首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the cap-binding complex, eIF4F, in the translation of vaccinia virus mRNAs has been analyzed within infected cells. Plasmid DNAs, which express dicistronic mRNAs containing a picornavirus internal ribosome entry site, produced within vaccinia virus-infected cells both β-glucuronidase and a cell surface-targeted single-chain antibody (sFv). Cells expressing sFv were selected from nonexpressing cells, enabling analysis of protein synthesis specifically within the transfected cells. Coexpression of poliovirus 2A or foot-and-mouth disease virus Lb proteases, which cleaved translation initiation factor eIF4G, greatly inhibited cap-dependent protein (β-glucuronidase) synthesis. Under these conditions, internal ribosome entry site-directed expression of sFv continued and cell selection was maintained. Furthermore, vaccinia virus protein synthesis persisted in the selected cells containing cleaved eIF4G. Thus, late vaccinia virus protein synthesis has a low requirement for the intact cap-binding complex eIF4F. This may be attributed to the short unstructured 5′ noncoding regions of the vaccinia virus mRNAs, possibly aided by the presence of poly(A) at both 5′ and 3′ termini.  相似文献   

2.
Early during the infection process, rotavirus causes the shutoff of cell protein synthesis, with the nonstructural viral protein NSP3 playing a vital role in the phenomenon. In this work, we have found that the translation initiation factor 2α (eIF2α) in infected cells becomes phosphorylated early after virus infection and remains in this state throughout the virus replication cycle, leading to a further inhibition of cell protein synthesis. Under these restrictive conditions, however, the viral proteins and some cellular proteins are efficiently translated. The phosphorylation of eIF2α was shown to depend on the synthesis of three viral proteins, VP2, NSP2, and NSP5, since in cells in which the expression of any of these three proteins was knocked down by RNA interference, the translation factor was not phosphorylated. The modification of this factor is, however, not needed for the replication of the virus, since mutant cells that produce a nonphosphorylatable eIF2α sustained virus replication as efficiently as wild-type cells. In uninfected cells, the phosphorylation of eIF2α induces the formation of stress granules, aggregates of stalled translation complexes that prevent the translation of mRNAs. In rotavirus-infected cells, even though eIF2α is phosphorylated these granules are not formed, suggesting that the virus prevents the assembly of these structures to allow the translation of its mRNAs. Under these conditions, some of the cellular proteins that form part of these structures were found to change their intracellular localization, with some of them having dramatic changes, like the poly(A) binding protein, which relocates from the cytoplasm to the nucleus in infected cells, a relocation that depends on the viral protein NSP3.  相似文献   

3.
In cells infected with the herpes simplex virus 1 (HSV-1) recombinant R3616 lacking both copies of the γ134.5 gene, the double-stranded protein kinase R (PKR) is activated, eIF-2α is phosphorylated, and protein synthesis is shut off. Although PKR is also activated in cells infected with the wild-type virus, the product of the γ134.5 gene, infected-cell protein 34.5 (ICP34.5), binds protein phosphatase 1α and redirects it to dephosphorylate eIF-2α, thus enabling sustained protein synthesis. Serial passage in human cells of a mutant lacking the γ134.5 gene yields second-site, compensatory mutants lacking various domains of the α47 gene situated next to the US11 gene (I. Mohr and Y. Gluzman, EMBO J. 15:4759–4766, 1996). We report the construction of two recombinant viruses: R5103, lacking the γ134.5, US8, -9, -10, and -11, and α47 (US12) genes; and R5104, derived from R5103 and carrying a chimeric DNA fragment containing the US10 gene and the promoter of the α47 gene fused to the coding domain of the US11 gene. R5104 exhibited a protein synthesis profile similar to that of wild-type virus, whereas protein synthesis was shut off in cells infected with R5103 virus. Studies on the wild-type parent and mutant viruses showed the following: (i) PKR was activated in cells infected with parent or mutant virus but not in mock-infected cells, consistent with earlier studies; (ii) lysates of R3616, R5103, and R5104 virus-infected cells lacked the phosphatase activity specific for eIF-2α characteristic of wild-type virus-infected cells; and (iii) lysates of R3616 and R5103, which lacked the second-site compensatory mutation, contained an activity which phosphorylated eIF-2α in vitro, whereas lysates of mock-infected cells or cells infected with HSV-1(F) or R5104 did not phosphorylate eIF-2α. We conclude that in contrast to wild-type virus-infected cells, which preclude the shutoff of protein synthesis by causing rapid dephosphorylation of eIF-2α, in cells infected with γ134.5 virus carrying the compensatory mutation, eIF-2α is not phosphorylated. The activity made apparent by the second-site mutation may represent a more ancient mechanism evolved to preclude the shutoff of protein synthesis.  相似文献   

