首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A Wang  X Dai  D Lu 《Cell》1980,21(1):251-255
We report the characterization of Tn2 transpositions into the chromosome and into an F' lacproB episome of E. coli. When Tn2 transposes into the chromosome a proportion of the insertions result in auxotrophy. These insertions can revert to prototrophs and lose ampicillin resistance concomitantly. However, Tn2 insertions in F' lacproB are often associated with deletions, and it seems probable that insertion and deletion occur simultaneously.  相似文献   

3.
Thiamin pyrophosphate, CoASH, and NAD+ have been shown to reversibly bind to the purified bovine liver mitochondrial branched-chain α-ketoacid dehydrogenase complex. When saturated with thiamin pyrophosphate, the complex was more stable to heat and chymotrypsin inactivation. Under identical saturating conditions a conformational change in the complex was observed by circular dichroism spectroscopy. We postulate that thiamin pyrophosphate can increase the biological half-life of the in vivo, membrane-bound complex through conformational changes induced by the binding of this cofactor.  相似文献   

4.
sn-Glycerol-3-phosphate auxotrophs defective in phospholipid synthesis contain a Km-defective sn-glycerol-3-phosphate acyltransferase. Detailed genetic analysis revealed that two mutations were required for the auxotrophic phenotype. One mutation, in the previously described plsB locus (sn-glycerol-3-phosphate acyltransferase structural gene), mapped near min 92 on the Escherichia coli linkage map. Isolation of Tn10 insertions cotransducible with the auxotrophy in phage P1 crosses revealed that a second mutation was required with plsB26 to confer the sn-glycerol-3-phosphate auxotrophic phenotype. This second locus, plsX, mapped between pyrC and purB near min 24 on the E. coli linkage map. Tn10 insertions near plsX allowed detailed mapping of the genetic loci in this region. A clockwise gene order putA pyrC flbA flaL flaT plsX fabD ptsG thiK purB was inferred from results of two- and three-factor crosses. Strains harboring the four possible configurations of the mutant and wild-type plsB and plsX loci were constructed. Isogenic plsB+ plsX+, plsB+ plsX50, and plsB26 plsX+ strains grew equally well on glucose minimal medium without sn-glycerol-3-phosphate. In addition, plsX or plsX+ had no apparent effect on sn-glycerol-3-phosphate acyltransferase activity measured in membrane preparations. The molecular basis for the plsX requirement for conferral of sn-glycerol-3-phosphate auxotrophy in these strains remains to be established.  相似文献   

5.
The Tn3-like Streptomyces transposon Tn4560 was used to mutagenize Streptomyces avermitilis, the producer of anthelmintic avermectins and the cell growth inhibitor oligomycin. Tn4560 transposed in this strain from a temperature-sensitive plasmid to the chromosome and from the chromosome to a plasmid with an apparent frequency of about 10(-4) to 10(-3) at both 30 and 39 degrees C. Auxotrophic and antibiotic nonproducing mutations were, however, obtained only with cultures that were kept at 37 or 39 degrees C. About 0.1% of the transposon inserts obtained at 39 degrees C caused auxotrophy or abolished antibiotic production. The sites of insertion into the S. avermitilis chromosome were mapped. Chromosomal DNA fragments containing Tn4560 insertions in antibiotic production genes were cloned onto a Streptomyces plasmid with temperature-sensitive replication and used to transport transposon mutations to other strains, using homologous recombination. This technique was used to construct an avermectin production strain that no longer makes the toxic oligomycin.  相似文献   

6.
7.
Chromosomal insertions of Tn917 in Bacillus subtilis.   总被引:34,自引:28,他引:6       下载免费PDF全文
We describe 46 insertions of the Streptococcus faecalis transposon Tn917 into the chromosome of Bacillus subtilis. These insertion mutations were mapped genetically. Some caused auxotrophic requirements, and others were cryptic. These insertions were scattered around the B. subtilis chromosome. The mutant strains were useful in several ways for mapping and cloning B. subtilis genes and were added to the Bacillus Genetic Stock Center collection. Among the auxotrophic markers were a new serine auxotrophy and deletion-insertions that caused auxotrophy in one case for homoserine and threonine, in another case for uracil and either cysteine or methionine, and in a third case for leucine, isoleucine, and valine.  相似文献   

