首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
KAP is the non-motor subunit of the heteromeric plus-end directed microtubule (MT) motor protein kinesin-II essential for normal cilia formation. Studies in Chlamydomonas have demonstrated that kinesin-II drives the anterograde intraflagellar transport (IFT) of protein complexes along ciliary axonemes. We used a green fluorescent protein (GFP) chimera of KAP, KAP-GFP, to monitor movements of this kinesin-II subunit in cells of sea urchin blastulae where cilia are retracted and rebuilt with each mitosis. As expected if involved in IFT, KAP-GFP localized to apical cytoplasm, basal bodies, and cilia and became concentrated on basal bodies of newly forming cilia. Surprisingly, after ciliary retraction early in mitosis, KAP-GFP moved into nuclei before nuclear envelope breakdown, was again present in nuclei after nuclear envelope reformation, and only decreased in nuclei as ciliogenesis reinitiated. Nuclear transport of KAP-GFP could be due to a putative nuclear localization signal and nuclear export signals identified in the sea urchin KAP primary sequence. Our observation of a protein involved in IFT being imported into the nucleus after ciliary retraction and again after nuclear envelope reformation suggests KAP115 may serve as a signal to the nucleus to reinitiate cilia formation during sea urchin development.  相似文献   

2.
When ciliogenesis first occurs in sea urchin embryos, the major building block proteins, tubulin and dynein, exist in substantial pools, but most 9+2 architectural proteins must be synthesized de novo. Pulse-chase labeling with [3H]leucine demonstrates that these proteins are coordinately up-regulated in response to deciliation so that regeneration ensues and the tubulin and dynein pools are replenished. Protein labeling and incorporation into already-assembled cilia is high, indicating constitutive ciliary gene expression and steady-state turnover. To determine whether either the synthesis of tubulin or the size of its available pool is coupled to the synthesis or turnover of the other 9+2 proteins in some feedback manner, fully-ciliated mid- or late-gastrula stage Strongylocentrotus droebachiensis embryos were pulse labeled in the presence of colchicine or taxol at concentrations that block ciliary growth. As a consequence of tubulin autoregulation mediated by increased free tubulin, no labeling of ciliary tubulin occurred in colchicine-treated embryos. However, most other proteins were labeled and incorporated into steady-state cilia at near-control levels in the presence of colchicine or taxol. With taxol, tubulin was labeled as well. An axoneme-associated 78 kDa cognate of the molecular chaperone HSP70 correlated with length during regeneration; neither colchicine nor taxol influenced the association of this protein in steady-state cilia. These data indicate that 1) ciliary protein synthesis and turnover is independent of tubulin synthesis or tubulin pool size; 2) steady-state incorporation of labeled proteins cannot be due to formation or elongation of cilia; 3) substantial tubulin exchange takes place in fully-motile cilia; and 4) chaperone presence and association in steady-state cilia is independent of background ciliogenesis, tubulin synthesis, and tubulin assembly state.  相似文献   

3.
The establishment of left–right (L-R) asymmetry in vertebrates is dependent on the sensory and motile functions of cilia during embryogenesis. Mutations in CCDC11 disrupt L-R asymmetry and cause congenital heart disease in humans, yet the molecular and cellular functions of the protein remain unknown. Here we demonstrate that Ccdc11 is a novel component of centriolar satellites—cytoplasmic granules that serve as recruitment sites for proteins destined for the centrosome and cilium. Ccdc11 interacts with core components of satellites, and its loss disrupts the subcellular organization of satellite proteins and perturbs primary cilium assembly. Ccdc11 colocalizes with satellite proteins in human multiciliated tracheal epithelia, and its loss inhibits motile ciliogenesis. Similarly, depletion of CCDC11 in Xenopus embryos causes defective assembly and motility of cilia in multiciliated epidermal cells. To determine the role of CCDC11 during vertebrate development, we generated mutant alleles in zebrafish. Loss of CCDC11 leads to defective ciliogenesis in the pronephros and within the Kupffer’s vesicle and results in aberrant L-R axis determination. Our results highlight a critical role for Ccdc11 in the assembly and function of motile cilia and implicate centriolar satellite–associated proteins as a new class of proteins in the pathology of L-R patterning and congenital heart disease.  相似文献   

4.
We cloned a Tetrahymena thermophila gene, IFT52, encoding a homolog of the Chlamydomonas intraflagellar transport protein, IFT52. Disruption of IFT52 led to loss of cilia and incomplete cytokinesis, a phenotype indistinguishable from that of mutants lacking kinesin-II, a known ciliary assembly transporter. The cytokinesis failures seem to result from lack of cell movement rather than from direct involvement of ciliary assembly pathway components in cytokinesis. Spontaneous partial suppressors of the IFT52 null mutants occurred, which assembled cilia at high cell density and resorbed cilia at low cell density. The stimulating effect of high cell density on cilia formation is based on the creation of pericellular hypoxia. Thus, at least under certain conditions, ciliary assembly is affected by an extracellular signal and the Ift52p function may be integrated into signaling pathways that regulate ciliogenesis.  相似文献   

