首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetics of fluorescence at room temperature, electron transport and photooxidation of P700 and cytochrome f have been studied in chloroplasts isolated from active and winter stressed Pinus silvestris. The winter stress induced block in the electron transport chain between the two photosystems is close to the site of plastoquinone, since winter stress and DCMU caused the same type of inhibition of the reoxidation of the primary electron acceptor Q of photosystem II. No winter inhibition of the electron transport between cytochrome f and P700 was observed. Time course studies of P700 photooxidation in chloroplasts of active and winter stressed pine have shown that the photosynthetic unit size must be about equal in the two types of chloroplasts. An apparent increase of the photosynthetic unit size was induced by winter stress, as revealed by the high chlorophyll/P700 ratio of winter stressed pine. The phenomenon is explained by the formation of photosynthetically inactive chlorophyll. Low-temperature fluorescence emission spectra were recorded when either chlorophyll a (433 nm) or chlorophyll b (477 nm) were preferentially excited. Winter stress induced the formation of a chlorophyll a fraction emitting at 673 nm. This chlorophyll is most likely derived from the chlorophyll a antennae of the two photosystems, and it probably contributes to the photosynthetically inactive pool of chlorophyll in winter stressed pine. The light harvesting chlorophyll a/b complex is relatively resistant to winter stress.  相似文献   

2.
The light dependent chloroplast development of dark grown seedlings of Pinus silvestris L. was followed by analyses of chlorophyll content, chlorophyll a/b ratios, chlorophyll/P700 ratios, chlorophyll-protein complexes and structural changes. Low-temperature fluorescence emission spectra of isolated chloroplasts and separation of sodium dodecyl sulphate solubilized chlorophyll-protein complexes by gel electrophoresis showed that the chlorophyll-protein complexes of photosystem 1 (P700-CPa), photosystem II (PS II-CPa) and the light-harvesting complex LH–CPa/b were present in dark grown seedlings. The low-temperature fuoorescence emission maxima of isolated P700–CPa and PS II–CPa shifted towards longer wavelengths during greening in light, indicating a light induced change of the chlorophyll organisation in the two photosystems. Illumination caused LH–CPa/b to increase relative to P700–CPa, whereas the ratio between LH–CPa/b and PS II–CPa remained essentially constant. Analyses of low-temperature fluorescence spectra with or without 0.01 M Mg2+ showed that the Mg2+ controlled distribution of excitation energy into PS I was activated upon illumination of the seedlings. The photosynthetic unit size, as defined by the chlorophyll/P700 ratio, did not change over a 96 h illumination period, although the chlorophyll content increased about 6–fold during that time. This result and the constant electron transport rate per unit chlorophyll and time during chlorophyll accumulation provided evidence for a sequential development of the photosynthetic units when illuminating dark grown pine cotyledons. Electron micrographs showed that exposure of dark grown seedlings to light for 2 h caused the prolamellar body to disappear and grana to form. These changes occurred prior to substantial accumulation of chlorophyll or change in the ratio between LH–CPa/b and P700–CPa. However, both the water-splitting system of photosystem II and the Mg2+ controlled redistribution of excitation energy was activated during this period.  相似文献   

3.
Tanaka A  Tsuji H 《Plant physiology》1981,68(3):567-570
Cucumber seedlings were illuminated for various time periods, cotyledons excised, placed in the dark, and changes in chlorophyll a and b content monitored. During the dark periods, chlorophyll b content decreased while chlorophyll a did not. When the illumination time was lengthened, the percentage of chlorophyll b decomposition from initial levels decreased. Ca2+ at 50 millimolar prevented the decrease in chlorophyll b and caused a decrease in chlorophyll a. The effect of Ca2+ decreased with increased illumination time. Cycloheximide and chloramphenicol inhibited chlorophyll b decrease, but did not induce chlorophyll a decrease.  相似文献   