8.
Maple syrup urine disease results from inherited defects in human nuclear genes for branched chain α-ketoacid dehydrogenase, a mitochondrial multienzyme complex. Thiamin pyrophosphate is necessary for complex activity and a thiamin-responsive form of maple syrup urine disease is known. Here we demonstrate the use of [1-13C]leucine oxidation to [13C]O2 quantified in breath samples as a means of assessing whole body leucine oxidation. Analysis of cultured cells from this patient shows the antigenic lack of the E2 subunit, yet she gained branched chain o-ketoacid dehydrogenase activity in response to diet supplementation with pharmacologic doses of thiamin. These cultured cells were used to seek a molecular basis for the observed thiamin response. Despite normal thiamin transport in these cells, medium supplementation of up to 1000 mg thiamin/liter failed to increase complex activity or cause the antigenic appearance of the missing protein. This lack of response in cultured cells suggests that the observed whole body response to thiamin must be a tissue-specific effect in liver, muscle, or kidney. In addition, allele-specific detection of paternal and maternal mutations was used to genotype family members in this pedigree.  相似文献   

9.
《FEBS letters》2014,588(9):1603-1607
α-Isopropylmalate synthase (IPMS) catalyses the reaction between α-ketoisovalerate and acetyl coenzyme A (AcCoA) in the first step of leucine biosynthesis. IPMS is closely related to homocitrate synthase, which catalyses the reaction between AcCoA and the unbranched α-ketoacid α-ketoglutarate. Analysis of these enzymes suggests that several differently conserved key residues are responsible for the different substrate selectivity. These residues were systematically substituted in the Mycobacterium tuberculosis IPMS, resulting in changes in substrate specificity. A variant of IPMS was constructed with a preference for the unbranched α-ketoacids α-ketobutyrate and pyruvate over the natural branched substrate α-ketoisovalerate.  相似文献   

10.
GlnD of Escherichia coli is a bifunctional signal-transducing enzyme (102.4 kDa) which uridylylates the allosteric regulatory protein PII and deuridylylates PII-UMP in response to growth with nitrogen excess or limitation, respectively. GlnD catalyzes these reactions in response to high or low levels of cytoplasmic glutamine, respectively, and indirectly directs the expression of nitrogen-regulated genes, e.g., the glnK-amtB operon. We report that chromosomal mini-Tn10 insertions situated after nucleotide number 997 or 1075 of glnD partially suppressed the osmosensitive phenotype of DeltaotsBA or otsA::Tn10 mutations (defective osmoregulatory trehalose synthesis). Strains carrying these glnD::mini-Tn10 mutations either completely repressed the expression of trp::(glnKp-lacZ) or induced this reporter system to nearly 60% of the wild-type glnD level in response to nitrogen availability, an essentially normal response. This was in contrast to the much-studied glnD99::Tn10 mutation, which carries its insertion in the 3' end of the gene, causes a complete repression of glnKp-lacZ expression under all growth conditions, and also confers leaky glutamine auxotrophy. When expressed from the Pm promoter in plasmid constructs, the present glnD mutations produced proteins with an apparent mass of 39 or 42 kDa. These proteins were deduced to comprise 344 or 370 N-terminal residues, respectively, harboring the known nucleotidyltransferase domain of GlnD, plus a common C-terminal addition of 12 residues encoded by IS10. They lacked three other domains of GlnD. Apparently, the transferase domain by itself enabled the cells to catalyze the uridylylation reaction and direct nitrogen-regulated gene expression. Our data indicate that there exists a link between osmotic stress and the nitrogen response.  相似文献   

11.
We have used a papillation screening technique to isolate mutations that increase the precise excision of insertion elements. The three mutations isolated stimulated precise excision of Tn5, Tn10, and the IS elements. They had a large, 20- to 600-fold, effect on excision of Tn5 at various chromosomal sites. The varied stimulation for different Tn5 insertions showed that the mutations altered the relationship between a precise excision activity and the chromosomal sequence flanking an inserted Tn5. A much smaller stimulation was observed for insertions on the plasmid F'128. The stimulation was recA independent. The mutations also reduced the rate of production of bacteriophage Mu progeny. The mutations were mapped by two- and three-factor crosses with closely linked Tn10 insertions. They defined the uup locus, located at 21.3 min on the Escherichia coli map, next to pyrD.  相似文献   

