首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Populations of the sea anemone Metridium senile from the northeast coast of the United States exhibit a one-locus, two-allele polymorphism for phosphoglucose isomerase. No additional hidden variation is exposed by changes in pH, gel pore size, or heat denaturation. The allozymes are similar in pH optimum, sensitivity of K m to pH, and sensitivity of K m and V max to temperature. In other respects they are functionally different, with the fast allozyme having a 3.5-fold higher specific activity and a slightly higher K m of fructose-6-phosphate than the slow form. In these respects, heterozygotes produce a mixture of enzymes that appears to function roughly as the sum of its component parts. Comparisons of V max/K m ratios reveal significant differences among genotypes, with the fast form having higher values at all temperatures than the slow form and heterozygotes falling intermediate. In addition, there is a significant difference among genotypes in sensitivity of this parameter to temperature, with the fast homozygote and heterozygote displaying greater sensitivity than the slow homozygote. Temperature is probably an important selective agent in maintaining this polymorphism.Supported by Grant T-4 from the Health Research and Services Foundation, NSF DEB77-14442, NIH GM25809, and NIH GM28024.  相似文献   

2.
The magnitude and direction of carbon cycle feedbacks under climate warming remain uncertain due to insufficient knowledge about the temperature sensitivities of soil microbial processes. Enzymatic rates could increase at higher temperatures, but this response could change over time if soil microbes adapt to warming. We used the Arrhenius relationship, biochemical transition state theory, and thermal physiology theory to predict the responses of extracellular enzyme Vmax and Km to temperature. Based on these concepts, we hypothesized that Vmax and Km would correlate positively with each other and show positive temperature sensitivities. For enzymes from warmer environments, we expected to find lower Vmax, Km, and Km temperature sensitivity but higher Vmax temperature sensitivity. We tested these hypotheses with isolates of the filamentous fungus Neurospora discreta collected from around the globe and with decomposing leaf litter from a warming experiment in Alaskan boreal forest. For Neurospora extracellular enzymes, Vmax Q10 ranged from 1.48 to 2.25, and Km Q10 ranged from 0.71 to 2.80. In agreement with theory, Vmax and Km were positively correlated for some enzymes, and Vmax declined under experimental warming in Alaskan litter. However, the temperature sensitivities of Vmax and Km did not vary as expected with warming. We also found no relationship between temperature sensitivity of Vmax or Km and mean annual temperature of the isolation site for Neurospora strains. Declining Vmax in the Alaskan warming treatment implies a short‐term negative feedback to climate change, but the Neurospora results suggest that climate‐driven changes in plant inputs and soil properties are important controls on enzyme kinetics in the long term. Our empirical data on enzyme Vmax, Km, and temperature sensitivities should be useful for parameterizing existing biogeochemical models, but they reveal a need to develop new theory on thermal adaptation mechanisms.  相似文献   

3.
A comparison was made between some respiratory characteristics of mitochondria isolated from larval salivary glands of Drosophila hydei displaying chromosome puffs induced by anaerobiosis and mitochondria from non-treated glands. Mitochondria from anaerobically treated glands displayed a Km of the respiration in the presence of isocitrate (2.4 mM) which is half that of the Km found in control glands (5.6 mM). The Vmax of respiratory activity in the presence of isocitrate is similar for mitochondria of treated and non-treated glands. The apparent Vmax of the NADH dehydrogenase (E.C. 1.6.99.3) activity in mitochondria isolated from treated glands was 70% higher than in the control glands. Neither the change in Km of the respiratory activity in the presence of isocitrate, nor the change in app. Vmax of the NADH-dehydrogenase in the anaerobically treated glands was apparent when puff induction occurred in the presence of actinomycin D or cycloheximide in the incubation medium. The present results indicate that the changes in the pattern of active genes (the occurrence of new puffs) may be related with a change in the respiration of isocitrate and a change in NADH-dehydrogenase activity.  相似文献   