4.
SUMMARY. Pigments extracted in methanol, acetone and ethanol from three cultures of green algae and one blue-green alga revealed different extraction efficiencies depending on the species, the extraction solvent used and the extraction time. Chromatographic identification and quantitative measurements of chlorophylls a and b were made from six green algae. When extraction of pigments was incomplete, chlorophyll-b was extracted faster than chlorophyll-a. This effect was more pronounced for acetone extractions, whereas methanol extractions gave the stable ratios of chlorophyll b/a after about 6–10 h. When green algae are frequent, a 6–10 h methanol extraction, without any extra manipulations, is sufficient to ensure reliable ratios of chlorophyll b/a and extraction of the major proportion of the chlorophylls without risk of induced destruction of the chlorophylls.  相似文献   

5.
The possible involvement of spermine (Spm) in the acclimation of soybean to osmotic stress was investigated by determining the changes in photosynthetic pigments, antioxidants, and plant hormone levels in response to applied Spm. Plants were exposed to 9 % PEG-induced osmotic stress with or without 0.4 μM Spm. Osmotic stress reduced the relative water content, chlorophyll a, chlorophyll b, carotenoid, and protein contents in leaves, and these detrimental effects were alleviated by treatment with Spm. Moreover, the significant increase in the content of abscisic acid and decrease in that of jasmonic acid in plants subjected to osmotic stress was attenuated by treatment with Spm. Osmotic stress caused a significant increase in lipid peroxidation when compared to controls, and that was accompanied by a slight reduction in the level of antioxidants and reduced glutathione and in the activities of catalase, superoxide dismutase, peroxidase, and polyphenol oxidase. Spm treatment ameliorated these osmotic stress effects by reducing lipid peroxidation and increasing catalase, superoxide dismutase, peroxidase, and polyphenol oxidase activities. These results indicate that application of Spm could be exploited to alleviate a moderate level of osmotic stress through the regulation of stress-related components such as photosynthetic pigments, plant hormones, and antioxidants.  相似文献   

6.
Liposomal dispersions in water were used as a tool to study photo-oxidation of chlorophyll-a and photo-oxidation of unsaturated lipids at 1 or 4°C. The presence of monogalactosyl diglyceride stimulated chlorophyll-a degradation. In addition the level of linolenic acid was decreased in liposomal dispersions containing chlorophyll-a, dipalmitoyl phosphatidyl choline, and monogalactosyl diglyceride, indicating that monogalactosyl diglyceride and chlorophyll-a were coupled in the preparations. In liposomal dispersions containing equal (molar) quantities of a-tocopherol, monogalactosyl diglyceride, and chlorophyll-a, a-tocopherol fully protected linolenic acid against photo-oxidative degradation, while chlorophyll-a degradation was only slightly reduced. In liposomal preparations containing a-tocopherol, chlorophyll-a and phosphatidyl choline, a-tocopherol catalyzed degradation of chlorophyll-a. Absorption spectra of the liposomal dispersions showed that the presence of a-tocopherol caused increased absorption in red light, which was attributed to structural changes in the liposomal preparations and thus could explain the noted effects. Tocopherol itself was rapidly degraded in chlorophyll-a containing liposomal preparations. Complex formation between chlorophyll-a and monogalactosyl diglyceride in chloroplasts is suggested and protection by a-tocopherol against photo-oxidation in chilling-sensitive plants; a suggestion which is founded on the similarities that exist between chloroplast preparations and liposomal preparations containing chlorophyll-a and monogalactosyl diglyceride as regards photo-oxidative degradation of chlorophyll-a, a-tocopherol and linolenic acid.  相似文献   

