首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive enzyme-linked immunosorbent assay (ELISA) technique was used in order to determine horseradish peroxidase (HRP) uptake from the carp gut. HRP was detected in blood plasma and various tissues within 15 min of oral intubation. The time-course of net accumulation (uptake-degradation) over a 2 hr period was recorded. The presence of HRP reached a maximum in the body tissues approximately 1 hr after intubation and on a microgram/g wet weight basis the order of accumulation within the tissues was spleen greater than kidney greater than liver. The total organ accumulation (net) was in the order liver greater than kidney greater than spleen.  相似文献   

2.
ELISA was carried out to detect distribution of scorpion venom in experimental animal tissues. The venom content of different tissues was in the order, liver greater than kidney greater than spleen greater than lung greater than heart greater than diaphragm greater than brain. Tissue distribution of venom antigen in the envenomental subject by ELISA will provide a better approach for serotherapy.  相似文献   

3.
The present study was carried out to provide information on the placental transfer of three organohalogens of environmental concern. Pentachloro-, pentachloronitro-, and hexabromobenzene were administered per os to rats daily on days 6 through 15 of gestation at level of 40, 100, and 200 mg/kg body weight. On day 22, the dams were killed and fetuses removed by caesarean section. Maternal brain, heart, kidney, liver, spleen and adipose tissue as well as whole fetus, fetal liver and fetal brain were analyzed for organohalogen residue by GLC. Pentachlorobenzene accumulated in the fetus to a greater extent than hexabromobenzene. In maternal tissues pentachlorobenzene accumulated to the greatest extent in adipose tissue, followed by liver, spleen, brain, heart and kidney. With hexabromobenzene, the greatest accumulation was observed in adipose tissue, followed by spleen, liver, heart, kidney and brain. Pentachloronitrobenzene was not detected (0.05 p.p.m.) in any maternal or fetal tissue.  相似文献   

4.
Free radicals superoxide (O(2)(-)) and nitric oxide (*NO) are generated by blood vessels and can rapidly react to produce a peroxynitrite anion (ONOO(-)), a powerful oxidant that modifies lipoproteins making them more atherogenic. The aim of this study was to investigate the effect of peroxynitrite-induced modifications on beta-very-low-density lipoprotein (beta-VLDL) as to its biodistribution and plasma clearance rate, as well as the uptake of these particles by THP-1 cells. After being injected into New Zealand White rabbits, the peroxynitrite-modified beta-VLDL (99mTc-per-beta-VLDL) was cleared from circulation faster than the native beta-VLDL (99mTc-nat-beta-VLDL) in both normocholesterolemic rabbits (NC) and in hypercholesterolemic rabbits (HC). In HC rabbits, the fractional clearance of 99mTc-labeled beta-VLDL was significantly lower than in NC rabbits. The in vivo studies showed that accumulation of 99mTc-labeled beta-VLDL, expressed per gram of tissue, followed the decreasing order: kidney > liver > spleen > adrenal gland >or= lung > aortic arch > heart >or= abdominal aorta > thoracic aorta > psoas muscle. The high accumulation in the kidneys suggests the processing of 99mTc-labeled apolipoproteins by receptors present in kidney cells. The accumulation of 99mTc-nat-beta-VLDL in the whole organ was the following: liver > kidney > heart > spleen > adrenal gland > aorta in HC and NC rabbits. The uptake of 99mTc-per-beta-VLDL by the spleen was greater than the uptake by the heart in both groups. The in vitro studies showed that the uptake of 99mTc-per-beta-VLDL by THP-1 cells was higher than that of 99mTc-nat-beta-VLDL. These results show that peroxynitrite-modified beta-VLDL is rapidly removed from plasma and accumulates in several tissues, mainly in the liver and kidney. This may be particularly important in hypercholesterolemic situations that could favor the accumulation of native and peroxynitrite-modified beta-VLDL in several tissues.  相似文献   