4.
Activity of extracellular phosphatases (phosphomonoesterases) was measured in sandy streambed sediments of the Breitenbach, a small unpolluted upland stream in Central Germany. Fluorigenic 4-methylumbelliferyl phosphate served as a model substrate. Experiments were conducted using sediment cores in a laboratory simulation of diffuse groundwater discharge through the stream bed, a natural process occurring in the Breitenbach as well as many other streams.Streambed sediments contained high levels of particulate phosphorus, but concentrations of dissolved phosphorus in the interstitial water were 3 to 4 orders of magnitude lower. These interstitial concentrations were similar to those in the stream and groundwater. Extracellular phosphatase activity was high in the streambed sediments. These enzymes probably contribute significantly to the flux of phosphorus in sediment by hydrolyzing phosphomonoesters, making free phosphate available to the sediment microorganisms.Factors influencing the kinetic parameters V max (maximum activity) and apparent K m (enzyme affinity) of phosphatase were discharge rates of water through the sediment, water quality (ground- or stream water), and substrate (phosphomonoesters) as well as dissolved ortho-phosphate concentrations. Enzymes are supposed to be effective at limiting substrate concentrations, where, in this study, changes in discharge rates had little influence on rates of hydrolysis. Higher V max and lower K m values were found during percolation of groundwater through the sediment cores, compared with stream water. This indicates that rates of hydrolysis were higher with groundwater, both at substrate limitation and at substrate saturation. This was probably a consequence of the lower levels of dissolved ortho-phosphate in the groundwater.  相似文献   

5.
The importance of the creatine kinase system in the cardiac muscle of ectothermic vertebrates is unclear. Mammalian cardiac muscle seems to be structurally organized in a manner that compartmentalizes the intracellular environment as evidenced by the substantially higher mitochondrial apparent Km for ADP in skinned fibres compared to isolated mitochondria. A mitochondrial fraction of creatine kinase is functionally coupled to the mitochondrial respiration, and the transport of phosphocreatine and creatine as energy equivalents of ATP and ADP, respectively, increases the mitochondrial apparent ADP affinity, i.e. lowers the Km. This function of creatine kinase seems to be absent in hearts of frog species. To find out whether this applies to hearts of ectothermic vertebrate species in general, we investigated the effect of creatine on the mitochondrial respiration of saponin-skinned fibres from the ventricle of rainbow trout, Atlantic cod and freshwater turtle. For all three species, the apparent Km for ADP appeared to be substantially higher than for isolated mitochondria. Creatine lowered this Km in trout and turtle, thus indicating a functional coupling between mitochondrial creatine kinase and respiration. However, creatine had no effect on Km in cod ventricle. In conclusion, the creatine kinase-system in trout and turtle hearts seems to fulfil the same functions as in the mammalian heart, i.e. facilitating energy transport and communication between cellular compartments. In cod heart, however, this does not seem to be the case.Abbreviations ACR acceptor control ratio - CK creatine kinase - PCr creatine phosphate - VADP ADP-stimulated respiration rate - Vmax maximal respiration rate - V0 respiration rate in the absence of ADPCommunicated by: G. Heidmaier  相似文献   

6.
Soil microbes produce extracellular enzymes that degrade carbon (C)‐containing polymers in soil organic matter. Because extracellular enzyme activities may be sensitive to both increased nitrogen (N) and temperature change, we measured the effect of long‐term N addition and short‐term temperature variation on enzyme kinetics in soils from hardwood forests at Bear Brook, Maine, and Fernow Forest, West Virginia. We determined the Vmax and Km parameters for five hydrolytic enzymes: α‐glucosidase, β‐glucosidase, β‐xylosidase, cellobiohydrolase, and N‐acetyl‐glucosaminidase. Temperature sensitivities of Vmax and Km were assessed within soil samples subjected to a range of temperatures. We hypothesized that (1) N additions would cause microbial C limitation, leading to higher enzyme Vmax values and lower Km values; and (2) both Vmax and Km would increase at higher temperatures. Finally, we tested whether or not temperature sensitivity of enzyme kinetics is mediated by N addition. Nitrogen addition significantly or marginally significantly increased Vmax values for all enzymes, particularly at Fernow. Nitrogen fertilization led to significantly lower Km values for all enzymes at Bear Brook, but variable Km responses at Fernow Forest. Both Vmax and Km were temperature sensitive, with Q10 values ranging from 1.64–2.27 for enzyme Vmax and 1.04–1.93 for enzyme Km. No enzyme showed a significant interaction between N and temperature sensitivity for Vmax, and only β‐xylosidase showed a significant interaction between N and temperature sensitivity for Km. Our study is the first to experimentally demonstrate a positive relationship between Km and temperature for soil enzymes. Higher temperature sensitivities for Vmax relative to Km imply that substrate degradation will increase with temperature. In addition, the Vmax and Km responses to N indicate greater substrate degradation under N addition. Our results suggest that increasing temperatures and N availability in forests of the northeastern US will lead to increased hydrolytic enzyme activity, despite the positive temperature sensitivity of Km.  相似文献   

