首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Grebecki  M. Moczoń 《Protoplasma》1978,97(2-3):153-164
Summary Pulsation curves recorded in a lateral vein and in the main vein behind and ahead of junction demonstrate the existence of a common contraction-relaxation rhythm. Correlation of contraction periods is very strong in the major vein on both sides of the junction and strong between the major vein and its lateral branch. Correlation of streaming periodicities is also very strong along the major vein but inexistent between the main vein and the lateral one. There is a weak but significant positive correlation between the contraction periods and the forward direction of streaming in all the veins. No difference found in veins mean diameter at the periods of the forward and the backward streaming. The results are discussed in terms of the model of motory coordination involving the synchrony of contraction and a partial desynchronization of streaming in the network of plasmodium.Study supported by the Research Project II. 1 of the Polish Academy of Science.  相似文献   

2.
The regulation of body-wall muscle contraction in the ascidian Styela rustica was studied. Acetylcholine (ACh, 1?C10 ??M) induced a significant contraction of isolated muscle strips. The ACh-induced contractile response was potentiated and prolonged in the presence of proserine (15 ??M), which confirms acetylcholinesterase activity in the S. rustica body-wall muscle. Atropine (1?C100 ??M, M-cholinoreceptor blocker) did not prevent the ACh-induced contractile response, while d-tubocurarine (1?C100 ??M, N-cholinoreceptor blocker) progressively reduced muscle contraction induced by 10 ??M ACh. Thus, neuromuscular transmission in the S. rustica body-wall muscle is mediated by nicotinic-like ACh-receptors. Procaine reduced ACh-induced (10 ??M) muscle contraction. As well, our experiments showed spontaneous rhythmic contractile activity in isolated muscle strips of S. rustica. Atropine, d-tubocurarine, procaine, and proserine did not alter rhythmic activity. Myogenic automaticity is suggested as a possible cause of the rhythmic contraction of the ascidian body-wall muscle.  相似文献   

3.
The functional modulation of lymphatic vessels may be closely associated with intact structures of the vagus nerve. In the present study, the vagotomy was done in Wistar rat to investigate the effect of vagus nerves on dynamic changes of mesenteric lymphatic vessels. After denervation, the mesenteric lymphatics showed significant decreases in contraction rate, diameter in the static state and overall contractile activity under a microscopic observation. The lymphatic contraction rhythm and valve movement became irregular and inconsistent. These findings indicated that the lymphatic innervation might be an important factor for active lymph formation and transportation.  相似文献   

4.
Shraideh Z 《Cytobios》1999,99(391):97-104
The effect of triethyl lead (TriEL) as triethyl lead chloride on the rhythmic peristaltic contractile activity of ileum isolated from Swiss white mice was investigated, with the aid of a tensiometer. The response was measured as a change in period duration and force amplitude. TriEL concentrations of < 40 microM did not show any obvious effects on either of the parameters. In the concentration range between 40 and 120 microM, TriEL exclusively affected the rhythm of contractions in a concentration-dependent manner. It induced elongation of the period and reduction of the force amplitude. Concentrations of TriEL above 120 microM induced irreversible dramatic changes in the ileum contractile activity, while 200 microM TriEL induced a strong contracture followed by an irreversible cessation of the oscillatory contractile activity. The results demonstrate that the measurement of rhythmic contractions may be a useful model for a toxicological screening system.  相似文献   

5.
The plasmodium of Physarum polycephalum is a large amoeboid organism showing rhythmic contraction everywhere within an organism, and moves by forming spatio-temporal patterns of the rhythmic contraction. We propose a reaction-diffusion-advection model for the pattern formation. This model is constructed under physiological suggestions that the chemical oscillator acts as a clock regulating the rhythmic contraction and interacts spatially not only by diffusion but also by advection of protoplasm. Behavior of the model is studied by numerical calculation, especially the effects of the advection term on a simple reaction-diffusion system. The advection effect reproduces experimentally observed phenomena of fluctuating propagation of the contraction wave. Concept of the reaction-diffusion-advection system is promising for modeling the mechanism of amoeboid behaviour in the Physarum plasmodium. Copyright 1999 Academic Press.  相似文献   

