首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Changes in stiffness during stretch-shortening cycles were studied by applying prestretches of different rates and amplitudes on the tetanized sartorius muscle of the frog and measuring series elastic component characteristics during a subsequent quick release. Series elastic component stiffness was found to be dependent on the mechanical parameters of the stretching phase, and the so-called 'Cavagna effect' (increase in compliance) was rarely observed. The results are discussed in terms of improvement in muscle efficiency. Thus, an increase in stiffness during force generation will favour a better transmission of force and will reduce the coupling time whereas the opposite evolution during SEC recoil will allow a better release of potential energy.  相似文献   

2.
3.
4.
5.
Local movement was recorded in tetanically contracting frog sartorius muscle to estimate the nonuniformity in the distribution of compliance in the muscle preparation and the compliance that resides in the attachments of the preparation to the measuring apparatus. The stimulated muscle was also subjected to rapid length changes, and the local movements and tension responses were recorded. The results indicate that during tension development at resting length the central region of the muscle shortens at the expense of the ends. After stimulation the "shoulder" in the tension, which divided the relaxation into a slow decline and a subsequent, rather exponential decay toward zero, was accompanied by an abrupt increase in local movement. We also examined the temperature sensitivity of the two phases of relaxation. The results are consistent with the view that the decrease in tension during relaxation depends on mechanical conditions. The local movement brought about by the imposed length changes indicates that the peak value of the relative length change of the uniformly acting part was approximately 20% less than the relative length change of the whole preparation. From these observations, corrections were obtained for the compliance data derived from the tension responses. These corrections allow a comparison with data in the literature obtained from single fiber preparations. The implications for the stiffness measured during the tension responses are discussed.  相似文献   

6.
Satellite and invasive cells in frog sartorius muscle   总被引:1,自引:0,他引:1  
The occurrence and distribution of two cell types associated with normal and denervated frog skeletal muscle fibers are described. The first is the satellite cell. The general appearance and the number of satellite cells are not affected by long-term denervation. The second type of cell is the invasive cell. Invasive cells penetrate across the basal lamina and up to the core of the muscle fiber, without fusing with it. It is suggested that the origin of invasive cells is extramuscular, probably circulatory. Although invasive cells are more numerous in some denervated muscle, it is established that this is not a direct effect of denervation.  相似文献   

7.
A weak base, morpholine, has been labelled with 3H and tested for its suitability as an indicator for intracellular pH, by distribution in the tissue water of frog sartorius muscle in the species Hyla litoria. Its pK'a at 20°C in a solution of the same of ionic strength as frog Ringer was found to be 8.45 ± 0.02, which is in the range of maximal sensitivity. Morpholine equilibrated with the tissue in 17 h; it was shown that it was not bound to intracellular constituents, that it was not metabolised nor toxic in the concentrations used; it was therefore judged suitable as a pH indicator. Intracellular pH was then measured by distribution of morpholine (6.985 ± 0.08), nicotine (6.915 ± 0.03) and the weak acid 5,5′-dimethyl-2,4-oxazolidinedione (7.10 ± 0.05) and with pH-sensitive microelectrodes (5.9, the equilibrium value). It was shown that the four significantly different values could not be reconciled in terms of experimental error, heterogeneity of intracellular pH, liquid junction potential differences, or binding of indicator molecules inside the fibre. They could, however, be reconciled if the fibre water had different structure and solvent properties from the extracellular water and ions were distributed across the membrane as between two liquid phases containing different solvents. Then the H+ would be in equilibrium, as shown by the microelectrode measurement, but intracellular pH would be indeterminable and probably greater than 6.  相似文献   

8.
A weak base, morpholine, has been labelled with 3H and tested for its suitability as an indicator for intracellular pH, by distribution in the tissue water of frog sartorius muscle in the species Hyla litoria. Its pK'a at 20 degrees C in a solution of the same ionic strength as frog Ringer was found to be 8.45 +/- 0.02, which is in the range of maximal sensitivity. Morpholine equilibrated with the tissue in 17 h; it was shown that it was not bound to intracellular constituents, that it was not metabolised nor toxic in the concentrations used; it was therefore judged suitable as a pH indcator. Intracellular pH was then measured by distribution of morpholine (6.985 +/- 0.08), nicotine (6.915 +/- 0.03) and the weak acid 5,5'-dimethyl-2,4-oxazolidinedione (7.10 +/- 0.05) and the pH-sensitive microelectrodes (5.9, the equilibrium value). It was shown that the four significantly different values could not be reconciled in terms of experimental error, heterogeneity of intracellular pH, liquid junction potential differences, or binding of indicator molecules inside the fibre. They could, however, be reconciled if the fibre water had different structure and solvent properties from the extracellular water and all ions were distributed across the membrane as between two liquid phases containing different solvents. Then the H+ would be in equilibrium, as shown by the microelectrode measurement, but intracellular pH would be indeterminable and probably greater than 6.  相似文献   

9.
Evoked synaptic potential were recorded extracellularly in experiments on a nervemuscle preparation of the frog sartorius muscle. A decrease in evoked transmitter release was found from the proximal to the distal parts of the nerve ending, due to a decrease in the probability of transmitter quantum release. The terminal portions of the synapse are less sensitive than the proximal parts to changes in Ca++ concentration, they show less marked facilitation of transmitter release during paired and repetitive stimulation, and exhibit deeper and more rapidly developing depression. It is concluded that differences in transmitter release in the terminal parts of the synapse are due to the low reserves of transmitter and the lower premeability of the presynaptic membrane to Ca++.  相似文献   