7.
Kinetic studies of cholesterol oxidase-catalysed oxidation of cholesterol in water/2-propanol mixtures showed a decrease of V max/K m values on the increase of concentration of the organic co-solvent. Addition of 18-crown-6 to the reaction medium results in an increase of V max up to 16 times, and V max/K m up to 8.4 times, enhancing the activity of cholesterol oxidase in 2-propanol/water (88:12 v/v) to 3.5 times compared to the level observed in 46% 2-propanol.  相似文献   

8.
The activating or inhibiting actions of a variety of anion species and of oligomycin, aurovertin and Dio-9 on the ATPase of a sonic particle preparation of rat liver mitochondria have been characterized by measurements of the relevantV max,K i andK m values.The normalV max was increased by a factor near 7 by the anions: dichromate, chromate, pyrophosphate, orthophosphate, orthoarsenate and sulphate. The fully activating concentration varied from about 2 mM for dichromate to 150 mM for sulphate. The increase inV max was accompanied by a time-dependent decrease in (K i)ADP, but there was no change in (K m)ATP. The increase inV max by the activating anions was abolished by aurovertin; but in presence of oligomycin, the lowV max was increased by the activating anions by the same factor as theV max in absence of oligomycin.Certain anions, notably azide, decreasedV max, but did not affect (K i)ADP or (K m)ATP. The decrease inV max by azide and oligomycin were approximately additive. Even at high concentration, Dio-9 was without detectable effect on the ATPase, but it had a gramicidinlike effect on the intact mitochondria.The specificity of the ATPase for ATP relative to GTP was found to be attributable to the high value of (V max)ATP compared with (V max)GTP. The values of (K m)ATP and (K m)GTP were virtually the same.Some rationalization of these and other supporting observations is attempted in terms of present knowledge of the constitution of the ATPase complex.  相似文献   

9.
Our primary objective was to determine if a relationship existed between seasonal change in phytoplankton and high affinity for (K m) or uptake rates (V maX) of ammonium which might explain seasonal phytoplankton succession in oligotrophic ecosystems. We measured ammonium uptake using [14C]-methylamine and estimatedK m andV max using Hanes Plots at 2-week intervals during 6 months of thermal stratification in Mountain lake, Virginia (37° 22 N, 80° 32 W). Community composition, nutrient levels, and other variables were determined in all uptake experiments. A second objective was to determine if ammonium was preferentially utilized over nitrate and to characterize further the ammonium transport system.V max increased steadily from May until the end of July, each increase coinciding with major changes in the phytoplankton community. Cryptophyceans dominated in May, chlorophyceans in June and July, and cyanophyceans from the end of July to late October. With cyanophycean dominance,V max declined until chlorophyceans reestablished dominance in late October. By contrast,K m values increased from May to the end of July, but thereafter showed no correlation. Acetylene reduction experiments showed no nitrogen fixation during late summer and fall when blue-green algae were present. Preference for ammonium was implied also by negative nitrate reductase assays. Overall, the coincidence ofV max andK m values for [14C]-methylamine uptake and changing phytoplankton community structure suggests the possibility that successive algal communities may be changing as a result of specific species differences in ammonium affinity and uptake rates.  相似文献   