12.
Fourteen Tn5-generated mutations of the Rac prophage, called sbc because they suppress recB21 recC22, were found to fall into two distinct types: type I mutations, which were insertions of Tn5, and type II mutations, which were insertions of IS50. Both orientations of Tn5 and IS50 were represented among the mutants and were arbitrarily labeled A and B. All 14 of the Tn5 and IS50 insertions occurred in the same location (+/- 100 base pairs) approximately 5.6 kilobases from one of the hybrid attachment sites. Eleven of the mutants contained essentially the same amount of exonuclease VIII, the product of recE. The possibility that a promoter for recE was created by the insertion of Tn5 and IS50 was considered. Two IS50 mutants in which such a promoter could not have been created showed three to four times as much exonuclease VIII, and another showed one-half as much as the majority. The possibility was considered that a promoter internal to IS50 is responsible for this heterogeneity. Restriction alleviation was measured in all 14 mutants. An insertion of the transposon Tn10 which reduces expression of exonuclease VIII (recE101::Tn10) was located within the Rac prophage at a position 2.35 kilobases from the left hybrid attachment site. Location and orientation of the Rac prophage on the Escherichia coli genetic map are discussed in light of these results.  相似文献   

13.
The lon gene of Escherichia coli codes for an ATP-dependent protease. Mutations in lon cause a defect in the intracellular degradation of abnormal and mutant proteins and lead to a number of phenotypic changes, such as UV sensitivity and overproduction of capsular polysaccharide. We have isolated lambda transducing phage carrying the lon gene and used the lon phage as a target for insertional mutagenesis by a defective transposon Tn10 to produce lon::delta 16 delta 17Tn10 derivatives. The delta 16 delta 17Tn10 (hereafter called delta Tn10) elements were inserted at sites throughout the lon gene and disrupted the coding region between 15 and 75% of the distance from the amino-terminal end. Radioactive labeling of proteins in vivo in cells infected with different lambda lon::delta Tn10 phage demonstrated that the insertions resulted in the synthesis of truncated Lon proteins. The lon::delta Tn10 mutations, when crossed from the phage into the bacterial chromosome, abolished the synthesis of intact Lon protein, as assayed by antibody on Western blots. An analysis of the protein-degradative ability of lon::delta Tn10 cells suggests that although the insertions in lon caused a reduction in ATP-dependent protein degradation, they did not completely eliminate such degradation either in vivo or in vitro. The lon::delta Tn10 mutations and a lon deletion retaining only the amino-terminal 25% of the gene did not affect the energy-dependent degradation of proteins during starvation and led to only a 40 to 60% reduction in the ATP-dependent degradation of canavanine-containing proteins and puromycyl peptides. Our data provide clear evidence that energy-dependent proteolytic enzymes other than Lon exist in E. coli.  相似文献   

14.
Rat brain mitochondria were found to convert 3-mercaptopyruvate to 2-mercaptoacetate in the presence of NAD+, coenzyme A and thiamin pyrophosphate. The overall reaction probably consists of an oxidative decarboxylation of 3-mercaptopyruvate with 2-mercaptoacetyl CoA as a product which is then hydrolyzed to 2-mercaptoacetate by acyl CoA hydrolase.  相似文献   

15.
Deletions in the tet genes derived from Tn10 were formed from different tet::Tn5 insertion mutations by removing DNA sequences located between a HindIII site in Tn5 and a HindIII site adjacent to the tet genes. Tetracycline-sensitive point mutations were mapped in recombination tests with the deletions and were thus aligned with the genetic and physical map of the tet region. Plasmids carrying point mutations were tested for complementation with derivatives of pDU938, a plasmid carrying cloned tet genes derived from Tn10 which had been inactivated by Tn5 insertions. Complementation occurred between promoter-proximal tet point mutations and distal tet::Tn5 insertions, suggesting the existence of two structural genes, tetA and tetB. These results, together with the analysis of polypeptides in minicells harboring pDU938tet::Tn5 mutants, suggested that tetA and tetB are expressed coordinately in an operon. The tetB gene encodes the previously characterized 36,000-dalton cytoplasmic membrane TET protein, but the product of tetA was not identified. Point mutations in either tetA or tetB led to the defective expression of the resistance mechanism involving tetracycline efflux. It is suggested that the tetA and tetB products interact cooperatively in the membrane to express resistance.  相似文献   

16.
Transposon Tn5 insertions causing anaerobic cysteine auxotrophy were isolated from a Salmonella typhimurium cysI parent (auxotrophic under aerobic but not anaerobic conditions). Insertions in one mutant group appeared to be in cysG. A second group of insertions, designated asr (anaerobic sulfite reduction), were located near map unit 53 on the S. typhimurium chromosome. They did not cause aerobic or anaerobic auxotrophy in a cys1+ background but did prevent dissimilatory sulfite reduction. Plasmids containing asr DNA cloned from wild-type S. typhimurium conferred anaerobic prototrophy and the ability to produce hydrogen sulfide from sulfite on an Escherichia coli cys1 mutant.  相似文献   

