首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We characterized the three-dimensional organization of microtubules in the human intestinal epithelial cell line Caco-2 by laser scanning confocal microscopy. Microtubules formed a dense network approximately 4-microns thick parallel to the cell surface in the apical pole and a loose network 1-micron thick in the basal pole. Between the apical and the basal bundles, microtubules run parallel to the major cell axis, concentrated in the vicinity of the lateral membrane. Colchicine treatment for 4 h depolymerized 99.4% of microtubular tubulin. Metabolic pulse chase, in combination with domain-selective biotinylation, immune and streptavidin precipitation was used to study the role of microtubules in the sorting and targeting of four apical and one basolateral markers. Apical proteins have been recently shown to use both direct and transcytotic (via the basolateral membrane) routes to the apical surface of Caco-2 cells. Colchicine treatment slowed down the transport to the cell surface of apical and basolateral proteins, but the effect on the apical proteins was much more drastic and affected both direct and indirect pathways. The final effect of microtubular disruption on the distribution of apical proteins depended on the degree of steady-state polarization of the individual markers in control cells. Aminopeptidase N (APN) and sucrase-isomaltase (SI), which normally reach a highly polarized distribution (110 and 75 times higher on the apical than on the basolateral side) were still relatively polarized (9 times) after colchicine treatment. The decrease in the polarity of APN and SI was mostly due to an increase in the residual basolateral expression (10% of control total surface expression) since 80% of the newly synthesized APN was still transported, although at a slower rate, to the apical surface in the absence of microtubules. Alkaline phosphatase and dipeptidylpeptidase IV, which normally reach only low levels of apical polarity (four times and six times after 20 h chase, nine times and eight times at steady state) did not polarize at all in the presence of colchicine due to slower delivery to the apical surface and increased residence time in the basolateral surface. Colchicine-treated cells displayed an ectopic localization of microvilli or other apical markers in the basolateral surface and large intracellular vacuoles. Polarized secretion into apical and basolateral media was also affected by microtubular disruption. Thus, an intact microtubular network facilitates apical protein transport to the cell surface of Caco-2 cells via direct and indirect routes; this role appears to be crucial for the final polarity of some apical plasma membrane proteins but only an enhancement factor for others.  相似文献   

3.
The sorting of proteins to the plasma membrane in epithelial cells   总被引:17,自引:13,他引:4       下载免费PDF全文
《The Journal of cell biology》1986,103(6):2565-2568
  相似文献   

4.
K Matter  M Brauchbar  K Bucher  H P Hauri 《Cell》1990,60(3):429-437
We studied the postsynthetic sorting of endogenous plasma membrane proteins in a polarized epithelial cell line, Caco-2. Pulse-chase radiolabeling was combined with domain-specific cell surface assays to monitor the arrival of three apical and one basolateral protein at the apical and basolateral cell surface. Apical proteins were inserted simultaneously into both membrane domains. The fraction targeted to the basolateral domain was different for the three apical proteins and was subsequently sorted to the apical domain by transcytosis at different rates. In contrast, a basolateral protein was found in the basolateral membrane only. Thus, sorting of plasma membrane proteins occurred from two sites: the Golgi apparatus and the basolateral membrane. These data explain apparently conflicting results of earlier studies.  相似文献   

5.
In epithelial cells the plasma membrane is divided into domains that are biochemically and functionally different. In intestinal cells for example the apical domain is facing the intestinal lumen and is involved in the uptake of nutriments while the basolateral domain is mediating cell-cell adhesion and signalisation. We are interested in deciphering the mechanisms underlying the creation and maintenance of such specialized domains. As an epithelial model we have used the intestinal cell line Caco-2 and we have studied the transport and sorting of the human neurotrophin receptor (p75 NTR) in these cells. Newly synthesized p75 NTR is first transported to the basolateral membrane and then is accumulated on the apical membrane after transcytosis. This final apical localization is controlled by the presence of a membrane anchor and a cluster of O-glycosylation sites located in the part of the ectodomain close to the membrane. Among the mechanisms likely to be involved in the sorting of apical components we have looked for a role of lipid-protein microdomain formation in the Golgi apparatus. These membrane microdomains are highly enriched in glycosylphosphatidyl inositol (GPI) anchored proteins, glycosphingolipids and apical proteins such as sucrase isomaltase (SI). Such a composition is also found for endocytic structures called caveolae which are made of caveolin 1. We have expressed caveolin 1 in Caco-2 cells which do not express it and also caveolin 2, a related protein of unknown function. Expression of caveolin 1 led to formation of caveolae indicating that this protein is necessary for caveolae formation while caveolin 2 is restricted to the Golgi apparatus and has no effect on caveolae formation. However Caveolin 2 increased the amount of SI incorporated in microdomains suggesting a role in recruitment into the apical pathway. The choice for a site of fusion for transport vesicles is the last step of control during exocytosis. To identify proteins involved in that step we have cloned and characterized two members of the t-SNARE family, namely syntaxin 3 and SNAP23. Syntaxin 3 is present on the apical membrane and forms a complex with SNAP23 which is also localized on the basolateral membrane where it forms a complex with syntaxin 4. Overexpression of syntaxin 3 in Caco-2 led to a decrease of SI exocytosis towards the apical membrane confirming that syntaxin 3 is involved in targeting the fusion of apical transport vesicles to the apical pole of the cells.  相似文献   

