首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
REV1 is a DNA damage tolerance protein and encodes two ubiquitin-binding motifs (UBM1 and UBM2) that are essential for REV1 functions in cell survival under DNA-damaging stress. Here we report the first solution and X-ray crystal structures of REV1 UBM2 and its complex with ubiquitin, respectively. Furthermore, we have identified the first small-molecule compound, MLAF50, that directly binds to REV1 UBM2. In the heteronuclear single quantum coherence NMR experiments, peaks of UBM2 but not of UBM1 are significantly shifted by the addition of ubiquitin, which agrees to the observation that REV1 UBM2 but not UBM1 is required for DNA damage tolerance. REV1 UBM2 interacts with hydrophobic residues of ubiquitin such as L8 and L73. NMR data suggest that MLAF50 binds to the same residues of REV1 UBM2 that interact with ubiquitin, indicating that MLAF50 can compete with the REV1 UBM2–ubiquitin interaction orthosterically. Indeed, MLAF50 inhibited the interaction of REV1 UBM2 with ubiquitin and prevented chromatin localization of REV1 induced by cisplatin in U2OS cells. Our results structurally validate REV1 UBM2 as a target of a small-molecule inhibitor and demonstrate a new avenue to targeting ubiquitination-mediated protein interactions with a chemical tool.  相似文献   

2.
TAX1BP1, a ubiquitin-binding adaptor, plays critical roles in the innate immunity and selective autophagy. During autophagy, TAX1BP1 may not only function as an autophagy receptor to recruit ubiquitylated substrates for autophagic degradation, but also serve as a Myosin VI cargo adaptor protein for mediating the maturation of autophagosome. However, the mechanistic basis underlying the specific interactions of TAX1BP1 with ubiquitin and Myosin VI remains elusive. Here, using biochemical, NMR and structural analyses, we elucidate the detailed binding mechanism and uncover the key determinants for the interaction between TAX1BP1 and ubiquitin. In addition, we reveal that both tandem zinc-fingers of TAX1BP1 and the conformational rigidity between them are required for the Myosin VI binding of TAX1BP1, and ubiquitin and Myosin VI are mutually exclusive in binding to TAX1BP1. Collectively, our findings provide mechanistic insights into the dual functions of TAX1BP1 in selective autophagy.  相似文献   

3.
The Fanconi Anemia (FA) DNA repair pathway is essential for the recognition and repair of DNA interstrand crosslinks (ICL). Inefficient repair of these ICL can lead to leukemia and bone marrow failure. A critical step in the pathway is the monoubiquitination of FANCD2 by the RING E3 ligase FANCL. FANCL comprises 3 domains, a RING domain that interacts with E2 conjugating enzymes, a central domain required for substrate interaction, and an N-terminal E2-like fold (ELF) domain. The ELF domain is found in all FANCL homologues, yet the function of the domain remains unknown. We report here that the ELF domain of FANCL is required to mediate a non-covalent interaction between FANCL and ubiquitin. The interaction involves the canonical Ile44 patch on ubiquitin, and a functionally conserved patch on FANCL. We show that the interaction is not necessary for the recognition of the core complex, it does not enhance the interaction between FANCL and Ube2T, and is not required for FANCD2 monoubiquitination in vitro. However, we demonstrate that the ELF domain is required to promote efficient DNA damage-induced FANCD2 monoubiquitination in vertebrate cells, suggesting an important function of ubiquitin binding by FANCL in vivo.  相似文献   

4.
The human peptidyl prolyl cis/trans isomerase (PPIase) Pin1 has a key role in developmental processes and cell proliferation. Pin1 consists of an N-terminal WW domain and a C-terminal catalytic PPIase domain both targeted specifically to Ser(PO3H2)/Thr(PO3H2)-Pro sequences. Here, we report the enhanced affinity originating from bivalent binding of ligands toward Pin1 compared to monovalent binding. We developed composite peptides where an N-terminal segment represents a catalytic site-directed motif and a C-terminal segment exhibits a predominant affinity to the WW domain of Pin1 tethered by polyproline linkers of different chain length. We used NMR shift perturbation experiments to obtain information on the specific interaction of a bivalent ligand to both targeted sites of Pin1. The bivalent ligands allowed a considerable range of thermodynamic investigations using isothermal titration calorimetry and PPIase activity assays. They expressed up to 350-fold improved affinity toward Pin1 in the nanomolar range in comparison to the monovalent peptides. The distance between the two binding motifs was highly relevant for affinity. The optimum in affinity manifested by a linker length of five prolyl residues between active site- and WW domain-directed peptide fragments suggests that the corresponding domains in Pin1 are allowed to adopt preferred spatial arrangement upon ligand binding.  相似文献   