10.
The allometric equation, y = aXb, described the interspecific variation of phosphate uptake kinetics and cell quota with phytoplankton cell size and showed that smaller cells are superior in uptake rate to large. Species-specific measurements, made by track autoradiography in phosphorus deficient cultures of communities from a phosphorus-limited lake, revealed that eight different species did not differ significantly in the Michaelis-Menten half-saturation constant, Km. However, both saturated uptake rates (Vmax) and the initial slope of the uptake curve (Vmax:Km) decreased per unit biomass with increasing cell size. Biomass-specific cell phosphorus quotas also decreased with increasing cell volume, but less rapidly than did Vmax or Vmax: Km. Comparable data from the literature showed that marine species were superior in phosphorus uptake to freshwater species of similar size, but allometric variation of kinetics appeared to exist within both groups. Together with a variable internal stores model of phosphorus-limited growth, the allometric relationships of uptake kinetics and quotas predicted competition to favor smaller cells, with a differential in growth rate diminishing as competitive intensity increased.  相似文献   

11.
Summary Rapid uptake of Ba2+ by respiring rat liver mitochondria is accompanied by a transient stimulation of respiration. Following accumulation of Ba2+, e.g. at a concentration of 120 nmol per mg protein, the mitochondria exhibit reduced rates of state 3 and uncoupler-stimulated respiration. ADP-stimulated respiration is inhibited at a lower concentration of Ba2+ than is required to affect uncoupler-stimulated respiration, suggesting a distinct effect of Ba2+ on mechanisms involved in synthesis of ATP. Ba2+, which has an ionic radius similar to that of K+, inhibits unidirectional K+ flux into respiring rat liver mitochondria. This effect on K+ influx is observable at concentrations of Ba2+, e.g. 23 to 37 nmol per mg protein, which cause no significant change in state 4 or uncoupler-stimulated respiration. The accumulated Ba2+ decreases the measuredV max of K+ influx, while having little effect on the apparentK m for K+. The inhibition of K+ influx by Ba2+ is seen in the presence and absence of mersalyl, an activator of K+ influx. In contrast, under the conditions studied, Ba2+ has no apparent effet on the rate of unidirectional K+ efflux. These data are consistent with the idea that K+ may enter and leave mitochondria via spearate mechanisms.  相似文献   

12.
The kinetic parameters Km and Vmax for urea uptake by Melosira italica were determined at 160 μeinsteins m−2 s−1 and in the dark. The transport systems showed an affinity for the substrate and a storing capacity in the dark (Km = 65.07 μM; Vmax = 2.18 nmoles 105 cells −1 h−1) greater than under 160 μE m−2 s −1 (Km = 111.2 μM; Vmax = 1.11 nmoles 105 cells−1 h−1). Similarly, a reduction in consumption rate of urea under increasing photon flux densities was observed. The use of an inhibitor (potassium cyanide) indicated that the uptake process requires metabolic energy. That urea transport is more important in darkness, may constitute a survival strategy in which this compound is utilized by cells mainly during heterotrophic growth.  相似文献   

13.
In the range 10?6M - 5 × 10?2M uptake of K+ in excised roots of barley (Hordeum vulgare L. cv. Herta) with low and high K content could in both cases be represented by an isotherm with four phases. Uptake, especially in the range of the lower phases, was reduced in high K roots through decreases in Vmax and increases in Km. Similar data for other plants are also shown to be consistent with multiphasic kinetics. The concentrations at which transitions occurred were not affected by the K status, indicating the existence of separate uptake and transition sites. Uptake was markedly reduced in the presence of 10?5M 2,4-dinitrophenol, especially at low K+ concentrations, but the isotherms remained multiphasic. This contraindicates major contributions from a non-carrier-mediated, passive flux. A tentative hypothesis for multiphasic ion uptake envisions a structure which changes conformation as a result of all-or-none changes in a separate transition site. The structure is “tight” at low external ion concentrations (low Vmax. low Km. active uptake, allosteric regulation) and “loose” at high concentrations (high Vmax- high Km- facilitated diffusion, no regulation).  相似文献   

14.
The photosynthetic enzyme ribulose bisphosphate carboxylase-oxygenase [EC 4.1.1.39] (RuBPCase) plays a key role in the carbon reduction system of plants. In this study, we determined the kinetic variability of RuBPCase among 46 varieties of Hordeum vulgare L. at two ages. The Vmax CO2 and Km CO2 of RuBPCase was determined for each cultivar. Varietal differences were found in Km CO2 and Vmax CO2 for one and four genotypes, respectively. One variety exhibited atypical behavior in both Km and Vmax. A comparison of varieties and age showed a significant interaction between these factors for Km but not for Vmax. These data indicate the presence of kinetic variability in RuBPCase within the H. vulgare population and perhaps between plant ages.  相似文献   