4.
Defective genomes present in serially passaged virus stocks derived from the tsLB2 mutant of herpes simplex virus type 1 were found to consist of repeat units in which sequences from the UL region, within map coordinates 0.356 and 0.429 of standard herpes simplex virus DNA, were covalently linked to sequences from the end of the S component. The major defective genome species consisted of repeat units which were 4.9 × 106 in molecular weight and contained a specific deletion within the UL segment. These tsLB2 defective genomes were stable through more than 35 sequential virus passages. The ratios of defective virus genomes to helper virus genomes present in different passages fluctuated in synchrony with the capacity of the passages to interfere with standard virus replication. Cells infected with passages enriched for defective genomes overproduced the infected cell polypeptide number 8, which had previously been mapped within the UL sequences present in the tsLB2 defective genomes. In contrast, the synthesis of most other infected cell polypeptides was delayed and reduced. The abundant synthesis of infected cell polypeptide number 8 followed the β regulatory pattern, as evident from kinetic studies and from experiments in which cycloheximide, canavanine, and phosphonoacetate were used. However, in contrast to many β (early) and γ (late) viral polypeptides, the synthesis of infected cell polypeptide number 8 was only minimally reduced when cells infected with serially passaged tsLB2 were incubated at 39°C. The tsLB2 mutation had previously been mapped within the domains of the gene encoding infected cell polypeptide number 4, the function of which was shown to be required for β and γ viral gene expression. It is thus possible that the tsLB2 mutation affects the synthesis of only a subset of the β and γ viral polypeptides. An additional polypeptide, 74.5 × 103 in molecular weight, was abundantly produced in cells infected with a number of tsLB2 passages. This polypeptide was most likely expressed from truncated gene templates within the most abundant, deleted repeats of tsLB2 defective virus DNA.  相似文献   

5.
Black beetle virus: messenger for protein B is a subgenomic viral RNA   总被引:16,自引:13,他引:3       下载免费PDF全文
Black beetle virus induces the synthesis of three new proteins, protein A (molecular weight, 104,000), protein α (molecular weight, 47,000), and protein B (molecular weight, 10,000), in infected Drosophila cells. Two of these proteins, A and α, are known to be encoded by black beetle virus RNAs 1 and 2, respectively, extracted from virions. We found that RNA extracted from infected cells directed the synthesis of all three proteins when it was added to a cell-free protein-synthesizing system. When polysomal RNA was fractionated on a sucrose density gradient, the messengers for proteins A and α cosedimented with viral RNAs 1 (22S) and 2 (15S), respectively. However, the messenger for protein B was a 9S RNA (RNA 3) not found in purified virions. Like the synthesis of viral RNAs 1 and 2, intracellular synthesis of RNA 3 was not affected by the drug actinomycin D at concentrations which blocked synthesis of host cell RNA. This indicated that RNA 3 is a virus-specific subgenomic RNA and, therefore, that protein B is a virus-encoded protein.  相似文献   

6.
Dengue virus is a major global health threat and can lead to life-threatening hemorrhagic complications due to immune activation and cytokine production. Cross-reactive antibodies to an earlier dengue virus infection are a recognized risk factor for severe disease. These antibodies bind heterologous dengue serotypes and enhance infection into Fc-receptor-bearing cells, a process known as antibody-dependent enhancement of infection. One crucial cytokine seen elevated in severe dengue patients is IL-1β, a potent inflammatory cytokine matured by the inflammasome. We used a highly-physiologic system by studying antibody-dependent enhancement of IL-1β in primary human monocytes with anti-dengue human monoclonal antibodies isolated from patients. Antibody-enhancement increased viral replication in primary human monocytes inoculated with supernatant harvested from Vero cells infected with dengue virus serotype 2 (DENV-2) 16681. Surprisingly, IL-1β secretion induced by infectious supernatant harvested from two independent Vero cell lines was not enhanced by antibody. Secretion of multiple other inflammatory cytokines was also independent of antibody signaling. However, IL-1β secretion did require NLRP3 and caspase-1 activity. Immunodepletion of dengue virions from the infectious supernatant confirmed that virus was not the main IL-1β-inducing agent, suggesting that a supernatant component(s) not associated with the virion induced IL-1β production. We excluded RNA, DNA, contaminating LPS, viral NS1 protein, complement, and cytokines. In contrast, purified Vero-derived DENV-2 16681 exhibited antibody-enhancement of both infection and IL-1β induction. Furthermore, C6/36 mosquito cells did not produce such an inflammatory component, as crude supernatant harvested from insect cells infected with DENV-2 16681 induced antibody-dependent IL-1β secretion. This study indicates that Vero cells infected with DENV-2 16681 may produce inflammatory components during dengue virus propagation that mask the virus-specific immune response. Thus, the choice of host cell and viral purity should be carefully considered, while insect-derived virus represents a system that elicits antibody-dependent cytokine responses to dengue virus with fewer confounding issues.  相似文献   