5.
Tissue betaine is an intracellular osmolyte that also provides a store of labile methyl groups. Despite these important biological roles, there are few data regarding tissue betaine content. We measured the betaine concentration of plasma and various tissues (brain, heart, lungs, liver, kidney, spleen, intestine, reproductive tissues, skeletal muscle and skin) in male and female rats and assessed whether there were any gender-specific differences in betaine content or distribution and whether there was any relationship between tissue accumulation and plasma levels. Betaine was highest in the liver and kidney with values ranging from 1.6 to 9.5 mmol/l and 2.0 to 5.4 mmol/l, respectively. Plasma betaine concentrations were significantly lower than tissue levels except in the brain (? 25 % of plasma) and skeletal muscle (similar to plasma). Regression analysis of the combined male and female data revealed a significant plasma-related accumulation of betaine in the heart, skin and skeletal muscle, while the lung, liver, kidney, spleen, and intestine showed significant plasma-related and plasma-independent accumulations of betaine. The betaine content of the skin, liver and kidney was not significantly different between males and females, but in plasma and all tissues analyzed it was significantly higher in males (P<0.01).  相似文献   

6.
Horse ferritins from different organs show heterogeneity on electrofocusing in Ampholine gradients. Both ferritin and apoferritin from liver and spleen could be fractionated with respect to surface charge by serial precipitation with (NH4)2SO4. In the ferritin fractions, increasing iron content parallels increasing isoelectric point. After removal of their iron, those fractions which originally contained most iron accumulated added iron at the fastest rates. When unfractionated ferritins from different organs were compared the average isoelectric point increased in order spleen less than liver less than kidney less than heart. The order of initial rates of iron uptake by the apoferritins was spleen greater than kidney greater than heart and initial average iron contents also followed this order. The relatively low rates of iron accumulation by iron-poor molecules may have been due to structural alteration, to degradation, to activation of the iron-rich molecules or to other factors.  相似文献   

7.
1. The distribution of thiol:protein-disulphide oxidoreductase (disulphide interchange enzyme) in 17 bovine tissue extracts was determined by rocket immunoelectrophoresis and by measuring the reductive cleavage of insulin. 2. The relative concentration (per mg total protein) was found to be in the order: Pancreas greater than liver greater than lymph node greater than testes, fat tissue greater than parotid gland, brain, spleen, lung greater than small intestine, spinal cord, large intestine, kidney greater than paunch, aorta greater than skeletal muscle greater than heart. 3. The distribution of specific activity showed a similar pattern, irrespectively of whether glutathione or L-cysteine was used as cosubstrate. 4. The concentration varied 200-fold and the specific activity 400-fold between pancreas and heart muscle, respectively. 5. Crossed immunoelectrophoresis demonstrated that a fast-migrating form of the enzyme was the only one present in almost all tissues, but 15% of the enzyme in liver was a slow-migrating form and 50% in heart muscle a medium-migrating form. 6. The lung contains a species having partial immunological identity to the enzyme. 7. Purified enzyme from bovine liver has a somewhat lower mobility than the fast-migrating form in extract. 8. The results seem to support the general view that the enzyme is involved in synthesis of disulphide-bonded extracellular proteins, although the presence of the enzyme in tissues like fat, brain, spinal cord, skeletal muscle and heart indicates other cellular functions as well.  相似文献   

8.
1. Mature, male chickens, Bobwhite quail, and rats differed with respect to glutathione S-transferase (GST) activity in the kidney, duodenum and testis, but species differences were not observed in the liver. 2. GST activity was present in the heart, spleen, liver, duodenum, kidney, testis, cerebral cortex, cerebellum, optic tecta, and medulla oblongata of chickens with differences in tissues and breeds. 3. Renal GST activity was higher in female chickens, whereas enzyme activity in the brain was higher in males. 4. Hepatic GST activity fluctuated about a mean of 784 nmol min-1 mg protein-1 with a 12 hr periodicity which was not a feeding phenomenon. 5. The results demonstrate that GST activity occurs in diverse tissues of the chicken and Bobwhite quail with kidney greater than liver greater than duodenum greater than testis, compared to testis greater than liver greater than duodenum greater than kidney in the rat. Hepatic GST activity exhibits an ultradian periodicity.  相似文献   