7.
Ridley SM 《Plant physiology》1977,59(4):724-732
A primary symptom of diuron (DCMU) phytotoxicity in plants is the destruction of chlorophyll. To study this process in vitro, chloroplasts from pea leaves (Pisum sativum L.) have been incubated in the light with DCMU for periods of up to 34 hours. The sequence of photodestruction of chlorophylls and carotenoids has been followed to try and establish the nature of the chloroplast protection mechanisms that are destroyed by DCMU. β-Carotene decays most rapidly, followed by chlorophyll a and xanthophylls which are destroyed in a constant ratio, followed finally by chlorophyll b. Bypassing the DCMU block in the electron transport system with an artificial electron donor provides complete protection against chlorophyll and carotenoid photodestruction. The same protection by this electron donor system is afforded to stroma-free lamellae from which soluble reductants have been removed so that NADPH formation, which has been proposed as an essential part of a protective xanthophyll cycle, is not possible. Both this and the simultaneous loss of chlorophyll a and xanthophylls tend to preclude the breakdown of a xanthophyll cycle from the possible protective mechanisms inhibited or destroyed by DCMU.  相似文献   

8.
Chlorophyll is a deleterious molecule that generates reactive oxygen species and must be converted to non‐toxic molecules during plant senescence. The degradation pathway of chlorophyll a has been determined; however, that of chlorophyll b is poorly understood, and multiple pathways of chlorophyll b degradation have been proposed. In this study, we found that chlorophyll b is degraded by a single pathway, and elucidated the importance of this pathway in avoiding cell death. In order to determine the chlorophyll degradation pathway, we first examined the substrate specificity of 7‐hydroxymethyl chlorophyll a reductase. 7‐hydroxymethyl chlorophyll a reductase reduces 7‐hydroxymethyl chlorophyll a but not 7‐hydroxymethyl pheophytin a or 7‐hydroxymethyl pheophorbide a. These results indicate that the first step of chlorophyll b degradation is its conversion to 7‐hydroxymethyl chlorophyll a by chlorophyll b reductase, although chlorophyll b reductase has broad substrate specificity. In vitro experiments showed that chlorophyll b reductase converted all of the chlorophyll b in the light‐harvesting chlorophyll a/b protein complex to 7‐hydroxymethyl chlorophyll a, but did not completely convert chlorophyll b in the core antenna complexes. When plants whose core antennae contained chlorophyll b were incubated in the dark, chlorophyll b was not properly degraded, and the accumulation of 7‐hydroxymethyl pheophorbide a and pheophorbide b resulted in cell death. This result indicates that chlorophyll b is not properly degraded when it exists in core antenna complexes. Based on these results, we discuss the importance of the proper degradation of chlorophyll b.  相似文献   

9.
Hydroponic experiments were conducted to study the effect of Pb on growth, leaf antioxidant enzyme activities, and ultrastructure of the accumulating ecotype (AE) and non-accumulating ecotype (NAE) of Sedum alfredii Hance. AE was found to be more tolerant to excessive Pb levels in growth medium. Concentrations of Pb in the shoots of the AE were 1.98 times higher than those in the NAE when 0.2 mM Pb was supplied. Both chlorophyll a and b did not decrease significantly in AE plants after Pb treatment, while a significant decrease was noted in chlorophyll a and b of NAE plants treated with Pb concentrations greater than 0.05 mM. The results showed that activities of superoxide dismutase (SOD) and catalase (CAT) were elevated in the leaves of AE under Pb stress. However in NAE, Pb-caused enhancement was noticed only in the activity of SOD while activity of CAT was declined as compared to the control plants. With increased Pb level, malondialdehyde (MDA) content increased significantly in both ecotypes of S. alfredii, indicating that Pb toxicity led to lipid peroxidation and membrane damage, but MDA content in the leaves of NAE was always higher than in AE plants. The ultrastructural analysis of the spongy mesophyll cells revealed that excessive Pb concentrations obviously damaged the cell membrane, chloroplasts, and mitochondria of both the ecotypes but damage was more severe in NAE. Although growth, leaf physiology, and ultrastructure of both the ecotypes were affected by Pb treatment, deleterious effects were more pronounced in NAE. This text was submitted by the authors in English.  相似文献   