6.
7.
We studied the sorting and surface delivery of three apical and three basolateral proteins in the polarized epithelial cell line Caco-2, using pulse-chase radiolabeling and surface domain-selective biotinylation (Le Bivic, A., F. X. Real, and E. Rodriguez-Boulan. 1989. Proc. Natl. Acad. Sci. USA. 86:9313-9317). While the basolateral proteins (antigen 525, HLA-I, and transferrin receptor) were targeted directly and efficiently to the basolateral membrane, the apical markers (sucrase-isomaltase [SI], aminopeptidase N [APN], and alkaline phosphatase [ALP]) reached the apical membrane by different routes. The large majority (80%) of newly synthesized ALP was directly targeted to the apical surface and the missorted basolateral pool was very inefficiently transcytosed. SI was more efficiently targeted to the apical membrane (greater than 90%) but, in contrast to ALP, the missorted basolateral pool was rapidly transcytosed. Surprisingly, a distinct peak of APN was detected on the basolateral domain before its accumulation in the apical membrane; this transient basolateral pool (at least 60-70% of the enzyme reaching the apical surface, as measured by continuous basal addition of antibodies) was efficiently transcytosed. In contrast with their transient basolateral expression, apical proteins were more stably localized on the apical surface, apparently because of their low endocytic capability in this membrane. Thus, compared with two other well-characterized epithelial models, MDCK cells and the hepatocyte, Caco-2 cells have an intermediate sorting phenotype, with apical proteins using both direct and indirect pathways, and basolateral proteins using only direct pathways, during biogenesis.  相似文献   

8.
Enveloped viruses are excellent tools for the study of the biogenesis of epithelial polarity, because they bud asymmetrically from confluent monolayers of epithelial cells and because polarized budding is preceded by the accumulation of envelope proteins exclusively in the plasma membrane regions from which the viruses bud. In this work, three different experimental approaches showed that the carbohydrate moieties do not determine the final surface localization of either influenza (WSN strain) or vesicular stomatitis virus (VSV) envelope proteins in infected Madin-Darby Canine Kidney (MDCK) cells, as determined by immunofluorescence and immunoelectron microscopy, using ferritin as a marker. Infected concanavalin A- and ricin 1-resistant mutants of MDCK cells, with alterations in glycosylation, exhibited surface distributions of viral glycoproteins identical to those of the parental cell line, i.e., influenza envelope proteins were exclusively found in the apical surface, whereas VSV G protein was localized only in the basolateral region. MDCK cells treated with tunicamycin, which abolishes the glycosylation of viral glycoproteins, exhibited the same distribution of envelope proteins as control cells, after infection with VSF or influenza. A temperature-sensitive mutant of influenza WSN, ts3, which, when grown at the nonpermissive temperature of 39.5 degrees C, retains the sialic acid residues in the envelope glycoproteins, showed, at both 32 degrees C (permissive temperature) and 39.5 degrees C, budding polarity and viral glycoprotein distribution identical to those of the parental WSN strain, when grown in MDCK cells. These results demonstrate that carbohydrate moieties are not components of the addressing signals that determine the polarized distribution of viral envelope proteins, and possibly of the intrinsic cellular plasma membrane proteins, in the surface of epithelial cells.  相似文献   