9.
The concentrations of Cr, Cu, Fe, Mn, Ni, Pb, Cd, and Zn were determined in the brain, heart, liver, gill, gonad, spleen, kidney, and red and white muscles of Liza saliens (leaping mullet). Trace element levels in fish samples were analyzed by flame atomic absorption spectrometry. Among the non-essential metals, the levels of Ni and Pb in the tissues were higher than limits for fish proposed by FAO/WHO, EU, and TFC. Generally, the levels of the non-essential metals were much higher than those of manganese in the red and white muscles. Fe distribution pattern in tissues was in order of spleen?>?liver?>?heart?>?gill?>?brain?>?kidney?>?gonad?>?red muscle?>?white muscle. Red muscle was not within the safe limits for human consumption because non-essential metal (Ni, Pb) contents were higher than standard limits.  相似文献   

10.
alpha-Fetoprotein and albumin, two members of a multigene family, reversibly bind fatty acids with high affinity. The origin of alpha-fetoprotein (AFP) and albumin present in fetal tissues other than the liver and yolk sac is a subject of controversy. In this work, we have searched for the presence of the albumin and AFP mRNA molecules in different fetal organs of the baboon (Papio cinocephalus), using a highly sensitive gel-blot hybridization assay with human albumin and AFP cDNA probes. Large amounts of albumin and AFP mRNA molecules were found in the fetal liver; significant quantities were also present in the gastrointestinal tract and in the kidney. No detectable levels were found in the other tissues examined (brain, skin, spleen, pancreas, muscle, heart, thymus, placenta, and amnion). After injection of radiolabeled AFP into pregnant baboons, all fetal tissues took up the protein. White adipose tissue, kidney, intestine, lung, liver, and cerebral cortex showed a great uptake of exogenous AFP. [14C]Docosahexaenoic acid (22:6, n-3), injected at the same time, was actively transferred from the maternal compartment across the placenta and incorporated into cellular lipids by all fetal tissues and particularly by liver (around 70% of total incorporation). The levels of [14C]docosahexaenoic acid per gram of tissue increased in the order: maternal blood less than placenta less than fetal liver, indicating a selective accumulation of this fatty acid by the fetus. These results indicate that intracellular AFP in non-hepatic tissues of the developing baboon is, for the most part, of plasma origin.  相似文献   

11.
Mn(III) tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+), a potent catalytic superoxide and peroxynitrite scavenger, has been beneficial in several oxidative stress-related diseases thus far examined. Pharmacokinetic studies are essential for the better assessment of the therapeutic potential of MnTE-2-PyP(5+) and similar compounds, as well as for the modulation of their bioavailability and toxicity. Despite high hydrophilicity, this drug entered mitochondria after a single 10 mg/kg intraperitoneal injection at levels high enough (5.1 muM; 2.95 ng/mg protein) to protect against superoxide/peroxynitrite damage. Utilizing the same analytical approach, which involves the reduction of MnTE-2-PyP(5+) followed by the exchange of Mn(2+) with Zn(2+) and HPLC/fluorescence detection of ZnTE-2-PyP(4+), we measured levels of MnTE-2-PyP(5+) in mouse plasma, liver, kidney, lung, heart, spleen, and brain over a period of 7 days after a single intraperitoneal injection of 10 mg/kg. Two B6C3F1 female mice per time point were used. The pharmacokinetic profile in plasma and organs was complex; thus a noncompartmental approach was utilized to calculate the area under the curve, c(max), t(max), and drug elimination half-time (t(1/2)). In terms of levels of MnTE-2-PyP(5+) found, the organs can be classified into three distinct groups: (1) high levels (kidney, liver, and spleen), (2) moderate levels (lung and heart), and (3) low levels (brain). The maximal levels in plasma, kidney, spleen, lung, and heart are reached within 45 min, whereas in the case of liver a prolonged absorption phase was observed, with the maximal concentration reached at 8 h. Moreover, accumulation of the drug in brain continued beyond the time of the experiment (7 days) and is likely to be driven by the presence of negatively charged phospholipids. For tissues other than brain, a slow elimination phase (single exponential decay, t(1/2)=60 to 135 h) was observed. The calculated pharmacokinetic parameters will be used to design optimal dosing regimens in future preclinical studies utilizing this and similar compounds.  相似文献   