10.
Two greenhouse experiments were conducted in order to investigate the effects of different levels of water stress on gas exchange, chlorophyll fluorescence, chlorophyll content, antioxidant enzyme activities, lipid peroxidation, and yield of tomato plants (Solanum lycopersicum cv. Jinfen 2). Four levels of soil water content were used: control (75 to 80% of field water capacity), mild water stress (55 to 60%), moderate water stress (45 to 50%), and severe water stress (35 to 40%). The controlled irrigation was initiated from the third leaf stage until maturity. The results of two-year trials indicated that the stomatal conductance, net photosynthetic rate, light-saturated photosynthetic rate, and saturation radiation decreased generally under all levels of water stress during all developmental stages, while compensation radiation and dark respiration rate increased generally. Water stress also declined maximum quantum yield of PSII photochemistry, electron transfer rate, and effective quantum yield of PSII photochemistry, while nonphotochemical quenching increased in all developmental stages. All levels of water stress also caused a marked reduction of chlorophyll a, chlorophyll b, and total chlorophyll content in all developmental stages, while activities of antioxidant enzymes, such as superoxide dismutase, peroxidase, and catalase, and lipid peroxidation increased.  相似文献   

11.
《Free radical research》2013,47(1-2):57-68
The effects of oxidative stress caused by hyperoxia or administration of the redox active compound diquat were studied in isolated hepatocytes, and the relative contribution of lipid peroxidation, glutathione (GSH) depletion, and NADPH oxidation to the cytotoxicity of active oxygen species was investigated.

The redox cycling of diquat occurred primarily in the microsomal fraction since diquat was found not ' to penetrate into the mitochondria. Depletion of intracellular GSH by pretreatment of the animals with diethyl maleate promoted lipid peroxidation and sensitized the cells to oxidative stress. Diquat toxicity was also greatly enhanced when glutathione reductase was inhibited by pretreatment of the cells with 1,3-bis(2-chloroethyI)-1-nitrosourea. Despite extensive lipid peroxidation, loss of cell viability was not observed, with either hyperoxia or diquat, until the GSH level had fallen below ≈ 6 nmol/106 cells.

The iron chelator desferrioxamine provided complete protection against both diquat-induced lipid peroxidation and loss of cell viability. In contrast, the antioxidant a-tocopherol inhibited lipid peroxidation but provided only partial protection from toxicity. The hydroxy! radical scavenger α-keto-γ-methiol butyric acid, finally, also provided partial protection against diquat toxicity but had no effect on lipid peroxidation.

The results indicate that there is a critical GSH level above which cell death due to oxidative stress is not observed. As long as the glutathione peroxidase – glutathione reductase system is unaffected, even relatively low amounts of GSH can protect the cells by supporting glutathione peroxidase-mediated metabolism of H2O2 and lipid hydroperoxides.  相似文献   

12.
Measurements of electron transport activity point to the occurrence of major changes in the organisation of the photosynthetic apparatus of heat-stressed chloroplasts. One of the consequences of these changes is shown to be a greatly increased susceptibility of chlorophyll to photobleaching. Despite the fact that the threshold temperature for this photobleaching coincides closely with that for the inhibition of PSII activity, the bleached components were found to be specifically associated with PSI. This increased susceptibility of PSI pigments to photobleaching is shown to be a direct consequence of an interruption of the flow of reductants from PSII to PSI that would normally protect PSI from photooxidation.Abbreviations PSI photosystem I - PSII photosystem II - chl a chlorophyll a - chl b chlorophyll b - LHCP chlorophyll a/b light-harvesting protein - CP1 P700-chlorophyll a protein - DCMU 3-(34 dichlorophenyl)-11-dimethylurea - DCPIP dichlorophenolindophenol - Fecy potassium ferricyanide - MV methyl viologen Biochemistry Department, King's College (KQC), University of London  相似文献   

13.
In acetone extracts the presence of chlorophyll a and b caused enhanced photodecomposition of monogalactosyl diglyceride. Irradiation of isolated etioplasts containing chlorophyllide and monogalactosyl diglyceride caused photodecomposition of chlorophyllide but not of monogalactosyl diglyceride. In irradiated etiochloroplasts containing chlorophyll a and monogalactosyl diglyceride both components were photodecomposed. During photodecomposition of monogalactosyl diglyceride the fatty acid composition remained constant.  相似文献   