6.
7.
The response of pulmonary arteries to endothelin-1 (ET-1) changes with age in normal pigs and is abnormal in pulmonary hypertension. The purpose of this study was to determine if the same is true of the pulmonary veins. We studied the wall structure and functional response to ET-1 in pulmonary veins from normal pigs from fetal life to adulthood and from pigs subjected to chronic hypobaric hypoxia either from birth for 3 days or from 3 to 6 days of age. In isolated normal veins, the contractile response decreased by 40% between late fetal life and 14 days of age with a concomitant twofold increase in endothelium-dependent relaxant response. The ET(A) antagonist BQ-123 reduced the contractile response significantly more in newborn than older animals, whereas the ET-B antagonist BQ-788 had no effect in fetal animals and maximally increased contraction at 14 days of age. Hypoxic exposure significantly increased pulmonary vein smooth muscle area and contractile response to ET-1. The relaxation response was impaired following hypoxic exposure from birth but not from 3 to 6 days of age. The ET(A) antagonist BQ-123 decreased contractile and increased dilator responses significantly more than in age-matched controls. Thus pulmonary veins show age-related changes similar to those seen in the pulmonary arteries with a decrease in ET(A)-mediated contractile and increase in ET-B-mediated relaxant response with age. Contractile response was also increased in hypoxia as in the arteries. This study suggests that pulmonary veins are involved in postnatal adaptation and the pathogenesis of pulmonary hypertension.  相似文献   

8.
The objective of the study was to demonstrate spontaneous contractile activity of the smooth muscle coat of the aorta in human and animal material. Spontaneous contractility of smooth muscle tissue, or tonus, is essential for the proper function of many internal organs as observed in the many types of muscle cells which make up the internal structures. The spontaneous contractile activity of the muscle tissue in blood vessels is particularly marked in resistance vessels, regulating circulation within organs or tissues. It can also be observed in large blood vessels such as arteries and veins. The contractile activity of muscular tissue isolated from arteries is the result of a number of factors, including endogenous paracrine substances, neurotransmitters released at postganglionic endings (mostly within the sympathetic system), cells capable of spontaneously generation of functional potentials (pacemaking cells) and the vascular endothelium. Pacemaking cells present in the aortic wall are an important factor in the development of the spontaneous contractility of the muscular coat of the aorta. They are capable of generating functional potentials, resulting in the constant tonus of the smooth muscular coat (comprising the aortic wall) due to tonic contraction. In vitro studies were carried out on abdominal aortic sections collected from 30 New Zealand rabbits with a body mass of 3-4 kilograms each and also on aneurysmal abdominal aortic sections collected during elective aneurysm repair procedures in humans (10 abdominal aortic sections). The 1.5 cm-long sections were mounted in chambers of an automated water bath. The sections were oriented in a transverse and longitudal fashion in order to compare contractility. The incubation medium consisted of Krebs-Henseleit buffer. Spontaneous contractile activity was observed during the study, characterized by rhythmic contractions of the muscular layer of the aorta. The contractile tension within the sections was 0.15 mN in the case of rabbit sections and 0.8 mN in the case of human sections. The average duration of a single contraction was 38.3 +/- 15.05 seconds. The average contraction frequency, i.e. the average number of contractions per minute, was 1.61 +/- 0.54 contractions per minute. The spontaneous contraction is modulated by many factors like endogenous paracrine substances, neurotransmitters or vascular endothelium.  相似文献   