12.
The accumulation of intra-arterially administered radiolabelled adrenaline and noradrenaline was studied in various tissues of the Atlantic cod, Gadus morhua. The largest uptake was seen in the posterior cardinal vein (chromaffin tissue), head kidney, kidney, heart and gill filaments. All these tissues, except the heart, also accumulated noradrenaline to a greater extent than adrenaline. The heart, spleen, gas gland and muscularis mucosae of the swimbladder instead favoured adrenaline accumulation. Small amounts of the injected label (both adrenaline and noradrenaline) were also recovered in the intestine, liver and hypothalamus. The lowest detectable amine accumulation was seen in the rest of the brain and in the skeletal muscle. It is suggested that innervation density, blood flow to the tissue and the concentration of circulating and endogenously stored amine, as well as the affinity of the amine for the degrading enzymes and a possible stereospecificity of the uptake mechanisms, determine the rate and preference of accumulation between the amines.  相似文献   

13.
Heterocyclic amines are formed during the cooking of foods rich in protein and can be metabolically converted into cytotoxic and mutagenic compounds. These "cooked-food mutagens" constitute a potential health hazard because DNA damage arising from dietary exposure to heterocyclic amines can modify cell genomes and thereby affect future organ function. To determine enzymes responsible for heterocyclic amine processing in mammalian tissues, we performed studies to measure genotoxic activation of the N-hydroxy form of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) --a common dietary mutagen. O-Acetyltransferase, sulfotransferase, kinase, and amino-acyl synthetase activities were assayed using substrate-specific reactions and cytosolic enzymes from newborn and adult rat heart, liver, spleen, kidney, brain, lung, and skeletal muscle. The resultant enzyme-specific DNA adduct formation was quantified via (32)P-postlabeling techniques. In biochemical assays with rat tissue cytosolic proteins, O-acetyltransferases were the enzymes most responsible for N-hydroxy-PhIP (N-OH-PhIP) activation. Compared to O-acetyltransferase activation, there was significantly less kinase activity and even lesser amounts of sulfotransferase activity. Proyl-tRNA synthetase activation of N-OH-PhIP was not detected. Comparing newborn rat tissues, the highest level of O-acetyltransferase mutagen activation was observed for neonatal heart tissue with activities ranked in the order of heart > kidney > lung > liver > skeletal muscle > brain > spleen. Enzymes from cultured neonatal myocytes displayed high O-acetyltransferase activities, similar to that observed for whole newborn heart. This tissue specificity suggests that neonatal cardiac myocytes might be at greater risk for damage from dietary heterocyclic amine mutagens than some other cell types. However, cytosolic enzymes from adult rat tissues exhibited a different O-acetyltransferase activation profile, such that liver > muscle > spleen > kidney > lung > brain > heart. These results demonstrated that enzymes involved in catalyzing PhIP-DNA adduct formation varied substantially in activity between tissues and in some tissues, changed significantly during development and aging. The results further suggest that O-acetyltransferases are the primary activators of N-OH-PhIP in rat tissues.  相似文献   