10.
11.
K+ depolarization and phospholipid metabolism in frog sartorius muscle   总被引:1,自引:0,他引:1  
K+ depolarization evokes phosphatidylinositol response, i.e. the increased 32P orthophosphate labelling of phosphatidylinositol in frog sartorii muscles. The phosphatidylinositol response seems to be closely related to K+ depolarization and not to the transient Ca2+ release at the beginning of depolarization. It ceases as soon as the muscles depolarized by 90 mmol/l KCl for a short period of time are repolarized, while it continues when the depolarization is maintained. When the muscles are depolarized with 20 mmol/l KCl, the phosphatidylinositol response is also observed. This response is not suppressed by drugs that block Ca2+ mobilization. Other agents like caffeine, azide or EGTA which induce some effects similar to that of K+ depolarization, do not evoke phosphatidylinositol response. Rather, they simply cause a decrease in the labelling of phospholipids, phosphatidylinositol being the least affected. In muscles derived from frogs maintained under healthy conditions Ca2+ release in the early phase of K+ depolarization does not cause significant changes in phospholipid labelling. However, in muscles from frogs starving for many months, a large decrease in the labelling of phospholipids is observed in the early phase of K+ depolarization. It is postulated that the changes in the physicochemical state of the membrane and not Ca2+ gating mechanism or free cell Ca2+ level are crucial in the phosphatidylinositol response in the frog sartorii muscles depolarized by high K+.  相似文献   

12.
13.
Time-resolved intensity measurements of the x-ray equatorial reflections were made during twitch contractions of frog skeletal muscles, to which stretches or releases were applied at various times. A ramp stretch applied at the onset of a twitch (duration, 15 ms; amplitude, approximately 3% of muscle length) caused a faster and larger development of contractile force than in an isometric twitch. The stretch accelerated the decrease of the 1.0 reflection intensity (I1,0). The magnitude of increase of the 1,1 reflection intensity (I1,1) was reduced by the stretch, but its time course was also accelerated. A release applied at the peak of a twitch or later (duration, 5 ms; amplitude, approximately 1.5%) caused only a partial redevelopment of tension. The release produced clear reciprocal changes of reflections toward their relaxed levels, i.e., the I1,0 increased and the I1,1 decreased. A release applied earlier than the twitch peak had smaller effects on the reflection intensities. The results suggest that a strength applied at the onset of a twitch causes a faster radial movement of the myosin heads toward actin, whereas a release applied at or later than the peak of a twitch accelerates their return to the thick filament backbone. The results are discussed in the context of the regulation of the myosin head attachment by calcium.  相似文献   

14.
15.
16.
17.
18.
Na+ currents were measured during 0.4-s depolarizing pulses using the cell-attached variation of the patch-clamp technique. Patches on Cs-dialyzed segments of sartorius muscle of Rana pipiens contained an estimated 25-500 Na+ channels. Three distinct types of current were observed after the pulse onset: a large initial surge of inward current that decayed within 10 ms (early currents), a steady "drizzle" of isolated, brief, inward unitary currents (background currents), and occasional "cloudbursts" of tens to hundreds of sequential unitary inward currents (bursts). Average late currents (background plus bursts) were 0.12% of peak early current amplitude at -20 mV. 85% of the late currents were carried by bursting channels. The unit current amplitude was the same for all three types of current, with a conductance of 10.5 pS and a reversal potential of +74 mV. The magnitudes of the three current components were correlated from patch to patch, and all were eliminated by slow inactivation. We conclude that all three components were due to Na+ channel activity. The mean open time of the background currents was approximately 0.25 ms, and the channels averaged 1.2 openings for each event. Neither the open time nor the number of openings of background currents was strongly sensitive to membrane potential. We estimated that background openings occurred at a rate of 0.25 Hz for each channel. Bursts occurred once each 2,000 pulses for each channel (assuming identical channels). The open time during bursts increased with depolarization to 1-2 ms at -20 mV, whereas the closed time decreased to less than 20 ms. The fractional open time during bursts was fitted with m infinity 3 using standard Na+ channel models. We conclude that background currents are caused by a return of normal Na+ channels from inactivation, while bursts are instances where the channel's inactivation gate spontaneously loses its function for prolonged periods.  相似文献   

19.
20.
Adaptations of the method of Takahashi et al. (1966. J. Gen. Physiol. 50:317-333) were used to test the validity of the one-dimensional diffusion equation for O2 in the resting excised frog sartorius muscle. This equation is: (formula: see text) where x is the distance perpendicular to the muscle surface. t is time, P(x, t) is the partial pressure of O2,D and alpha are the diffusion coefficient and solubility for O2 in the tissue, and Q is the rate of O2 consumption. P(O, t), the time-course of PO2 at one muscle surface, was measured by a micro-oxygen electrode. Transients in the PO2 profile of the muscle were induced by two methods: (a) after an equilibration period, one surface was sealed off by a disc in which the O2 electrode was embedded; (b) when PO2 at this surface reached a steady state, a step change was made in the PO2 at the other surface. With either method, the agreement between the measured P(O, t) and that predicted by the diffusion equation was excellent, making possible the calculation of D and Q. These two methods yielded statistically indistinguishable results, with the following pooled means (+/- SEM): (formula: see text) At each temperature, D was independent of muscle thickness (range, 0.67-1.34 mm). The activation energy (EA) for diffusion of oxygen in muscle was -3.85 kcal/mol, which closely matches the corresponding value in water. Together with absolute values of D in water taken from the literature, the present data imply that (Dmuscle/DH2O) is in the range 0.59-0.69. This value, and that of EA, are in agreement with the theory of Wang (1954, J. Am. Chem. Soc. 76:4755-4763), suggesting that with respects to the diffusion of O2, to a useful approximation, frog skeletal muscle may be considered simply as a homogeneous protein solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号