpha(1)I ("closed" conformation) and a model structure of the alpha(1)I ("open" conformation) based on the closely related structure of alpha(2)I reveals that the binding site is partially blocked to ligands by Glu(255) and Tyr(285) in the "closed" structure, whereas in the "open" structure helix C is unwound and these residues are shifted, and the "RKKH" peptides fit well when docked. The "open" conformation of alpha(2)I resulting from binding a collagen (I)-like peptide leads to exposure of hydrophobic surface, also seen in the model of alpha(1)I and shown experimentally for alpha(1)I using a fluorescent hydrophobic probe.  相似文献   

12.
d-Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) catalyses the central CO(2)-fixing reaction of photosynthesis in a complex, multiple-step process. Several structures of rubisco complexed with substrate analogues, inhibitors and products have been determined by X-ray crystallography. The structures fall into two well-defined and distinct states. The active site is either "open" or "closed". The timing and mechanism of the transition between these two states have been uncertain. We solved the crystal structure of unactivated (metal-free) rubisco from tobacco with only inorganic phosphate bound and conclude that phosphate binding per se does not trigger closure, as it does in the similarly structured enzyme, triosephosphate isomerase. Comparison of all available rubisco structures suggests that, instead, the distance between the terminal phosphates (P1 and P2) of the bisphosphate ligand is the trigger: if that distance is less than 9.1 A, then the active site closes; if it is greater than 9.4 A then the enzyme remains open. Shortening of the inter-phosphate distance results from the ligand binding in a more curved conformation when O atoms of the ligand's sugar backbone interact either with the metal, if it is present, or with charged groups in the metal-binding site, if the metal is absent. This shortening brings the P1 phosphate into hydrogen bonding contact with Thr65. Thr65 exists in two discrete states related by a rotation of the backbone psi torsion angle. This rotation is coupled to domain rotation and hence to active site closure. Rotation of the side-chain of Thr65 also affects the C-terminal strand of large subunit which packs against Loop 6 after closure. The position of the C-terminal strand in the closed state is stabilised by multiple polar interactions with a distinctive highly-charged latch site involving the side-chain of Asp473. In the open state, this latch site may be occupied instead by phosphorylated anions.  相似文献   

13.
Trichomonas vaginalis is an anaerobic protozoan parasite that causes trichomoniasis, a common sexually transmitted disease with worldwide impact. One of the pivotal enzymes in its purine salvage pathway, purine nucleoside phosphorylase (PNP), shows physical properties and substrate specificities similar to those of the high molecular mass bacterial PNPs but differing from those of human PNP. While carrying out studies to identify inhibitors of T. vaginalis PNP (TvPNP), we discovered that the nontoxic nucleoside analogue 2-fluoro-2'-deoxyadenosine (F-dAdo) is a "subversive substrate." Phosphorolysis by TvPNP of F-dAdo, which is not a substrate for human PNP, releases highly cytotoxic 2-fluoroadenine (F-Ade). In vitro studies showed that both F-dAdo and F-Ade exert strong inhibition of T. vaginalis growth with estimated IC(50) values of 106 and 84 nm, respectively, suggesting that F-dAdo might be useful as a potential chemotherapeutic agent against T. vaginalis. To understand the basis of TvPNP specificity, the structures of TvPNP complexed with F-dAdo, 2-fluoroadenosine, formycin A, adenosine, inosine, or 2'-deoxyinosine were determined by x-ray crystallography with resolutions ranging from 2.4 to 2.9 A. These studies showed that the quaternary structure, monomer fold, and active site are similar to those of Escherichia coli PNP. The principal active site difference is at Thr-156, which is alanine in E. coli PNP. In the complex of TvPNP with F-dAdo, Thr-156 causes the purine base to tilt and shift by 0.5 A as compared with the binding scheme of F-dAdo in E. coli PNP. The structures of the TvPNP complexes suggest opportunities for further improved subversive substrates beyond F-dAdo.  相似文献   

14.
Structures of DNA polymerase (pol) beta bound to single-nucleotide gapped DNA had revealed that the lyase and pol domains form a "doughnut-shaped" structure altering the dNTP binding pocket in a fashion that is not observed when bound to non-gapped DNA. We have investigated dNTP binding to pol beta-DNA complexes employing steady-state and pre-steady-state kinetics. Although pol beta has a kinetic scheme similar to other DNA polymerases, polymerization by pol beta is limited by at least two partially rate-limiting steps: a conformational change after dNTP ground-state binding and product release. The equilibrium binding constant, K(d)((dNTP)), decreased and the insertion efficiency increased with a one-nucleotide gapped DNA substrate, as compared with non-gapped DNA. Valine substitution for Asp(276), which interacts with the base of the incoming nucleotide, increased the binding affinity for the incoming nucleotide indicating that the negative charge contributed by Asp(276) weakens binding and that an interaction between residue 276 with the incoming nucleotide occurs during ground-state binding. Since the interaction between Asp(276) and the nascent base pair is observed only in the "closed" conformation of pol beta, the increased free energy in ground-state binding for the mutant suggests that the subsequent rate-limiting conformational change is not the "open" to "closed" structural transition, but instead is triggered in the closed pol conformation.  相似文献   