9.
Generation of intestinal epithelial lipid polarity was studied in Caco-2 cells. Confluent monolayers on filters incorporated the exchangeable lipid N-6-NBD-aminocaproyl-sphingosine (C6-NBD-ceramide) from liposomes. The fluorescent ceramide was converted equally to C6-NBD-glucosylceramide and C6-NBD-sphingomyelin, analogues of lipids enriched on the apical and basolateral surface, respectively, of intestinal cells in vivo. Below 16 degrees C, where vesicular traffic is essentially blocked, each fluorescent product accumulated in the Golgi area. At 37 degrees C, 50% had been transported to the cell surface within 0.5 h, as measured by selective extraction of the fluorescent lipids onto BSA in the medium ("back-exchange") at 10 degrees C. Transport to the two surfaces could be assayed separately, as a diffusion barrier existed for both NBD-lipids and BSA. C6-NBD-glucosylceramide was enriched twofold apically, whereas C6-NBD-sphingomyelin was equally distributed over both domains. Polarities did not decrease when 37 degrees C incubations were carried out in the presence of increasing BSA concentrations to trap the fluorescent lipids immediately after their arrival at the cell surface. Within 10 min from the start of synthesis, both products displayed their typical surface polarity. Lipid transcytosis displayed a half time of hours. In conclusion, newly synthesized sphingolipids in Caco-2 cells are sorted before reaching the cell surface. Transcytosis is not required for generating the in vivo lipid polarity.  相似文献   

10.
Both qualitative and quantitative approaches were used to ascertain whether gangliosides, incorporated into the apical plasma membrane of cultured epithelial cells from kidney of toad (A6) and dog (MDCK), were able to redistribute past the tight junctions to the basolateral membrane. The apical surfaces of confluent epithelia were exposed to rhodaminyl gangliosides and the distribution of the inserted gangliosides was assessed qualitatively by fluorescence microscopy. All of the fluorescence was confined to the apical surface for at least 1 h after the fluorescent gangliosides had become incorporated; none appeared on the basolateral surface. These observations were confirmed by incubating the cells with anti-rhodamine antibodies and 125I-labeled protein A. In order to quantitate further the ganglioside distribution, binding assays were performed using 125I-labeled cholera toxin, which binds specifically to ganglioside GM1. Exogenous GM1 added to the apical membrane was not detected on the basolateral membrane 4 h after its incorporation even though there was extensive disappearance of the inserted ganglioside, presumably through endocytosis. To directly examine the behaviour of endogenous gangliosides, the apical surface of the epithelial cells was exposed to bacterial neuraminidase, which hydrolyzes more complex gangliosides to GM1. The cells exhibited a 10-fold increase in binding of cholera toxin to their apical surface, but no increase in binding to their basolateral surface. Thus, no cellular pathways for movement from apical to basolateral plasma membrane appear to be available for implanted or endogenous gangliosides.  相似文献   

11.
Summary The mammalian intestinal epithelium has been found, based on in vivo experiments, to be resistant to insecticidal Cry toxins, which are derived from Bacillus thuringiensis and fatally damage insect midgut cells. Thus, the toxins are commonly used as a genetic resource in insect-resistant transgenic plants for feed. However, Cry toxins bind to the cellular brush border membrane vescle (BBMV) of mammalian intestinal cells. In this study, we investigated the affinity of Cry1Ab toxin, a lepidopteran-specific Cry1-type toxin, to the cellular BBMV of two mammalian intestinal cells as well as the effect of the toxin on the membrane potential of three mammalian intestinal cells compared to its effects on the silkworm midgut cell. We found that Cry1Ab toxin did bind to the bovine and porcine BBMV, but far more weakly than it did to the silkworm midgut BBMV. Furthermore, although the silkworm midgut cells developed severe membrane potential changes within 1 h following the toxin treatment at a final concentration of 2 μg/ml, no such membraneous changes were observed on the bovine, procine, and human intestinal cells. The present in vitro results suggest that, although Cry1Ab toxin may bind weakly or nonspecifically to certain BBMV components in the mammalian intestinal cell, it does not damage the cell’s membrane integrity, thus exerting no subsequent adverse effects on the cell.  相似文献   

12.
The effects of microtubule perturbation on the transport of two different viral glycoproteins were examined in infected Madin-Darby canine kidney (MDCK) cells grown on both permeable and solid substrata. Quantitative biochemical analysis showed that the microtubule-depolymerizing drug nocodazole inhibited arrival of influenza hemagglutinin on the apical plasma membrane in MDCK cells grown on both substrata. In contrast, the microtubule-stabilizing drug taxol inhibited apical appearance of hemagglutinin only when MDCK cells were grown on permeable substrata. On the basis of hemagglutinin mobility on sodium dodecyl sulfate gels and its sensitivity to endo H, it was evident that nocodazole and taxol arrested hemagglutinin at different intracellular sites. Neither drug caused a significant increase in the amount of hemagglutinin detected on the basolateral plasma membrane domain. In addition, neither drug had any noticeable effect on the transport of the vesicular stomatitis virus (VSV)-G protein to the basolateral surface. These results shed light on previous conflicting reports using this model system and support the hypothesis that microtubules play a role in the delivery of membrane glycoproteins to the apical, but not the basolateral, domain of epithelial cells.  相似文献   