7.
We obtained carrot (Daucus carota) cells possessing the 5′-noncoding sequence of the ORF12 gene (roIC) of TL-DNA of the Ri plasmid and a structural gene of bacterial β-glucuronidase by Agrobacterium-mediated transformation. When such cells were cultured in medium containing 2,4-dichlorophenoxyacetic acid, substantial reduction in β-glucuronidase activity was observed. Upon transferring the cells from a 2,4-D-containing medium to one devoid of 2,4-dichlorophenoxyacetic acid, enhanced expression of β-glucuronidase in somatic embryo development was recorded. Activation by gibberillic acid and suppression by abscisic acid of β-glucuronidase activities, in concord with embryogenesis, were also noted.  相似文献   

8.
The interferon-induced transmembrane protein BST-2/CD317 (tetherin) restricts the release of diverse enveloped viruses from infected cells. The HIV-1 accessory protein Vpu antagonizes this restriction by an unknown mechanism that likely involves the down-regulation of BST-2 from the cell surface. Here, we show that the optimal removal of BST-2 from the plasma membrane by Vpu requires the cellular protein β-TrCP, a substrate adaptor for a multi-subunit SCF E3 ubiquitin ligase complex and a known Vpu-interacting protein. β-TrCP is also required for the optimal enhancement of virion-release by Vpu. Mutations in the DSGxxS β-TrCP binding-motif of Vpu impair both the down-regulation of BST-2 and the enhancement of virion-release. Such mutations also confer dominant-negative activity, consistent with a model in which Vpu links BST-2 to β-TrCP. Optimal down-regulation of BST-2 from the cell surface by Vpu also requires the endocytic clathrin adaptor AP-2, although the rate of endocytosis is not increased; these data suggest that Vpu induces post-endocytic membrane trafficking events whose net effect is the removal of BST-2 from the cell surface. In addition to its marked effect on cell-surface levels, Vpu modestly decreases the total cellular levels of BST-2. The decreases in cell-surface and intracellular BST-2 are inhibited by bafilomycin A1, an inhibitor of endosomal acidification; these data suggest that Vpu induces late endosomal targeting and partial degradation of BST-2 in lysosomes. The Vpu-mediated decrease in surface expression is associated with reduced co-localization of BST-2 and the virion protein Gag along the plasma membrane. Together, the data support a model in which Vpu co-opts the β-TrCP/SCF E3 ubiquitin ligase complex to induce endosomal trafficking events that remove BST-2 from its site of action as a virion-tethering factor.  相似文献   

9.
A difference in the heat-inactivation kinetics between the β-glucuronidases of C3HeB/FeJ and C57Bl/6J mice was utilized to assess the mode of action of a temporal genetic element in controlling the expression of the β-glucuronidase structural gene Gus. The heat-inactivation kinetics of liver and kidney β-glucuronidase from F1 C3HeB/FeJ x C57Bl/6J animals were intermediate with respect to the parental enzyme patterns, suggesting that equal concentrations of the two allelic products were present in β-glucuronidase tetramers of F1 progeny. β-glucuronidase heteropolymers assembled in vivo under conditions where equal concentrations of the two structural alleles of the enzyme were known to be present also exhibited intermediate heat-inactivation kinetics. These observations are consistent with a trans mode of action of a genetic element that controls the rate of murine β-glucuronidase synthesis.  相似文献   