5.
Previously, increases in ciliary length have only been obtained through genetic mutation in Chlamydomonas or by incubation of swimming echinoderm blastulae in trypsin or elastase. We have found that the phenotypic switch from short to long cilia on sand dollar blastulae can also be effected by incubation in theophylline. Cilia detached from control blastulae have a mean length of 21 +/- 7 microns with 10% of the cilia being greater than 30 microns. Upon incubation in 10 mM theophylline additional long cilia appeared after 10 hours and by 24-32 hours 1/2-3/4 of the embryo was covered with long cilia. The percentage of long cilia increased to 65% with a mean length of 40.0 +/- 17.6 microns. Incubation in other methylxanthines, such as aminophylline, caffeine, or isobutylmethylxanthine, inhibited development but had no effect on ciliary length distribution. Dibutyryl cAMP, 8-bromoadenosine, and calcium ionophore also had no effect on ciliary length. Cyclic AMP levels were measured and showed only slight differences among controls and embryos incubated in trypsin, caffeine, or theophylline. These data suggest that theophylline may be altering ciliary length control through some mechanism other than elevations in cAMP.  相似文献   

6.
Cilia project from the surface of most vertebrate cells and are important for several physiological and developmental processes. Ciliary defects are linked to a variety of human diseases, named ciliopathies, underscoring the importance of understanding signaling pathways involved in cilia formation and maintenance. In this paper, we identified Rer1p as the first endoplasmic reticulum/cis-Golgi–localized membrane protein involved in ciliogenesis. Rer1p, a protein quality control receptor, was highly expressed in zebrafish ciliated organs and regulated ciliary structure and function. Both in zebrafish and mammalian cells, loss of Rer1p resulted in the shortening of cilium and impairment of its motile or sensory function, which was reflected by hearing, vision, and left–right asymmetry defects as well as decreased Hedgehog signaling. We further demonstrate that Rer1p depletion reduced ciliary length and function by increasing γ-secretase complex assembly and activity and, consequently, enhancing Notch signaling as well as reducing Foxj1a expression.  相似文献   

7.
8.
9.
Cilium formation and maintenance require intraflagellar transport (IFT). Although much is known about kinesin-2–driven anterograde IFT, the composition and regulation of retrograde IFT-specific dynein remain elusive. Components of cytoplasmic dynein may participate in IFT; however, their essential roles in cell division preclude functional studies in postmitotic cilia. Here, we report that inducible expression of the clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system in Caenorhabditis elegans generated conditional mutations in IFT motors and particles, recapitulating ciliary defects in their null mutants. Using this method to bypass the embryonic requirement, we show the following: the dynein intermediate chain, light chain LC8, and lissencephaly-1 regulate retrograde IFT; the dynein light intermediate chain functions in dendrites and indirectly contributes to ciliogenesis; and the Tctex and Roadblock light chains are dispensable for cilium assembly. Furthermore, we demonstrate that these components undergo biphasic IFT with distinct transport frequencies and turnaround behaviors. Together, our results suggest that IFT–dynein and cytoplasmic dynein have unique compositions but also share components and regulatory mechanisms.  相似文献   

10.
In this paper, I review a collection of recently published papers that have provided significant new information about the biogenesis and functions of motile cilia. In vertebrates, the activity of motile cilia has been associated with a fascinating diversity of developmental and physiological processes. Despite the importance, much remains to be learned about the genetic control and cellular events that are involved in the differentiation of motile cilia. We also need to better understand the mechanisms by which cilia‐driven fluid flow is able to influence such a variety of developmental and physiological processes. The Foxj1 family of proteins has now been definitively established as master regulators of motile ciliogenesis. 1 , 2 Identification of the Kintoun/PF13 protein has shed light on the assembly of dynein arms, 3 whereas live imaging of ciliary motility has led to the discovery of an intriguing new role for motile cilia in otolith formation in the ear. 4  相似文献   

11.
The assembly and function of cilia on Caenorhabditis elegans neurons depends on the action of two kinesin-2 motors, heterotrimeric kinesin-II and homodimeric OSM-3-kinesin, which cooperate to move the same intraflagellar transport (IFT) particles along microtubule (MT) doublets. Using competitive in vitro MT gliding assays, we show that purified kinesin-II and OSM-3 cooperate to generate movement similar to that seen along the cilium in the absence of any additional regulatory factors. Quantitative modeling suggests that this could reflect an alternating action mechanism, in which the motors take turns to move along MTs, or a mechanical competition, in which the motors function in a concerted fashion to move along MTs with the slow motor exerting drag on the fast motor and vice versa. In vivo transport assays performed in Bardet-Biedl syndrome (BBS) protein and IFT motor mutants favor a mechanical competition model for motor coordination in which the IFT motors exert a BBS protein-dependent tension on IFT particles, which controls the IFT pathway that builds the cilium foundation.  相似文献   