15.
S-Adenosylhomocysteine (AdoHcy) hydrolase catalyzes the reversible hydrolysis of AdoHcy to adenosine (Ado) and homocysteine (Hcy), playing an essential role in modulating the cellular Hcy levels and regulating activities of a host of methyltransferases in eukaryotic cells. This enzyme exists in an open conformation (active site unoccupied) and a closed conformation (active site occupied with substrate or inhibitor) [Turner, M. A., Yang, X., Yin, D., Kuczera, K., Borchardt, R. T., and Howell, P. L. (2000) Cell Biochem. Biophys. 33, 101-125]. To investigate the binding of natural substrates during catalysis, the computational docking program AutoDock (with confirming calculations using CHARMM) was used to predict the binding modes of various substrates or inhibitors with the closed and open forms of AdoHcy hydrolase. The results have revealed that the interaction between a substrate and the open form of the enzyme is nonspecific, whereas the binding of the substrate in the closed form is highly specific with the adenine moiety of a substrate as the main recognition factor. Residues Thr57, Glu59, Glu156, Gln181, Lys186, Asp190, Met351, and His35 are involved in substrate binding, which is consistent with the crystal structure. His55 in the docked model appears to participate in the elimination of water from Ado through the interaction with the 5'-OH group of Ado. In the same reaction, Asp131 removes a proton from the 4' position of the substrate after the oxidation-reduction reaction in the enzyme. To identify the residues that bind the Hcy moiety, AdoHcy was docked to the closed form of AdoHcy hydrolase. The Hcy tail is predicted to interact with His55, Cys79, Asn80, Asp131, Asp134, and Leu344 in a strained conformation, which may lower the reaction barrier and enhance the catalysis rate.  相似文献   

16.
alpha-D-Glucose activates glucokinase (EC 2.7.1.1) on its binding to the active site by inducing a global hysteretic conformational change. Using intrinsic tryptophan fluorescence as a probe on the alpha-D-glucose induced conformational changes in the pancreatic isoform 1 of human glucokinase, key residues involved in the process were identified by site-directed mutagenesis. Single-site W-->F mutations enabled the assignment of the fluorescence enhancement (DeltaF/F(0)) mainly to W99 and W167 in flexible loop structures, but the biphasic time course of DeltaF/F(0) is variably influenced by all tryptophan residues. The human glucokinase-alpha-D-glucose association (K(d) = 4.8 +/- 0.1 mm at 25 degrees C) is driven by a favourable entropy change (DeltaS = 150 +/- 10 J.mol(-1).K(-1)). Although X-ray crystallographic studies have revealed the alpha-d-glucose binding residues in the closed state, the contact residues that make essential contributions to its binding to the super-open conformation remain unidentified. In the present study, we combined functional mutagenesis with structural dynamic analyses to identify residue contacts involved in the initial binding of alpha-d-glucose and conformational transitions. The mutations N204A, D205A or E256A/K in the L-domain resulted in enzyme forms that did not bind alpha-D-glucose at 200 mm and were essentially catalytically inactive. Our data support a molecular dynamic model in which a concerted binding of alpha-D-glucose to N204, N231 and E256 in the super-open conformation induces local torsional stresses at N204/D205 propagating towards a closed conformation, involving structural changes in the highly flexible interdomain connecting region II (R192-N204), helix 5 (V181-R191), helix 6 (D205-Y215) and the C-terminal helix 17 (R447-K460).  相似文献   

17.
The crystal structure of gluconate kinase from Escherichia coli has been determined to 2.0 A resolution by X-ray crystallography. The three-dimensional structure was solved by multi-wavelength anomalous dispersion, using a crystal of selenomethionine-substituted enzyme. Gluconate kinase is an alpha/beta structure consisting of a twisted parallel beta-sheet surrounded by alpha-helices with overall topology similar to nucleoside monophosphate (NMP) kinases, such as adenylate kinase. In order to identify residues involved in substrate binding and catalysis, structures of binary complexes with ATP, the ATP analogue adenosine 5'-(beta,gamma-methylene) triphosphate and the product, gluconate-6-phosphate have been determined. Significant conformational changes are induced upon binding of ATP to the enzyme. The largest changes involve a hinge-bending motion of the NMP(bind) part and a motion of the LID with adjacent helices, which opens the cavity to the second substrate, gluconate. Opening of the active site cleft upon ATP binding is the opposite of what has been observed in the NMP kinase family so far, which usually close their active site to prevent fortuitous hydrolysis of ATP. The conformational change positions the side-chain of Arg120 to stack with the purine ring of ATP and the side-chain of Arg124 is shifted to interact with the alpha-phosphate in ATP, at the same time protecting ATP from solvent water. The beta and gamma-phosphate groups of ATP bind in the predicted P-loop. A conserved lysine side-chain interacts with the gamma-phosphate group, and might promote phosphoryl transfer. Gluconate-6-phosphate binds with its phosphate group in a similar position as the gamma-phosphate of ATP, consistent with inline phosphoryl transfer. The gluconate binding-pocket in GntK is located in a different position than the nucleoside binding-site usually found in NMP kinases.  相似文献   