9.
The effect of increases in diaphragmatic muscle contractile activity on diaphragm blood flow remains unclear. The present study examined the effect of electrically induced isometric diaphragmatic muscle contractions on diaphragmatic blood flow. Studies were performed on diaphragmatic muscle strips prepared in anesthetized mechanically ventilated dogs. Diaphragmatic contractile activity was quantitated as the tension-time index (TTI) (i.e., the product of tension magnitude and duration). Blood flow to the strip (Qdi) was measured from the volume of the phrenic venous effluent using a drop counter. The separate effects on Qdi of 30-s periods of continuous and rhythmic contractions were examined. Qdi increased with increases in TTI and peaked at a TTI of 20-30% of maximum after which Qdi fell progressively with further increases in TTI. At levels of TTI greater than 30%, the pattern of muscle contraction significantly affected blood flow. Qdi was significantly lower during activity and the postcontraction hyperemia significantly greater at a given TTI when contractions were continuous than when contractions were intermittent. Above a TTI of 30%, Qdi during contraction decreased linearly with increases in duty cycle and curvilinearly with increases in tension. We conclude that during isometric diaphragmatic contractions, diaphragmatic blood flow may become mechanically impeded, and the magnitude of the impediment in blood flow depends on the pattern of diaphragmatic contractions. With increases in contractile activity above a critical level, changes in duty cycle exert progressively greater effects on diaphragmatic blood flow than changes in muscle tension.  相似文献   

10.
The electric potential difference (1 to 15 mv.) between two loci of the slime mold connected with a strand of protoplasm changes rhythmically with the same period (60 to 180 seconds) as that of the back and forth protoplasmic streaming along the strand. Generally some phase difference is observed between them. Periods of the electric potential rhythm show a Gaussian distribution. Amplitudes give a somewhat different distribution curve. Wave forms are not always simple harmonic ones, but are distorted more or less. However, auto-correlation analysis proves that there is a dominant rhythm of a nearly constant period which coincides with the mean period of the Gaussian distribution curve. Calculations made on an assumption that the electric potential rhythm is the result of many elementary rhythms (i.e., same periodicity, arbitrary phase angles) distributed throughout the plasmodium, give a satisfactory coincidence with the observed distribution for the amplitude. The predominance of a rhythm of a nearly constant periodicity suggests the existence of well organized interactions among components of a contractile protein network, the rhythmic deformation of which is supposed to be responsible for the protoplasmic streaming and for the electric potential rhythm.  相似文献   

11.
Using single sucrose gap technique, studies have been made on electrophysiological properties of the membrane in myocytes of the lymphatic vessels in the ox Bos taurus. It was shown that electrical stimulation does not induce tetanic contraction in the myocytes. The results obtained indicate strong similarity between electrophysiological properties of the myocytes in the lymphatic vessels and those of the myocardial cells in homoiotherms. Refractory state which follows the action potential, accounts for a possibility of rhythmic activity in the myocytes of the lymphatic vessels. Both single and rhythmic stimulation produce in the myocytes the "all-or-none" response. The main factor determining the level of excitability in the myocytes is the intravascular pressure. The latter exerts its influence on contractile activity via changes in the electrical activity (the membrane potential, duration of the plateau phase and the number of fast peak potentials on this plateau).  相似文献   

12.
Norbormide is a vasoconstrictor of rat peripheral arteries and a relaxant in rat aorta. To characterise norbormide actions within the rat vascular tree we have investigated its effects on the contractile function of rings from several arteries and veins. A maximal norbormide concentration (50 microM) failed to contract thoracic aorta and carotid artery, whereas in pulmonary artery, abdominal aorta, iliac, caudal, and femoral arteries it induced a contractile effect that was respectively 4.8 +/- 0.6, 18.4 +/- 1.5, 39 +/- 5, 144 +/- 7, and 260 +/- 22% of that induced by 90 mM KCl. In pulmonary, carotid, and iliac arteries, and in thoracic and abdominal aorta, 50 microM norbormide inhibited KCl-induced responses. Norbormide (50 microM) contracted all veins investigated. The effect, expressed as % of KCl-induced contraction, was 121 +/- 25, 154 +/- 14.5, 154 +/- 18.2, 203 +/- 19, and 267 +/- 33 for pulmonary vein, thoracic and abdominal vena cava, iliac and jugular veins, respectively. In jugular vein, as previously shown in rat caudal artery, norbormide contraction was abolished in Ca2+-free medium, was unaffected by the Ca2+ channel blocker nifedipine, and was relaxed by SK&F 96365, a blocker of store-operated Ca2+ channels. In conclusion: i) rat veins represent the main target for contractile norbormide action; ii) in both artery and veins norbormide contractions are generally inversely related to the calibre of the vessel; iii) norbormide-induced contraction is mediated by the same mechanism/s in arteries and veins; iiii) in norbormide-contracted arteries the drug activates both contractile and relaxing mechanisms.  相似文献   