14.
State 1/State 2 changes in higher plants and algae   总被引:3,自引:0,他引:3  
Current ideas regarding the molecular basis of State 1/State 2 transitions in higher plants and green algae are mainly centered around the view that excitation energy distribution is controlled by phosphorylation of the light-harvesting complex of photosystem II (LHC-II). The evidence supporting this view is examined and the relationship of the transitions occurring in these systems to the corresponding transitions seen in red and blue-green algae is explored.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - Chl a chlorophyll a - Chl b chlorophyll b - DAD diaminodurene - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD N,N-dicyclohexyl carbodiimide - DCMU 3-(3,4-dichlorophenyl)-l,l-dimethylurea (also called diuron) - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - FSBA 5-fluorosulphonylbenzoyl adenosine - kDa kilodalton - LHC-II light-harvesting Chl a/Chl b protein - PMS phenazine methosulfate - PS I photosystem I - PS II photosystem II - SDS sodium dodecyl sulfate - TPTC triphenyl tin chloride This paper follows our new instructions for citation of references—authors are requested to follow Photosynth Res 10: 519–526 (1986)—editors.  相似文献   

15.
16.
Methyl linoleate containing chlorophylls and/or pheophytins was exposed to light in the presence of oxygen. The photooxidative reaction of both chlorophylls a and b was first-order, and the reaction rate for chlorophyll a was higher than that for chlorophyll b. On the other hand, pheophytins a and b hardly decomposed even after irradiation for 24 hr, and retained a green or a brownish-green color. In qualitative analysis of the photooxidation products of chlorophylls a and b, no pheophytins or pheophorbides were detected, while green and polar red pigments were observed on a thin layer chromatogram near the spot of chlorophyll and the origin, respectively. These photooxidation compounds also had prooxidant effects as well as did chlorophyll.  相似文献   

17.
Leaves of Zea mays L. seedlings which developed at optimal (25°C) or suboptimal (15°C) temperature were exposed to high irradiance (1000 μmol m?2 s?1) and a severe chilling temperature (5°C) for up to 24 h to investigate their ability to withstand photooxidative stress. During this stress, the degradation of the endogenous antioxidants ascorbate, glutathione and α-tocopherol was delayed and less pronounced in 15°C leaves. Similarly, the decline in chlorophyll a, chlorophyll b, β-carotene and lutein was slower throughout the stress period. Faster development and a higher level of non-photochemical quenching (NPQ) of chlorophyll fluorescence, related to a stronger de-poxidation of the larger xanthophyll cycle pool in 15°C leaves, could act as a defence mechanism to reduce the formation of reactive oxygen species during severe chilling. Furthermore, plants grown at suboptimal temperature exhibited a higher amount of the antioxidants glutathione and α-tocopherol. The higher α-tocopherol content in leaves (double based on leaf area; 4-fold higher based on chlorophyll content) which developed at suboptimal temperature may play an especially important role in the stabilization of the thylakoid membrane and thus prevent lipid peroxidation.  相似文献   

18.
The impact of heat shock on minimising the activity of photosystem 2 (PS2) initiating high lipid peroxidation (POL) level and consequently changes in the enzymatic-antioxidant protective system was studied in seedlings of two Egyptian cultivars of barley (Giza 124 and 125). Heat doses (35 and 45 °C for 2, 4, 6, and 8 h) decreased chlorophyll (Chl) contents coupled with an increase in Chl a/b ratio, diminished Hill reaction activity, and quenched Chl a fluorescence emission spectra. These parameters reflect the disturbance of the structure, composition, and function of the photosynthetic apparatus as well as the activity of PS2. POL level, as dependent on the balance between pro- and anti-oxidant systems, was directly correlated with temperature, exposure time, and their interaction. Heat shock caused an increase in the electric conductivity of cell membrane, and malonyldialdehyde content (a peroxidation product) coupled with the disappearance of the polyunsaturated linolenic acid (C18:3), reflecting the peroxidation of membrane lipids which led to the loss of membrane selective permeability. Moreover, it induced distinct and significant changes in activities of antioxidant enzymes. Superoxide dismutase and peroxidase activities have been progressively enhanced by moderate and elevated heat doses, but the most elevated one (45 °C for 8 h) showed a decrease in activities of both enzymes. In contrast, catalase activity was reduced with all heat shocks.  相似文献   