13.
The polarized delivery of membrane proteins to the cell surface and the initial secretion of lysosomal proteins into the culture medium were studied in the polarized human intestinal adenocarcinoma cell line Caco-2 in the presence or absence of the microtubule-active drug nocodazole. The appearance of newly synthesized proteins at the plasma membrane was measured by their sensitivity to proteases added either to the apical or the basolateral surface of cells grown on nitrocellulose filters. Nocodazole was found to reduce the delivery to the cell surface of an apical membrane protein, aminopeptidase N, and to lead to its partial missorting to the basolateral surface, whereas the drug had no influence on the delivery of a basolateral 120-kD membrane protein defined by a monoclonal antibody. Furthermore, nocodazole selectively blocked the apical secretion of two lysosomal proteins, cathepsin D and acid alpha-glucosidase, whereas the drug had no influence on their basolateral secretion. These results suggest that in Caco-2 cells an intact microtubular network is important for the transport of newly synthesized proteins to the apical cell surface.  相似文献   

14.
The absorption of dietary non-heme iron by intestinal enterocytes is crucial to the maintenance of body iron homeostasis. This process must be tightly regulated since there are no distinct mechanisms for the excretion of excess iron from the body. An insight into the cellular mechanisms has recently been provided by expression cloning of a divalent cation transporter (DCT1) from rat duodenum and positional cloning of its human homologue, Nramp2. Here we demonstrate that Nramp2 is expressed in the apical membrane of the human intestinal epithelial cell line, Caco 2 TC7, and is associated with functional iron transport in these cells with a substrate preference for iron over other divalent cations. Iron transport occurs by a proton-dependent mechanism, exhibiting a concurrent intracellular acidification. Taken together, these data suggest that the expression of the Nramp2 transporter in human enterocytes may play an important role in intestinal iron absorption.  相似文献   

15.
Regulatory volume decrease (RVD) is a protective mechanism that allows mammalian cells to restore their volume when exposed to a hypotonic environment. A key component of RVD is the release of K+, Cl, and organic osmolytes, such as taurine, which then drives osmotic water efflux. Previous experiments have indicated that caveolin-1, a coat protein of caveolae microdomains in the plasma membrane, promotes the swelling-induced Cl current (ICl,swell) through volume-regulated anion channels. However, it is not known whether the stimulation by caveolin-1 is restricted to the release of Cl or whether it also affects the swelling-induced release of other components, such as organic osmolytes. To address this problem, we have studied ICl,swell and the hypotonicity-induced release of taurine and ATP in wild-type Caco-2 cells that are caveolin-1 deficient and in stably transfected Caco-2 cells that express caveolin-1. Electrophysiological characterization of wild-type and stably transfected Caco-2 showed that caveolin-1 promoted ICl,swell, but not cystic fibrosis transmembrane conductance regulator currents. Furthermore, caveolin-1 expression stimulated the hypotonicity-induced release of taurine and ATP in stably transfected Caco-2 cells grown as a monolayer. Interestingly, the effect of caveolin-1 was polarized because only the release at the basolateral membrane, but not at the apical membrane, was increased. It is therefore concluded that caveolin-1 facilitates the hypotonicity-induced release of Cl, taurine, and ATP, and that in polarized epithelial cells, the effect of caveolin-1 is compartmentalized to the basolateral membrane. caveolae; osmolyte; epithelial cell; chloride channel  相似文献   