14.
1. Uptake and subsequent metabolism of purine and ribose moieties was monitored after intravenous administration of doubly labelled inosine. 2. More than 95% was cleared from the plasma within 5 min, and 99% within 20 min. 3. Approx. 50% of the 160 mumol total was rapidly incorporated into liver and kidney. Kidney removed the greatest amount (21 mumol/g wet wt.), about 10-fold more than heart, lung or liver. Lung and heart accounted for only 3%. These tissues then lost radioactivity during the remainder of the experiment. Radioactivity in the skeletal muscle, in contrast, increased from 8% of the injected dose at 5 min to 40% at 60 min. 4. In liver, kidney, heart and lung there was a significant difference in the fate of inosine. After initial incorporation of inosine, kidney predominantly lost inosine; heart preferentially lost purines; lung preferentially lost ribose radioactivity; and in liver the ribose radioactivity was rapidly lost, whereas purine was retained. Some of the ribose moiety was metabolized to glucose, presumably in the liver, and then released into the blood. Ribose radioactivity (probably as glucose) and radioactive hypoxanthine accumulated in skeletal muscle throughout the experiment. 5. Inosine caused a rapid and prolonged increase in the blood glucose content, from 6 to 15 mM in 60 min. This was accompanied by a small increase in plasma insulin. 6. It is concluded that the purine and ribose radioactivity lost from the kidney, liver and other tissues becomes incorporated into skeletal muscle.  相似文献   

15.
Autopsy tissue samples from the brain front lobe, cerebellum, heart, kidney (cortex and medulla), liver, pancreas, spleen and ovary were analysed for AL, B, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, Sr and Zn in 30 (17 women and 13 men) subjects ranging in age from 17 to 96 years at Haukeland University Hospital in Norway. The tissues were selected from macroscopically normal organs and samples were handled according to guidelines recommended to avoid contamination in the pre-analytical phase. Concentration of the trace elements were determined by the inductively coupled plasma atomic emission spectrometry technique (ICP-AES). In most tissues the concentrations of the essential trace elements followed the order Fe> Zn> Cu> Mn> Se> Cr> Co except in the ovary where Se was higher than Mn. The liver was the major site of deposition for Co, Cu and Mn as well as the spleen for Co, brain front lobe for Cu and pancreas for Mn. Ba, Sr and Ni built up in the ovary foLLowed by the kidney. Older subjects accumulated Ba and Sr in most tissues, whereas Al accumulated in the kidney cortex and Cd in the brain cerebellum. Generally males had higher concentrations of trace elements in the different tissue sampLes than females with the exception of Mn in the brain front lobe and heart and Sr in the liver. ICP-AES is a useful method to assess the concentration and the profiLe of trace elements in human autopsy tissues.  相似文献   

16.
The disappearance of [8-3H]-adenosine 3′,5′-monophosphate (cAMP) from plasma of the intact rat has been investigated. Thirty minutes after the i.v. injection of a pulse of [3H] cAMP with 3 μmole cAMP into 300–400 g rats, more than 99% of the isotope had been removed from the plasma. The disappearance of isotope from the plasma was retarded by probenecid (20–200 mg/kg body weight), bilateral nephrectomy and bilateral nephrectomy plus hepatectomy, in increasing order of their effectiveness. Ligation of both ureters did not alter the rate of isotope disappearance. After the pulse injection, the amount of isotope in the plasma and tissues was determined and the ratio, cpm per g wet tissue/cpm per ml plasma, was calculated. Kidney cortex, kidney inner medulla and liver showed the most striking accumulations of isotope with ratios of 250, 19 and 18, respectively. Probenecid produced a dose-dependent reduction in the accumulation of isotope in kidney cortex and liver. Other tissues which showed some, albeit small, accumulation of isotope were heart (2.0), lung (2.9) and small intestine (1.6). From the accumulation of isotope in the various tissues it was estimated that the kidney cortex accounted for 39%, liver 15%, and urinary excretion 5% of the injected dose of isotope in the untreated rat. It is concluded that in the rat, at least, the kidney cortex is the principal tissue involved in cAMP removal (and degradation) from the plasma.  相似文献   