19.
Seedlings of three wheat varieties (Triticum aestivum L.)—highly productive cv. Ballada, moderately productive cv. Belchanka, and low productive cv. Beltskaya—were exposed to progressive soil drought (cessation of watering for 3, 5, and 7 days) and then analyzed for chlorophyll content and activities of ferredoxin-NADP+ oxidoreductase (FNR) and antioxidant enzymes, namely, glutathione reductase (GR) and ascorbate peroxidase (AscP). In addition, the proline content, and the extent of lipid peroxidation were examined. In the first period of water limitation, the water loss from leaves was slight for all wheat cultivars, which is characteristic of drought-resistant varieties. After 7-day drought the leaf water content decreased by 5.2–6.8%. The total chlorophyll content expressed per unit dry weight increased insignificantly during the first two periods of drought but decreased by 13–15% later on. This decrease was not accompanied by changes in chlorophyll a/b ratio. The plant dehydration did not induce significant changes in FNR activity. Activities of GR and AscP in leaves of wheat cultivars Ballada and Belchanka increased on the 3rd and 5th days of drought. Owing to the coordinated increase in GR and AscP activities, the lipid peroxidation rate remained at nearly the control level observed in water-sufficient plants. When the dehydration period was prolonged to 7 days, activities of GR and AscP in wheat cultivars reduced in parallel with the increase in malonic dialdehyde (MDA) content, indicating that the antioxidant enzyme defense system was weakened and lipid peroxidation enhanced. Unlike Ballada and Belchanka, the wheat cv. Beltskaya did not exhibit the increase in GR and AscP activities during progressive soil drought. The increase in MDA content by 16% in this cultivar was only observed after a 7-day drought period. The proline content in leaves of all wheat cultivars increased substantially during drought treatment. Thus, in wheat cultivars examined, different responses of the defense systems were mobilized to implement plant protection against water stress. The activities of antioxidant enzyme defense system depended on wheat cultivar, duration of drought, and the stage of leaf development.  相似文献   

20.
This study was aimed to assess physiological responses of melon (Cucumis melo L.) cultivars to salinity stress under field conditions. Seventeen melon cultivars including 16 widely distributed native and one exotic (‘Galia’) were subjected to 2-year (2014–2015) field salinity stress. Leaf relative water content (RWC), membrane stability index (MSI), pigments [chlorophyll a, b, total chlorophyll (TChl), carotenoid (Car) and their ratios], malondialdehyde (MDA), H2O2 content, proline content (Pro), total soluble sugar content (TSC), salinity tolerance and susceptibility indices as well as yield were evaluated. The results of combined analysis of variance showed significant genotypic variation for all the traits and significant effect of salinity stress on all the traits with the exception of Chla/Chlb and TChl/Car ratios. Overall, field salinity stress caused an increase in leaf MDA, H2O2, Chla, Chlb, TChl, Car, Pro and TSC and caused a reduction in leaf MSI and RWC as well as yield. The results of correlation coefficients showed that accumulation of osmolytes (proline and TSC) led to an increase in RWC and a decrease in MDA contents. In addition, the results of multiple regression analysis showed that leaf MDA, TSC, MSI and Chla contents were the most important predictors of yield justifying 72% total variation of yield under saline conditions. These results may highlight a dynamic interplay among biomarkers for lipid peroxidation (MDA), sugar osmolytes (TSC) and photosynthetic pigment (Chla) to maintain cell viability and cell wall integrity under salinity stress conditions in melon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号