17.
BACKGROUND: Thiamin pyrophosphokinase (TPK) catalyzes the transfer of a pyrophosphate group from ATP to vitamin B1 (thiamin) to form the coenzyme thiamin pyrophosphate (TPP). Thus, TPK is important for the formation of a coenzyme required for central metabolic functions. TPK has no sequence homologs in the PDB and functions by an unknown mechanism. The TPK structure has been determined as a significant step toward elucidating its catalytic action. RESULTS: The crystal structure of Saccharomyces cerevisiae TPK complexed with thiamin has been determined at 1.8 A resolution. TPK is a homodimer, and each subunit consists of two domains. One domain resembles a Rossman fold with four alpha helices on each side of a 6 strand parallel beta sheet. The other domain has one 4 strand and one 6 strand antiparallel beta sheet, which form a flattened sandwich structure containing a jelly-roll topology. The active site is located in a cleft at the dimer interface and is formed from residues from domains of both subunits. The TPK dimer contains two compound active sites at the subunit interface. CONCLUSIONS: The structure of TPK with one substrate bound identifies the location of the thiamin binding site and probable catalytic residues. The structure also suggests a likely binding site for ATP. These findings are further supported by TPK sequence homologies. Although possessing no significant sequence homology with other pyrophospokinases, thiamin pyrophosphokinase may operate by a mechanism of pyrophosphoryl transfer similar to those described for pyrophosphokinases functioning in nucleotide biosynthesis.  相似文献   

18.
Acetaldehyde coenzyme A dehydrogenase of Escherichia coli.   总被引:15,自引:12,他引:3       下载免费PDF全文
Mutants of Escherichia coli (adh) in which alcohol dehydrogenase is derepressed under aerobic conditions were also found to overproduce acetaldehyde coenzyme a dehydrogenase. However, acetaldehyde coenzyme A dehydrogenase was induced by ethanol or acetaldehyde and subject to strong catabolite repression, whereas alcohol dehydrogenase was little affected by these conditions. Mutants no longer able to use ethanol as carbon source were isolated from an adh strain. Some of these mutants were revertants at the adh locus and no longer produced either alcohol dehydrogenase or acetaldehyde coenzyme A dehydrogenase. Others, designated acd, were found to lack only acetaldehyde coenzyme A dehydrogenase. The acd mutation was located at min 62 of the E. coli genetic map, the gene order being thyA-lysA-acd-serA-fda. Isolation of Tn10 insertions cotransducible with acd greatly simplified the mapping procedure.  相似文献   

19.
Thiamin pyrophosphate (TPP) is a coenzyme derived from vitamin B1 (thiamin). TPP synthesis in eukaryotes requires thiamin pyrophosphokinase (TPK), which catalyzes the transfer of a pyrophosphate group from ATP to thiamin. TPP is essential for central metabolic processes, including the formation of acetyl CoA from glucose and the Krebs cycle. Deficiencies in human thiamin metabolism result in beriberi and Wernicke encephalopathy. The crystal structure of mouse TPK was determined by multiwavelength anomalous diffraction at 2.4 A resolution, and the structure of TPK complexed with thiamin has been refined at 1.9 A resolution. The TPK polypeptide folds as an alpha/beta-domain and a beta-sandwich domain, which share a central ten-stranded mixed beta-sheet. TPK subunits associate as a dimer, and thiamin is bound in the dimer interface. Despite lacking apparent sequence homology with other proteins, the alpha/beta-domain resembles the Rossman fold and is similar to other kinase structures, including another pyrophosphokinase and a thiamin biosynthetic enzyme. Comparison of mouse and yeast TPK structures reveals differences that could be exploited in developing species-specific inhibitors of potential use as antimicrobial agents.  相似文献   

20.
Forty-nine Tn3 and Tn5 transposition insertion mutations were introduced into the virulence region of the pTiA6NC plasmid of Agrobacterium tumefaciens. Five Tn5 transposition mutations from an earlier study (D. Garfinkel and E. Nester, J. Bacteriol. 144:732-743, 1980) were also mapped more accurately. These mutations defined five separate loci within the virulence region. Two Tn3 insertions into one of these loci, virA, result in a strain which is only weakly virulent; however, a Tn5 insertion into this locus eliminates virulence. One Tn5 insertion into another locus, virC, results in a strain which is weakly virulent. Two additional Tn5 insertions into this locus eliminate virulence. Insertions into the remaining three loci eliminate virulence entirely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号