18.
Src-family kinases, known to participate in signaling pathways of a variety of surface receptors, are localized to the cytoplasmic side of the plasma membrane through lipid modification. We show here that Lyn, a member of the Src-family kinases, is biosynthetically transported to the plasma membrane via the Golgi pool of caveolin along the secretory pathway. The trafficking of Lyn from the Golgi apparatus to the plasma membrane is inhibited by deletion of the kinase domain or Csk-induced "closed conformation" but not by kinase inactivation. Four residues (Asp346 and Glu353 on alphaE helix, and Asp498 and Asp499 on alphaI helix) present in the C-lobe of the kinase domain, which can be exposed to the molecular surface through an "open conformation," are identified as being involved in export of Lyn from the Golgi apparatus toward the plasma membrane but not targeting to the Golgi apparatus. Thus, the kinase domain of Lyn plays a role in Lyn trafficking besides catalysis of substrate phosphorylation.  相似文献   

19.
A molecular dynamics study of pig heart citrate synthase is presented that aims to directly address the question of whether, for this enzyme, the ligand-induced closed domain conformation is accessible to the open unliganded enzyme. The approach utilises the technique of essential dynamics sampling, which is used in two modes. In exploring mode, the enzyme is encouraged to explore domain conformations it might not normally sample in free molecular dynamics simulation. In targeting mode, the enzyme is encouraged to adopt the domain conformation of a target structure. Using both modes extensively, it has been found that when the enzyme is prepared from a crystallographic open-domain structure and is in the unliganded state, it is unable to adopt the crystallographic closed-domain conformation of the liganded enzyme. Likewise, when the enzyme is prepared from the crystallographic closed liganded conformation with the ligands removed, it is unable to adopt the crystallographic open domain conformation. Structural investigations point to a common structural difference that is the source of this energy barrier; namely, the shift of alpha-helix 328-341 along its own axis relative to the large domain. Without this shift, the domains are unable to close or open fully. The charged substrate, oxaloacetate, binds near the base of this helix in the large domain and the interaction of Arg329 at the base of the helix with oxaloacetate is one that is consistent with the shift of this helix in going from the crystallographic open to closed structure. Therefore, the results suggest that without the substrate the enzyme remains in a partially open conformation ready to receive the substrate. In this way, the efficiency of the enzyme should be increased over one that is closed part of the time, with its binding site inaccessible to the substrate.  相似文献   

20.
The crystal structure of the binary complex of trimeric purine nucleoside phosphorylase (PNP) from calf spleen with the acyclic nucleoside phosphonate inhibitor 2,6-diamino-(S)-9-[2-(phosphonomethoxy)propyl]purine ((S)-PMPDAP) is determined at 2.3A resolution in space group P2(1)2(1)2(1). Crystallization in this space group, which is observed for the first time with a calf spleen PNP crystal structure, is obtained in the presence of calcium atoms. In contrast to the previously described cubic space group P2(1)3, two independent trimers are observed in the asymmetric unit, hence possible differences between monomers forming the biologically active trimer could be detected, if present. Such differences would be expected due to third-of-the-sites binding documented for transition-state events and inhibitors. However, no differences are noted, and binding stoichiometry of three inhibitor molecules per enzyme trimer is observed in the crystal structure, and in the parallel solution studies using isothermal titration calorimetry and spectrofluorimetric titrations. Presence of phosphate was shown to modify binding stoichiometry of hypoxanthine. Therefore, the enzyme was also crystallized in space group P2(1)2(1)2(1) in the presence of (S)-PMPDAP and phosphate, and the resulting structure of the binary PNP/(S)-PMPDAP complex was refined at 2.05A resolution. No qualitative differences between complexes obtained with and without the presence of phosphate were detected, except for the hydrogen bond contact of Arg84 and a phosphonate group, which is observed only in the former complex in three out of six independent monomers. Possible hydrogen bonds observed in the enzyme complexed with (S)-PMPDAP, in particular a putative hydrogen bonding contact N(1)-H cdots, three dots, centered Glu201, indicate that the inhibitor binds in a tautomeric or ionic form in which position N(1) acts as a hydrogen bond donor. This points to a crucial role of this hydrogen bond in defining specificity of trimeric PNPs and is in line with the proposed mechanism of catalysis in which this contact helps to stabilize the negative charge that accumulates on O(6) of the purine base in the transition state. In the present crystal structure the loop between Thr60 and Ala65 was found in a different conformation than that observed in crystal structures of trimeric PNPs up to now. Due to this change a new wide entrance is opened into the active site pocket, which is otherwise buried in the interior of the protein. Hence, our present crystal structure provides no obvious indication for obligatory binding of one of the substrates before binding of a second one; it is rather consistent with random binding of substrates. All these results provide new data for clarifying the mechanism of catalysis and give reasons for the non-Michaelis kinetics of trimeric PNPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号