10.
Measles virus (MeV) infection is characterized by the formation of multinuclear giant cells (MGC). We report that beta interferon (IFN-β) production is amplified in vitro by the formation of virus-induced MGC derived from human epithelial cells or mature conventional dendritic cells. Both fusion and IFN-β response amplification were inhibited in a dose-dependent way by a fusion-inhibitory peptide after MeV infection of epithelial cells. This effect was observed at both low and high multiplicities of infection. While in the absence of virus replication, the cell-cell fusion mediated by MeV H/F glycoproteins did not activate any IFN-α/β production, an amplified IFN-β response was observed when H/F-induced MGC were infected with a nonfusogenic recombinant chimerical virus. Time lapse microscopy studies revealed that MeV-infected MGC from epithelial cells have a highly dynamic behavior and an unexpected long life span. Following cell-cell fusion, both of the RIG-I and IFN-β gene deficiencies were trans complemented to induce IFN-β production. Production of IFN-β and IFN-α was also observed in MeV-infected immature dendritic cells (iDC) and mature dendritic cells (mDC). In contrast to iDC, MeV infection of mDC induced MGC, which produced enhanced amounts of IFN-α/β. The amplification of IFN-β production was associated with a sustained nuclear localization of IFN regulatory factor 3 (IRF-3) in MeV-induced MGC derived from both epithelial cells and mDC, while the IRF-7 up-regulation was poorly sensitive to the fusion process. Therefore, MeV-induced cell-cell fusion amplifies IFN-α/β production in infected cells, and this indicates that MGC contribute to the antiviral immune response.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) Vpu protein interacts with CD4 within the endoplasmic reticula of infected cells and targets CD4 for degradation through interaction with β-TrCP1. Mammals possess a homologue of β-TrCP1, HOS, which is also named β-TrCP2. We show by coimmunoprecipitation experiments that β-TrCP2 binds Vpu and is able to induce CD4 down-modulation as efficiently as β-TrCP1. In two different cell lines, HeLa CD4+ and Jurkat, Vpu-mediated CD4 down-modulation could not be reversed through the individual silencing of endogenous β-TrCP1 or β-TrCP2 but instead required the two genes to be silenced simultaneously.  相似文献   

12.
Hepatitis C virus (HCV)-mediated chronic liver disease is a global health problem, and inflammation is believed to be an important player in disease pathogenesis. HCV infection often leads to severe fibrosis/cirrhosis and hepatocellular carcinoma, although the mechanisms for advancement of disease are not fully understood. The proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 have critical roles in establishment of inflammation. In this study, we examined induction of IL-1β/IL-18 secretion following HCV infection. Our results demonstrated that monocyte-derived human macrophages (THP-1) incubated with cell culture-grown HCV enhance the secretion of IL-1β/IL-18 into culture supernatants. A similar cytokine release was also observed for peripheral blood mononuclear cell (PBMC)-derived primary human macrophages and Kupffer cells (liver-resident macrophages) upon incubation with HCV. THP-1 cells incubated with HCV led to caspase-1 activation and release of proinflammatory cytokines. Subsequent studies demonstrated that HCV induces pro-IL-1β and pro-IL-18 synthesis via the NF-κB signaling pathway in macrophages. Furthermore, introduction of HCV viroporin p7 RNA into THP-1 cells was sufficient to cause IL-1β secretion. Together, our results suggested that human macrophages exposed to HCV induce IL-1β and IL-18 secretion, which may play a role in hepatic inflammation.  相似文献   