15.
Summary Plant root nutrient uptake efficiency may be expressed by the kinetic parameters, Vmax and Km, as well as by normal enzymatic reactions. These parameters are apparently useful indices of the level of adaptation of genotypes to the nutrient conditions in the soil. Moreover, sulfate uptake capacity has been considered a valuable index for selecting superior hybrid characterized by both high grain yield and efficiency in nutrient uptake. Therefore, the purpose of this research was to determine combining ability for sulfate uptake, in a diallel series of maize hybrids among five inbreds. Wide differences among the 20 single crosses were obtained for Vmax and Km. The general and specific combining ability mean squares were significant and important for each trait, indicating the presence of considerable amount of both additive and nonadditive gene effects in the control of sulfate uptake. In addition, maternal and nonmaternal components of F1 reciprocal variation showed sizeable effects on all the traits considered. A relatively high correlation was also detected between Vmax and Km. However, both traits displayed enough variation to suggest that simultaneous improvement of both Vmax and Km should be feasible. A further noteworthy finding in this study was the identification of one inbred line, which was the best overall parent for improving both affinity and velocity strategies of sulfate uptake.  相似文献   

16.
The H+-ATPase activities of root and leaf plasma membranes from tobacco (Nicotiana tabacum) have been characterized with respect to Vmax, Km for ATP, pH dependence and activation involving the C-terminal autoinhibitory domain. With root plasma membranes, addition of lysophosphatidylcholine (lyso-PC) resulted in the expected increase in Vmax, a decrease in Km(ATP), and a shift in pH optimum to a more alkaline pH, typical for activation via the C-terminal inhibitory domain. With leaf plasma membranes, however, Km(ATP) was relatively low and the pH optimum was around pH 7.0 before the addition of lyso-PC and did not change upon addition of the activator, although Vmax increased twofold. Similar results were obtained with the in vivo activator fusicoccin. The results obtained with the leaf plasma membranes show that Vmax may be regulated independently of Km(ATP) and pH optimum, and suggest the presence of at least two regulatory sites within the C-terminal autoinhibitory domain of the H+-ATPase.  相似文献   

17.
Three isoamylases of Rhyzopertha dominica (termed RdA70, RdA79, and RdA90 according to their relative mobility in gel electrophoresis) were isolated by ammonium sulfate fractionation and hydrophobic interaction chromatography. RdA70 and RdA79 showed an optimal pH of 7.0, whereas for RdA90 the optimal pH was 6.5. The three isoamylases remained stable at 50 °C for 1 h, but at 60 °C, all lost 50% of their activity in 20 min and were completely inactivated in 1 h. RdA70 and RdA79 were inhibited by albumin extracts from wheat samples varying widely in amylase inhibitory activity; however, RdA90 was highly resistant to inhibition. β-Mercaptoethanol up to 30 mM increased the activity of the three isoamylases by 2.5-fold. The action pattern of the three isoamylases was typical of endoamylases; however, differences were observed on the hydrolytic efficiency rates measured as Vmax/Km ratio on starch, amylopectin, and amylose. The hydrolyzing action of RdA90 on starch and amylopectin (Vmax/Km = 90.4 ± 2.3 and 78.9 ± 6.6, respectively) was less efficient than that on amylose (Vmax/Km = 214 ± 23.2). RdA79 efficiently hydrolyzed both amylopectin and amylose (Vmax/Km = 260.6 ± 12.9 and 326.5 ± 9.4, respectively). RdA70 hydrolyzed starch and amylose at similar rates (Vmax/Km = 202.9 ± 5.5 and 215.9 ± 6.2, respectively), but amylopectin was a poor substrate (Vmax/Km = 124.2 ± 7.4). The overall results suggest that RdA70 and RdA79 appear to belong to a group of saccharifying isoamylases that breaks down long fragments of oligosaccharide chains produced by the hydrolytic action of RdA90. The simultaneous action of the three isoamylases on starch, aside from the high resistance of RdA90 to wheat amylase inhibitors, might allow R. dominica to feed and reproduce successfully on the wheat kernel.  相似文献   