17.
We have reported that WHT/Ht mice express neither GM2(NeuGc) nor GM1(NeuGc) in the liver or erythrocytes due to a defect on the Ggm-2 gene, which was demonstrated to control the activity of UDP-GalNAc:GM3(NeuGc) N-acetylgalactosaminyltransferase in mouse liver, and, in addition, WHT/Ht mice do not express a detectable amount of GM2(NeuGc) but do express GM1(NeuGc) in tissues other than the liver and erythrocytes, such as the spleen, thymus, heart, lung, kidney, and testis [Nakamura et al. (1988) J. Biochem. 103, 201-208]. In order to determine whether the phenotype of WHT/Ht mice exhibiting an undetectable amount of GM2(NeuGc) in these tissues is genetically controlled or not, we analyzed the expression of gangliosides in the progeny obtained on backcross mating between (BALB/c X WHT/Ht)F1 and WHT/Ht mice, and in a GM2(NeuGc) congenic mouse, WHT.C. Concerning the expression of GM2(NeuGc) in the liver, lung, and kidney, 102 backcross mice could be segregated into two types. One type expressed a detectable amount of GM2(NeuGc) in the liver, lung, and kidney, and the other type did not. The ratio of the numbers of mice exhibiting these two types was 42: 60, indicating that the two phenotypes were genetically determined by the involvement of a single autosomal gene. Recombination as to GM2(NeuGc) expression in the liver, lung, and kidney was not detected among the 102 backcross mice. Analysis of the GM2(NeuGc) congenic mouse indicated that a detectable amount of GM2(NeuGc) was expressed in the liver, erythrocytes, lung, kidney, heart, spleen, and small intestine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Glutathione reductase (GR) activity and flavin concentration were studied in systemic tissues (brain, heart, lung, liver, spleen, stomach, pancreas, muscle, kidney, testis) and blood components (erythrocytes and plasma) from male guinea-pigs. GR activity and the flavin concentration were high in kidney and liver, and low in muscle. GR activity in erythrocytes was found in a range of tissues, but flavin concentration in erythrocytes was lower than in any tissues. GR was saturated with flavin adenine dinucleotide (FAD) in almost all tissues, but not in muscle or erythrocytes.  相似文献   

19.
Leptin is an adipose and liver tissue-derived secreted protein in chickens that has been implicated in the regulation of food intake and whole-body energy balance. In this study, the metabolic clearance and tissue uptake of leptin were examined in the chicken (Gallus gallus). Four-week-old broiler males were infused with (125)I-labeled mouse leptin. Chromatography of radiolabeled leptin in plasma produced two peaks, one at 16 kDa (free leptin) and a free iodine peak. No leptin binding protein in blood was detected. Leptin was cleared with a half-life estimate of 23 min. In order to investigate the tissue distribution and uptake of radiolabeled leptin, multiple tissues were removed from infused birds at 15 and 240 min post-infusion, and trichloroacetic acid (TCA)-precipitable radioactivity was determined. The amounts of radioactivity at 15 min post-infusion in the tissues in rank order were: kidney, testis, lung, spleen, heart, liver, small and large intestine, gizzard, pancreas, bursa, leg and breast muscle, adrenals, and brain. A slightly different pattern of distribution was observed at 240 min post-infusion. We conclude from these studies that unlike mammals, no circulating leptin binding protein is present in chickens. Leptin is metabolized and cleared very rapidly from blood by the kidney.  相似文献   

20.
Effects of altered dietary zinc on levels of zinc, copper, magnesium, and calcium in organ and peripheral tissues were studied. When rats fed a zinc-deficient diet (1.3 μg Zn/g) for 28 d were compared with rats fed a control diet (37.5 μg Zn/g), levels of zinc were slightly lower in plasma, hair, and skin and 50% lower in femur and pancreas, whereas the levels of copper were higher in all tissue except plasma. Magnesium levels were higher than controls in the heart and lower in the spleen, whereas the calcium levels were lower in plasma, lung, spleen, kidney, and skin and strikingly higher in brain, hair, and femur. When rats fed a zinc-supplemented diet (1.0 mg Zn/g) were compared to the same conrols, levels of zinc in these were higher in all organs and peripheral tissues studied, except heart, lung, and liver; copper levels were higher in liver, kidney, and spleen; magnesium levels were significantly higher in the spleen, but were little affected in other tissues, although calcium levels were higher in pancreas, spleen, kidney, and skin and lower in plasma and hair. These data indicate that overall copper organ and peripheral tissue levels are affected inversely, and zinc and calcium levels directly, by zinc nutriture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号