13.
In herpes simplex virus-infected cells, viral γ134.5 protein blocks the shutoff of protein synthesis by activated protein kinase R (PKR) by directing the protein phosphatase 1α to dephosphorylate the α subunit of eukaryotic translation initiation factor 2 (eIF-2α). The amino acid sequence of the γ134.5 protein which interacts with the phosphatase has high homology to a domain of the eukaryotic protein GADD34. A class of compensatory mutants characterized by a deletion which results in the juxtaposition of the α47 promoter next to US11, a γ2 (late) gene in wild-type virus-infected cells, has been described. In cells infected with these mutants, protein synthesis continues even in the absence of the γ134.5 gene. In these cells, PKR is activated but eIF-2α is not phosphorylated, and the phosphatase is not redirected to dephosphorylate eIF-2α. We report the following: (i) in cells infected with these mutants, US11 protein was made early in infection; (ii) US11 protein bound PKR and was phosphorylated; (iii) in in vitro assays, US11 blocked the phosphorylation of eIF-2α by PKR activated by poly(I-C); and (iv) US11 was more effective if present in the reaction mixture during the activation of PKR than if added after PKR had been activated by poly(I-C). We conclude the following: (i) in cells infected with the compensatory mutants, US11 made early in infection binds to PKR and precludes the phosphorylation of eIF-2α, whereas US11 driven by its natural promoter and expressed late in infection is ineffective; and (ii) activation of PKR by double-stranded RNA is a common impediment countered by most viruses by different mechanisms. The γ134.5 gene is not highly conserved among herpesviruses. A likely scenario is that acquisition by a progenitor of herpes simplex virus of a portion of the cellular GADD34 gene resulted in a more potent and reliable means of curbing the effects of activated PKR. US11 was retained as a γ2 gene because, like many viral proteins, it has multiple functions.The herpes simplex virus 1 (HSV-1) genome encodes two sets of functions. The first and paramount are functions related to viral gene expression, replication of viral DNA, synthesis of virion proteins, assembly, packaging, and egress of the virus from the infected cell. The second set of functions, no less important in the survival of the virus in the human population, is creation of the environment necessary to maximize the yield and spread of virus from cell to cell and from infected to uninfected individuals (reviewed in reference 38). Of these known genes, several play a significant role in abating or delaying a host response to infection. The earliest to be expressed is the UL41 gene which encodes a protein that is introduced into the cell in virions during infection (26, 27). This protein reduces the synthesis of host proteins by causing the destruction of mRNA in a rather nonspecific manner and therefore could be expected to reduce the synthesis of cellular proteins deleterious to viral replication (26, 27, 44).A second and very different approach to blocking host defense mechanisms is exemplified by infected cell protein 47 (ICP47). Proteosomal degradation of viral proteins could be expected to produce antigenic peptides which, if presented on the cell surface, could provoke a cytotoxic cell response early in infection and thus reduce viral yield. ICP47, an α protein made immediately after infection, blocks the presentation of antigenic peptides on the surface of the infected cells (20).The focus of this laboratory has been on a third viral pathway designed to block cellular response to infection. In cells infected with most viruses, the synthesis of complementary mRNA leads to activation of double-stranded RNA-dependent protein kinase R (PKR). This enzyme phosphorylates the α subunit of eukaryotic translation initiation factor 2 (eIF-2α) (23). A consequence of this phosphorylation is total shutoff of protein synthesis. This would be an example of a noble sacrifice of the infected cell for the sake of survival of the organism were it not for the fact that viruses, while activating the PKR kinase pathway by making double-stranded RNA, also express functions which block this host defense system (24, 6, 7, 10, 28, 30, 34). In the case of HSV-1, more than 50% of the viral DNA is represented late in infection in the form of cRNA (21, 25), and the gene whose product blocks the consequences of activation of PKR is γ134.5 (7). In the absence of the gene, eIF-2α is phosphorylated and protein synthesis is impaired beginning approximately 5 h after infection (7, 9). In its presence, protein synthesis continues unabated even though PKR is activated (9). Recent studies have shown that the carboxyl terminus of the γ134.5 gene binds to the protein phosphatase 1α (PP1) and redirects it to dephosphorylate eIF-2α (19). The effectiveness of the γ134.5-PP1 complex is apparent from the observation that the rate of dephosphorylation of eIF-2α in cells infected with wild-type virus is more than 1000 times that of uninfected cells or cells infected with the γ134.5 virus (5, 19).The studies described in this report concern another aspect of virus-induced block of the consequence of activation of PKR. Briefly, Mohr and Gluzman reported that serial passage of a γ134.5 mutant resulted in the selection of a compensatory mutation capable of sustained protein synthesis (35). A characteristic of the compensatory mutants isolated by Mohr and Gluzman is a deletion in the α47 gene resulting in the juxtaposition of the promoter of the α47 gene next to the 5′ end of US11, a late (γ2) viral gene. Preliminary studies of those mutants revealed that PKR was activated in cells infected with either the wild-type parent or the γ134.5 virus, but protein synthesis was unaffected in cells infected with wild-type virus or the mutant carrying the compensatory mutations (5, 18).In an attempt to define the phenotype of the virus carrying the compensatory mutation, we constructed a mutant lacking the γ134.5 and the US8 to -12 genes. This mutant, designated R5103, activated PKR and caused a shutoff of protein synthesis (5). We then inserted into the R5103 genome a DNA fragment consisting of the intact US10 gene and the US11 open reading frame fused to the α47 promoter. This virus, designated R5104, activated PKR but did not induce the shutoff of protein synthesis. Consistent with the conclusion of Mohr and Gluzman (35), the mutation maps in the domain inserted into the R5104 virus (5). Further studies yielded two significant observations. First, in stark contrast to lysates of cells infected with R5103 and other γ134.5 mutants, the lysates of R5104 virus failed to phosphorylate the α subunit of eIF-2 (5). Second, in striking contrast to lysates of wild-type virus-infected cells, the phosphatase activity of lysates of R5104 virus-infected cells specific for eIF-2α could not be differentiated from that of mock-infected cells or those of cells infected with other γ134.5 mutants (5). These results indicated that the compensatory mutation blocks PKR from phosphorylating eIF-2α.The studies summarized in this report focused on US11 protein. We report that in cells infected with the R5104 recombinant the US11 protein is made early in infection, that US11 protein interacts with PKR and blocks the phosphorylation of eIF-2α by activated PKR in in vitro assays, and that the effectiveness of the US11 protein is greater if the protein is present in the reaction before activation of PKR than if it is after PKR has been activated by the addition of poly(I-C). We also found that US11 is phosphorylated in the presence of activated PKR but not in its absence. We conclude that US11 may have been an ancient mechanism for blocking the effects of activated PKR and that it has been supplanted by acquisition of the carboxyl-terminal domain of the γ134.5 protein from a cellular gene. We also note that US11 protein made late in infection, after PKR has been activated, is ineffective.Relevant to this report are some of the properties of the US11 protein. US11 is one of the most abundant viral proteins expressed at late times in viral infection (22, 31). It binds mRNA in a sequence- and conformation-specific fashion (3941). In HSV-1-infected cells, US11 suppresses the synthesis of a truncated RNA colinear with the 5′ domain of the UL34 mRNA (40). The protein accumulates in nucleoli, in the cytoplasm in association with the 60S ribosomal subunit, and it is also packaged in virions (31, 37, 41). In newly infected cells, the US11 protein has been found associated with ribosomes (41).Recently a plethora of reports suggested that US11 may have novel functions not readily apparent from its localization in the infected cell. Thus, US11 protein has been reported to have functions similar to those of human immunodeficiency Tat and Rev proteins and has also been reported to complement Rev function in a Rev human immunodeficiency virus mutant (11). The US11 protein has been reported to confer thermotolerance and help restore protein synthesis in HeLa cells subjected to thermal injury (12).  相似文献   