18.
Decomposition of soil organic matter (SOM) is mediated by microbial extracellular hydrolytic enzymes (EHEs). Thus, given the large amount of carbon (C) stored as SOM, it is imperative to understand how microbial EHEs will respond to global change (and warming in particular) to better predict the links between SOM and the global C cycle. Here, we measured the Michaelis–Menten kinetics [maximal rate of velocity (Vmax) and half‐saturation constant (Km)] of five hydrolytic enzymes involved in SOM degradation (cellobiohydrolase, β‐glucosidase, β‐xylosidase, α‐glucosidase, and N‐acetyl‐β‐d ‐glucosaminidase) in five sites spanning a boreal forest to a tropical rainforest. We tested the specific hypothesis that enzymes from higher latitudes would show greater temperature sensitivities than those from lower latitudes. We then used our data to parameterize a mathematical model to test the relative roles of Vmax and Km temperature sensitivities in SOM decomposition. We found that both Vmax and Km were temperature sensitive, with Q10 values ranging from 1.53 to 2.27 for Vmax and 0.90 to 1.57 for Km. The Q10 values for the Km of the cellulose‐degrading enzyme β‐glucosidase showed a significant (= 0.004) negative relationship with mean annual temperature, indicating that enzymes from cooler climates can indeed be more sensitive to temperature. Our model showed that Km temperature sensitivity can offset SOM losses due to Vmax temperature sensitivity, but the offset depends on the size of the SOM pool and the magnitude of Vmax. Overall, our results suggest that there is a local adaptation of microbial EHE kinetics to temperature and that this should be taken into account when making predictions about the responses of C cycling to global change.  相似文献   

19.
A miniaturized reactor system with on‐line measurement of respiration rates by membrane inlet mass spectrometry was applied for the on‐line metabolic flux analysis at different phases of a 1.2 L batch culture of lysine‐producing Corynebacterium glutamicum. For this purpose, cells taken from the batch culture were transferred into the 12 mL mini reactor, and incubated for 15 min with [1‐18O]glucose. Quantification of oxygen uptake rate and CO2 mass isotopomer production rates in combination with a simple metabolic model allowed the estimation of the flux partitioning ratio between the pentose phosphate pathway and glycolysis during the process. The relative flux into the pentose pathway increased during growth, and reached maxima at 11 and 17 h cultivation time coinciding with maxima of the differential lysine yield. The developed system is a promising tool for determination of metabolic flux dynamics in industrially relevant batch and fed‐batch cultures.  相似文献   

20.
Summary The apparent energy of activation (E a), Michaelis-Menten constant (K mfor oxaloacetate), V max/K mratios and specific activities of NADP+-malate dehydrogenase (NADP+-MDH; EC 1.1.1.82) were analyzed in plants of Barnyard grass from Québec (QUE) and Mississippi (MISS) acclimated to two thermoperiods 28/22°C, 21/15°C, and grown under two CO2 concentrations, 350 l l-1 and 675 l l-1. E avalues of NADP+-MDH extracted from QUE plants were significantly lower than those of MISS plants. K mvalues and V max/K mratios of the enzyme from both ecotypes were similar over the range of 10–30°C but reduced V max/K mratios were found for the enzyme of QUE plants at 30 and 40°C assays. MISS plants had higher enzyme activities when measured on a chlorophyll basis but this trend was reversed when activities were expressed per fresh weight leaf or per leaf surface area. Activities were significantly higher in plants of both populations acclimated to 22/28°C. CO2 enrichment did not modify appreciably the catalytic properties of NADP+-MDH and did not have a compensatory effect upon catalysis or enzyme activity under cool acclimatory conditions. NADP+-MDH activities were always in excess of the amount required to support observed rates of CO2 assimilation and these two parameters were significantly correlated. The enhanced photosynthetic performance of QUE plants under cold temperature conditions, as compared to that of MISS plants, cannot be attributed to kinetic differences of NADP+-malate dehydrogenase among these ecotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号