12.
13.
Cilia play critical roles during embryonic development and adult homeostasis. Dysfunction of cilia leads to various human genetic diseases, including many caused by defects in transition zones (TZs), the “gates” of cilia. The evolutionarily conserved TZ component centrosomal protein 290 (CEP290) is the most frequently mutated human ciliopathy gene, but its roles in ciliogenesis are not completely understood. Here, we report that CEP290 plays an essential role in the initiation of TZ assembly in Drosophila. Mechanistically, the N-terminus of CEP290 directly recruits DAZ interacting zinc finger protein 1 (DZIP1), which then recruits Chibby (CBY) and Rab8 to promote early ciliary membrane formation. Complete deletion of CEP290 blocks ciliogenesis at the initiation stage of TZ assembly, which can be mimicked by DZIP1 deletion mutants. Remarkably, expression of the N-terminus of CEP290 alone restores the TZ localization of DZIP1 and subsequently ameliorates the defects in TZ assembly initiation in cep290 mutants. Our results link CEP290 to DZIP1-CBY/Rab8 module and uncover a previously uncharacterized important function of CEP290 in the coordination of early ciliary membrane formation and TZ assembly.

Dysfunction of cilia leads to various human genetic diseases, including many caused by defects in transition zones (TZs), the “gates” of cilia. A study in Drosophila reveals that the cilia TZ core protein CEP290 coordinates early ciliary membrane formation and TZ assembly; the N-terminus of CEP290 recruits DZIP1, which in turn recruits Rab8 and CBY to promote early ciliary membrane formation.  相似文献   

14.
Hatched sea urchin blastulae, which have primarily short 25-μm cilia except for some long 40-to 70-μm cilia at the apical tuft, were induced to form long (40- to 70-μm) cilia around most of their circumference when treated with trypsin (0.008–0.1%) or concanavalin A. Other animalizing agents did not induce the formation of long cilia when applied to the normal blastulae. The formation of long cilia by trypsin was both time and concentration dependent. The long cilia first appeared around the apical tuft after 6–8 hr in trypsin (21°C), and by 18–22 hr most of the blastula was covered with the long cilia. Length distribution studies on cilia isolated at various times showed that the percentage of long cilia increased from approximately 10% in the normal blastula to over 66% in the 22-hr trypsin-treated embryo, and indicated that the long cilia formed by the elongation of the original short cilia. Only the blastulae and gastrulae could be induced to form long cilia; the prisms and plutei could not. Once development was inhibited by the trypsin and the first long cilia appeared, the trypsin effect could not be reversed. When blastulae with long cilia were removed from the trypsin for 10 hr, the cilia remained long; when the long cilia were detached, the blastulae regenerated long cilia in the absence of trypsin. The induced long cilia moved poorly, similar to the long, apical tuft cilia of normal embryos. The formation of long cilia by trypsin treatment of sea urchin blastulae provides a model system for studying the mechanisms of ciliary length control.  相似文献   

15.
Cilia and flagella are involved in a variety of processes and human diseases, including ciliopathies and sterility. Their motility is often controlled by?a central microtubule (MT) pair localized within the ciliary MT-based skeleton, the axoneme. We characterized the formation of the motility apparatus in detail in Drosophila spermatogenesis. We show that assembly of the central MT pair starts prior to the meiotic divisions, with nucleation of a singlet MT within the basal body of a small cilium, and that the second MT of the pair only assembles much later, upon flagella formation. BLD10/CEP135, a conserved player in centriole and flagella biogenesis, can bind and stabilize MTs and is required for the early steps of central MT pair formation. This work describes a genetically tractable system to study motile cilia formation and provides an explanation for BLD10/CEP135's role in assembling highly stable MT-based structures, such as motile axonemes and centrioles.  相似文献   

16.
Polyalkoxybenzenes are plant components displaying a wide range of biological activities. In these studies, we synthesized apiol and dillapiol isoxazoline analogues of combretastatins and evaluated their effect on sea urchin embryos. We have shown that p-methoxyphenyl isoxazoline caused sea urchin embryo immobilization due to the selective excision of motile cilia, whereas long immotile sensory cilia of apical tuft remained intact. This effect was completely reversed by washing the embryos. The compound did not alter cell division, blastulae hatching, and larval morphogenesis. In our hands, the molecule would serve as a convenient tool for in vivo studying morphogenetic processes in the sea urchin embryo. We anticipate that both the assay and the described derivative could be used for studies in ciliary function in embryogenesis.  相似文献   