14.
It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues.  相似文献   

15.
Beta interferon (IFN-β) is a major component of innate immunity in mammals, but information on the in vivo source of this cytokine after pathogen infection is still scarce. To identify the cell types responsible for IFN-β production during viral encephalitis, we used reporter mice that express firefly luciferase under the control of the IFN-β promoter and stained organ sections with luciferase-specific antibodies. Numerous luciferase-positive cells were detected in regions of La Crosse virus (LACV)-infected mouse brains that contained many infected cells. Double-staining experiments with cell-type-specific markers revealed that similar numbers of astrocytes and microglia of infected brains were luciferase positive, whereas virus-infected neurons rarely contained detectable levels of luciferase. Interestingly, if a mutant LACV unable of synthesizing the IFN-antagonistic factor NSs was used for challenge, the vast majority of the IFN-β-producing cells in infected brains were astrocytes rather than microglia. Similar conclusions were reached in a second series of experiments in which conditional reporter mice expressing the luciferase reporter gene solely in defined cell types were infected with wild-type or mutant LACV. Collectively, our data suggest that glial cells rather than infected neurons represent the major source of IFN-β in LACV-infected mouse brains. They further indicate that IFN-β synthesis in astrocytes and microglia is differentially affected by the viral IFN antagonist, presumably due to differences in LACV susceptibility of these two cell types.  相似文献   