16.
Calreticulin, a molecular chaperone involved in the folding of endoplasmic reticulum synthesized proteins, is also a shock protein induced by heat, food deprivation, and chemical stress. Mobilferrin, a cytosolic isoform of calreticulin, has been proposed to be an iron carrier for iron recently incoming into intestinal cells. To test the hypothesis that iron could affect calreticulin expression, we investigated the possible associations of calreticulin with iron metabolism. To that end, using Caco-2 cells as a model of intestinal epithelium, the mass and mRNA levels of calreticulin were evaluated as a function of the iron concentration in the culture media. Increasing the iron content in the culture from 1 to 20 microM produced an increase in calreticulin mRNA and a two-fold increase in calreticulin. Increasing iron also induced oxidative damage to proteins, as assessed by the formation of 4-hydroxy-2-nonenal adducts. Co-culture of cells with the antioxidants quercetin, dimethyltiourea and N-acetyl cysteine abolished both the iron-induced oxidative damage and the iron-induced increase in calreticulin. We postulate that the iron-induced expression of calreticulin is part of the cellular response to oxidative stress generated by iron.  相似文献   

17.
Unlike simple epithelial cells that directly target newly synthesized glycophosphatidylinositol (GPI)-anchored and single transmembrane domain (TMD) proteins from the trans-Golgi network to the apical membrane, hepatocytes use an indirect pathway: proteins are delivered to the basolateral domain and then selectively internalized and transcytosed to the apical plasma membrane. Myelin and lymphocyte protein (MAL) and MAL2 have been identified as regulators of direct and indirect apical delivery, respectively. Hepatocytes lack endogenous MAL consistent with the absence of direct apical targeting. Does MAL expression reroute hepatic apical residents into the direct pathway? We found that MAL expression in WIF-B cells induced the formation of cholesterol and glycosphingolipid-enriched Golgi domains that contained GPI-anchored and single TMD apical proteins; polymeric IgA receptor (pIgA-R), polytopic apical, and basolateral resident distributions were excluded. Basolateral delivery of newly synthesized apical residents was decreased in MAL-expressing cells concomitant with increased apical delivery; pIgA-R and basolateral resident delivery was unchanged. These data suggest that MAL rerouted selected hepatic apical proteins into the direct pathway.  相似文献   

18.
The membrane potential (MP) of the unicellular green alga Micrasterias torreyi was found to be −46 to −47 mV (when cultured in Waris medium). In contrast to plant cells in general, light-dark changes neither affected the potential or the membrane resistance in Micrasterias . In comparison, the freshwater plant Elodea showed a light-induced hyperpolarization due to the activating effect of light on the plasma membrane adenosine triphosphatases (PM ATPases) through a signal from chloroplasts. In Micrasterias , the PM H+-ATPase inhibitors Na-orthovanadate and diethylstilbestrol depolarized the potential, but it remained at the same level in light and dark. On the other hand, fusicoccin, which activates the PM H+-ATPases, hyperpolarized the potential clearly (to −56 mV). 3-(3',4'-dichlorophenyl)-1,1-dimethylurea, which blocks the electron transport chain from photosystem (PS)II to PSI and thereby prevents the possible signal transmission from chloroplasts to the PM, depolarized the MP slightly, but did not affect the (lacking) light changes either. The results indicate the presence of a continuous (low) activity of PM H+-ATPases in Micrasterias , which is not stimulated by light. The lack of rapid light-induced changes in Micrasterias MP may be due to an unusual functioning of giant chloroplasts in the ion metabolism of the Micrasterias cell.  相似文献   

19.
The formation of epithelial tissues requires both the generation of apical-basal polarity and the coordination of this polarity between neighbouring cells to form a central lumen. During de novo lumen formation, vectorial membrane transport contributes to the formation of a singular apical membrane, resulting in the contribution of each cell to only a single lumen. Here, from a functional screen for genes required for three-dimensional epithelial architecture, we identify key roles for synaptotagmin-like proteins 2-a and 4-a (Slp2-a/4-a) in the generation of a single apical surface per cell. Slp2-a localizes to the luminal membrane in a PtdIns(4,5)P(2)-dependent manner, where it targets Rab27-loaded vesicles to initiate a single lumen. Vesicle tethering and fusion is controlled by Slp4-a, in conjunction with Rab27/Rab3/Rab8 and the SNARE syntaxin-3. Together, Slp2-a/4-a coordinate the spatiotemporal organization of vectorial apical transport to ensure that only a single apical surface, and thus the formation of a single lumen, occurs per cell.  相似文献   

20.
The sorting and delivery of membrane and secretory proteins to the apical domain of epithelial cells remain rich fields for investigation. The different classes of apical membrane proteins have distinct targeting signals within their structure, but most signals have not yet been identified. The single, transmembrane proteins have been studied in some detail and their routing to the apical surface differs among epithelial cells. This difference can be exploited in the search for signals. Additionally, the different secretory responses of cells to microtubule disruption may reveal further insights into the dynamics of the apical domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号