17.
Centrioles are the foundation for centrosome and cilia formation. The biogenesis of centrioles is initiated by an assembly mechanism that first synthesizes the ninefold symmetrical cartwheel and subsequently leads to a stable cylindrical microtubule scaffold that is capable of withstanding microtubule-based forces generated by centrosomes and cilia. We report that the conserved WD40 repeat domain–containing cartwheel protein Poc1 is required for the structural maintenance of centrioles in Tetrahymena thermophila. Furthermore, human Poc1B is required for primary ciliogenesis, and in zebrafish, DrPoc1B knockdown causes ciliary defects and morphological phenotypes consistent with human ciliopathies. T. thermophila Poc1 exhibits a protein incorporation profile commonly associated with structural centriole components in which the majority of Poc1 is stably incorporated during new centriole assembly. A second dynamic population assembles throughout the cell cycle. Our experiments identify novel roles for Poc1 in centriole stability and ciliogenesis.  相似文献   

18.
Individual cell types can elaborate morphologically diverse cilia. Cilia are assembled via intraflagellar transport (IFT) of ciliary precursors; however, the mechanisms that generate ciliary diversity are unknown. Here, we examine IFT in the structurally distinct cilia of the ASH/ASI and the AWB chemosensory neurons in Caenorhabditis elegans, enabling us to compare IFT in specific cilia types. We show that unlike in the ASH/ASI cilia, the OSM-3 kinesin moves independently of the kinesin-II motor in the AWB cilia. Although OSM-3 is essential to extend the distal segments of the ASH/ASI cilia, it is not required to build the AWB distal segments. Mutations in the fkh-2 forkhead domain gene result in AWB-specific defects in ciliary morphology, and FKH-2 regulates kinesin-II subunit gene expression specifically in AWB. Our results suggest that cell-specific regulation of IFT contributes to the generation of ciliary diversity, and provide insights into the networks coupling the acquisition of ciliary specializations with other aspects of cell fate.  相似文献   

19.
Cilia are hair-like organelles extending from the cell surface with important sensory and motility functions. Ciliary defects can result in a wide range of human diseases known as ciliopathies. However, the molecular mechanisms controlling ciliogenesis remain poorly defined. Here we show that cylindromatosis (CYLD), a tumor suppressor protein harboring deubiquitinase activity, plays a critical role in the assembly of both primary and motile cilia in multiple organs. CYLD knockout mice exhibit polydactyly and various ciliary defects, such as failure in basal body anchorage and disorganization of basal bodies and axenomes. The ciliary function of CYLD is partially attributed to its deconjugation of the polyubiquitin chain from centrosomal protein of 70 kDa (Cep70), a requirement for Cep70 to interact with γ-tubulin and localize at the centrosome. In addition, CYLD-mediated inhibition of histone deacetylase 6 (HDAC6), which promotes tubulin acetylation, constitutes another mechanism for the ciliary function of CYLD. Small-molecule inhibitors of HDAC6 could partially rescue the ciliary defects in CYLD knockout mice. These findings highlight the importance of protein ubiquitination in the modulation of ciliogenesis, identify CYLD as a crucial regulator of this process, and suggest the involvement of CYLD deficiency in ciliopathies.  相似文献   

20.
Background information. The assembly and maintenance of cilia depend on IFT (intraflagellar transport) mediated by molecular motors and their interplay with IFT proteins. Here, we have analysed the involvement of IFT proteins in the ciliogenesis of mammalian photoreceptor cilia. Results. Electron microscopy revealed that ciliogenesis in mouse photoreceptor cells follows an intracellular ciliogenesis pathway, divided into six distinct stages. The first stages are characterized by electron‐dense centriolar satellites and a ciliary vesicle, whereas the formations of the ciliary shaft and the light‐sensitive outer segment discs are features of the later stages. IFT proteins were associated with ciliary apparatus during all stages of photoreceptor cell development. Conclusions. Our data conclusively provide evidence for the participation of IFT proteins in photoreceptor cell ciliogenesis, including the formation of the ciliary vesicle and the elongation of the primary cilium. In advanced stages of ciliogenesis the ciliary localization of IFT proteins indicates a role in IFT as is seen in mature cilia. A prominent accumulation of IFT proteins in the periciliary cytoplasm at the base of the cilia in these stages most probably resembles a reserve pool of IFT molecules for further delivery into the growing ciliary shaft and their subsequent function in IFT. Nevertheless, the cytoplasmic localization of IFT proteins in the absence of a ciliary shaft in early stages of ciliogenesis may indicate roles of IFT proteins beyond their well‐established function for IFT in mature cilia and flagella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号