13.
A circadian rhythm of O2 evolution has been found in Euglena gracilis, Klebs strain Z. The rhythm persists for at least 5 days in constant dim light and temperature, but damps out in constant bright light. The phase of this rhythm can be shifted by a pulse of bright light and the period length is not changed over a 10 C span of growth temperature.

The O2 evolution rhythm is found in both logarithmic and stationary phase cultures, but CO2 uptake is clearly rhythmic only in stationary phase cultures.

The activity of glyceraldehyde-3-phosphate dehydrogenase was not rhythmic as previously reported (Walther and Edmunds [1973] Plant Physiol. 51: 250-258). Carbonic anhydrase activity was rhythmic when the cultures were maintained under a light-dark cycle with the highest enzyme activity coinciding with the fastest rate of O2 evolution. However, the rhythm in carbonic anhydrase activity disappeared under constant conditions. Changes in the activities of these two enzymes are therefore not responsible for the rhythmic changes in photosynthetic capacity.

  相似文献   

14.
Abstract. The polygonal arrangement of actomyosin fibrils in different stages of the acellular slime mold Physarum polycephalum is correlated with morphogenetic processes at the cell surface. Light and electron microscopic investigations on both endoplasmic drops and thin-spread small plasmodia demonstrate that the differentiation of a polygonal pattern depends on a transient deficiency of plasma membrane invaginations.
Glycerol-extracted specimens show condensation and drastic spatial changes in the organization of the polygonal net after addition of ATP, thus indicating contractile properties of this system. Observations with the polarizing microscope reveal rhythmic changes in fibrillar birefringence intensity corresponding to the protoplasmic streaming activity, i.e., birefringence increases during contraction and decreases during relaxation. Cell fusion experiments, local irradiation with blue light (450 nm), and chemical treatment by impeding the mitochondria1 function with DNP (2,4-di-nitrophenol) demonstrate morphological as well as physiological interdependences of the actomyosin system, the motive force generation, and the expression of a locomotor polarity in plasmodia of Physarum polycephalum.  相似文献   

15.
Practically all organism's visceral organs and systems performing contractile function as well as the somatomotor apparatus of higher animals, regardless of the type of muscles and character of control of their activity, start their work at early stages of ontogenesis with autorhythmic contractions. This activity is endogenous, as it does not have any external rhythmic analogs. Two fundamentally different components can be distinguished in the endogenous rhythm: the basic ones, specific of each system, and the secondary ones, built over the basic rhythms that reflect oscillatory processes in the whole organism and serve the basis for integration of endogenous periodic processes. Formation and synchronization of the secondary rhythms is the earliest stage of coordination of the automatically working systems. The broadening of possibilities for regulation and age-dependent inhibition of the autorhythm provide a transition to reflex-determined forms of activity. In various contractile systems, stages of evolution of neuromuscular relationships, from the independent autorhythm to the voluntary control of contractions, find their reflection.  相似文献   

16.
Summary The rhythmic contraction pattern in plasmodia ofPhysarum polycephalum was studied to determine whether characteristic changes occur during the synchronized nuclear division. An electrical method that measures the contraction rhythm in situ during several cell cycles was used. Biopsies of the plasmodia were taken at 17 min intervals for precise determination of the cell cycle stages and were correlated with the simultaneously measured contraction rhythm. All measurements were performed in a temperature controlled environment (27 °C) at 100% relative humidity with the plasmodia (less than 24 h old) growing on a semi-defined agar medium. A total of 14 different plasmodia have been examined, and on one occasion the plasmodium was followed through 3 subsequent mitoses. The mitotic stages were identified with aceto-orcein coloring techniques and by fluorescence methods. Except for a few cases where a mitotic asynchrony of 2–3 min was observed, the mitotic events occurred simultaneously in the nuclei within a single plasmodium. Both the occurrence of the first mitosis after inoculation and the intermitotic times were highly variable. Our study indicates that the contraction rhythm in plasmodia ofPhysarum is unperturbed during the synchronized nuclear division. However, in 5 of the 17 examined mitoses an amplitude decay was observed. We discuss possible explanations for the obtained results with emphasis on the applied techniques, interpretation of the oscillation patterns, and possible restrictions in the cell itself.  相似文献   