16.
17.
The E3L proteins encoded by vaccinia virus bind double-stranded RNA and mediate interferon resistance, promote virus growth, and impair virus-mediated apoptosis. Among the cellular proteins implicated as targets of E3L is the protein kinase regulated by RNA (PKR). To test in human cells the role of PKR in conferring the E3L mutant phenotype, HeLa cells stably deficient in PKR generated by an RNA interference-silencing strategy were compared to parental and control knockdown cells following infection with either an E3L deletion mutant (ΔE3L) or wild-type (WT) virus. The growth yields of WT virus were comparable in PKR-sufficient and -deficient cells. By contrast, the single-cycle yield of ΔE3L virus was increased by nearly 2 log10 in PKR-deficient cells over the impaired growth in PKR-sufficient cells. Furthermore, virus-induced apoptosis characteristic of the ΔE3L mutant in PKR-sufficient cells was effectively abolished in PKR-deficient HeLa cells. The viral protein synthesis pattern was altered in ΔE3L-infected PKR-sufficient cells, characterized by an inhibition of late viral protein expression, whereas in PKR-deficient cells, late protein accumulation was restored. Phosphorylation of both PKR and the α subunit of protein synthesis initiation factor 2 (eIF-2α) was elevated severalfold in ΔE3L-infected PKR-sufficient, but not PKR-deficient, cells. WT virus did not significantly increase PKR or eIF-2α phosphorylation in either PKR-sufficient or -deficient cells, both of which supported efficient WT viral protein production. Finally, apoptosis induced by infection of PKR-sufficient HeLa cells with ΔE3L virus was blocked by a caspase antagonist, but mutant virus growth was not rescued, suggesting that translation inhibition rather than apoptosis activation is a principal factor limiting virus growth.  相似文献   

18.
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major foodborne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome. The role of EHEC O157:H7-enterohemolysin (Ehx) in the pathogenesis of infections remains poorly defined. In this study, we used gene deletion and complement methods to confirm its putative functions. Results demonstrated that, in THP-1 cells, EHEC O157:H7-Ehx is associated with greater production of extracellular interleukin (IL)-1β than other cytokines. The data also showed that EHEC O157:H7-Ehx contributed to cytotoxicity in THP-1 cells, causing the release of lactate dehydrogenase (LDH). Although we observed a positive correlation between IL-1β production and cytotoxicity in THP-1 cells infected with different EHEC O157:H7 strains, our immunoblot results showed that the majority of IL-1β in the supernatant was mature IL-1β and not the pro-IL-1β that can be released after cell death. However, EHEC O157:H7-Ehx had no detectable effect on biologically inactive pro-IL-1β at the mRNA or protein synthesis levels. Neither did it affect the expression of apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, or NOD-like receptor family pyrin domain containing 3 (NLRP3). RNA interference experiments showed that EHEC O157:H7-induced IL-1β production required the involvement of ASC, caspase-1, and NLRP3 expression in THP-1 cells. Our results demonstrate that Ehx plays a crucial role in EHEC O157:H7-induced IL-1β production and its cytotoxicity to THP-1 cells. NLRP3 inflammasome activation is also involved in EHEC O157:H7-stimulated IL-1β release.  相似文献   

19.
The innate host defense against influenza virus is largely dependent on the type I interferon (IFN) system. However, surprisingly little is known about the cellular source of IFN in the infected lung. To clarify this question, we employed a reporter mouse that contains the firefly luciferase gene in place of the IFN-β-coding region. IFN-β-producing cells were identified either by simultaneous immunostaining of lungs for luciferase and cellular markers or by generating conditional reporter mice that express luciferase exclusively in defined cell types. Two different strains of influenza A virus were employed that either do or do not code for nonstructural protein 1 (NS1), which strongly suppresses innate immune responses of infected cells. We found that epithelial cells and lung macrophages, which represent the prime host cells for influenza viruses, showed vigorous IFN-β responses which, however, were severely reduced and delayed if the infecting virus was able to produce NS1. Interestingly, CD11c+ cell populations that were either expressing or lacking macrophage markers produced the bulk of IFN-β at 48 h after infection with wild-type influenza A virus. Our results demonstrate that the virus-encoded IFN-antagonistic factor NS1 disarms specifically epithelial cells and lung macrophages, which otherwise would serve as main mediators of the early response against infection by influenza virus.  相似文献   

20.
Inducible and constitutive β-galactosidase formation and radioactive amino acid incorporation were measured in cells recovering from various treatments which inhibit protein synthesis in the cell. Undelayed β-galactosidase formation was found in stringent auxotrophs recovering from amino acid starvation, in cells recovering from glycerol or potassium starvation, and in bacteria recovering from puromycin treatment. Delayed β-galactosidase formation was found in relaxed auxotrophs recovering from amino acid starvation and in prototrophs recovering from chloramphenicol or from tetracycline treatment. The length of this delay was directly proportional to the duration of the treatment. All cells recovering from the various treatments exhibited a slightly decreased rate of β-galactosidase formation and an increase in radioactive amino acid incorporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号