17.
Intercellular communication between germ cells and neighboring somatic cells is essential for reproduction. Caenorhabditis elegans oocytes are surrounded by and coupled via gap junctions to smooth muscle-like myoepithelial sheath cells. Rhythmic sheath cell contraction drives ovulation and is triggered by a factor secreted from oocytes undergoing meiotic maturation. We demonstrate for the first time that signaling through the epidermal growth factor-like ligand LIN-3 and the LET-23 tyrosine kinase receptor induces ovulatory contractions of sheath cells. Reduction-of-function mutations in the inositol 1,4,5-trisphosphate (IP(3)) receptor gene itr-1 and knockdown of itr-1 expression by RNA interference inhibit sheath contractile activity. itr-1 gain-of-function mutations increase the rate and force of basal contractions and induce tonic sheath contraction during ovulation. Sheath contractile activity is disrupted by RNAi of plc-3, one of six phospholipase C-encoding genes in the C. elegans genome. PLC-3 is a PLC-gamma homolog and is expressed in contractile sheath cells of the proximal gonad. Maintenance of sheath contractile activity requires plasma membrane Ca(2+) entry. We conclude that IP(3) generated by LET-23 mediated activation of PLC-gamma induces repetitive intracellular Ca(2+) release that drives rhythmic sheath cell contraction. Calcium entry may function to trigger Ca(2+) release via IP(3) receptors and/or refill intracellular Ca(2+) stores.  相似文献   

18.
19.
M. Moczoń  A. Grębecki 《Protoplasma》1978,97(2-3):173-183
Summary The cross-sectional profiles of isolated veins ofPhysarum polycephalum plasmodia, winded round agar rods, were investigated by analysis of time-lapse films. The whole profile follows the same principal contraction-relaxation rhythm, but slight desynchronization and amplitude differences are found around the contour. As a result, the profile periodically changes its shape in the course of pulsation cycles, its lateral slopes becoming more convex in the expanded state than during contraction. Factors responsible for such geometrical deformations and their bearing for morphometrical studies of the motory activity of plasmodium are discussed.Study supported by the Research Project II.1 of the Polish Academy of Science.  相似文献   

20.
Rho-binding kinase and the myosin phosphatase targeting subunit regulate nonmuscle contractile events in higher eukaryotes. Genetic evidence indicates that the C. elegans homologs regulate embryonic morphogenesis by controlling the actin-mediated epidermal cell shape changes that transform the spherical embryo into a long, thin worm. LET-502/Rho-binding kinase triggers elongation while MEL-11/myosin phosphatase targeting subunit inhibits this contractile event. We describe mutations in the nonmuscle myosin heavy chain gene nmy-1 that were isolated as suppressors of the mel-11 hypercontraction phenotype. However, a nmy-1 null allele displays elongation defects less severe than mutations in let-502 or in the single nonmuscle myosin light chain gene mlc-4. This results because nmy-1 is partially redundant with another nonmuscle myosin heavy chain, nmy-2, which was previously known only for its role in anterior/posterior polarity and cytokinesis in the early embryo. At the onset of elongation, NMY-1 forms filamentous-like structures similar to actin, and LET-502 is interspersed with these structures, where it may trigger contraction. MEL-11, which inhibits elongation, is initially cytoplasmic. In response to LET-502 activity, MEL-11 becomes sequestered away from the contractile apparatus, to the plasma membrane, when elongation commences. Upon completion of morphogenesis, MEL-11 again appears in the cytoplasm where it may halt actin/myosin contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号