5.
CIN85 is a multifunctional protein that plays key roles in endocytic down-regulation of receptor tyrosine kinases, apoptosis, cell adhesion, and cytoskeleton rearrangement. Its three SH3 domains (CIN85A, CIN85B, and CIN85C) allow it to recruit multiple binding partners. To understand the manifold interactions of CIN85, we present a detailed high-resolution solution structural study of CIN85A and CIN85B binding to proline-arginine peptides derived from the cognate ligands Cbl and Cbl-b. We report the structure of CIN85B and provide evidence that both CIN85A and CIN85B, in isolation or when linked, form heterodimeric complexes with the peptides. We report unusual curved chemical shift changes for several residues of CIN85A when titrated with Cbl-b peptide, indicating the existence of more than one complex form. Here we demonstrate that CIN85A and CIN85B use different mechanisms for peptide binding.  相似文献   

6.
7.
Galectins are a family of lectins with a conserved carbohydrate recognition domain that interacts with β-galactosides. By binding cell surface glycoconjugates, galectin-1 (gal-1) is involved in cell adhesion and migration processes and is an important regulator of tumor angiogenesis. Here, we used heteronuclear NMR spectroscopy and molecular modeling to investigate lactose binding to gal-1 and to derive solution NMR structures of gal-1 in the lactose-bound and unbound states. Structure analysis shows that the β-strands and loops around the lactose binding site, which are more open and dynamic in the unbound state, fold in around the bound lactose molecule, dampening internal motions at that site and increasing motions elsewhere throughout the protein to contribute entropically to the binding free energy. CD data support the view of an overall more open structure in the lactose-bound state. Analysis of heteronuclear single quantum coherence titration binding data indicates that lactose binds the two carbohydrate recognition domains of the gal-1 dimer with negative cooperativity, in that the first lactose molecule binds more strongly (K1 = 21 ± 6 × 103 M− 1) than the second (K2 = 4 ± 2 × 103 M− 1). Isothermal calorimetry data fit using a sequential binding model present a similar picture, yielding K1 = 20 ± 10 × 103 M− 1 and K2 = 1.67 ± 0.07 × 103 M− 1. Molecular dynamics simulations provide insight into structural dynamics of the half-loaded lactose state and, together with NMR data, suggest that lactose binding at one site transmits a signal through the β-sandwich and loops to the second binding site. Overall, our results provide new insight into gal-1 structure-function relationships and to protein-carbohydrate interactions in general.  相似文献   

8.
To satisfy their iron needs, several Gram-negative bacteria use a heme uptake system involving an extracellular heme-binding protein called hemophore. The function of the hemophore is to acquire free or hemoprotein-bound heme and to transfer it to HasR, its specific outer membrane receptor, by protein-protein interaction. The hemophore HasA secreted by Serratia marcescens, an opportunistic pathogen, was the first to be identified and is now very well characterized. HasA is a monomer that binds one b heme with strong affinity. The heme in HasA is highly exposed to solvent and coordinated by an unusual pair of ligands, a histidine and a tyrosine. Here, we report the identification, the characterization and the X-ray structure of a dimeric form of HasA from S. marcescens: DHasA. We show that both monomeric and dimeric forms are secreted in iron deficient conditions by S. marcescens. The crystal structure of DHasA reveals that it is a domain swapped dimer. The overall structure of each monomeric subunit of DHasA is very similar to that of HasA but formed by parts coming from the two different polypeptide chains, involving one of the heme ligands. Consequently DHasA binds two heme molecules by residues coming from both polypeptide chains. We show here that, while DHasA can bind two heme molecules, it is not able to deliver them to the receptor HasR. However, DHasA can efficiently transfer its heme to the monomeric form that, in turn, delivers it to HasR. We assume that DHasA can function as a heme reservoir in the hemophore system.  相似文献   

9.
DNA sequence recognition by the homodimeric C-terminal domain of the human papillomavirus type 16 E2 protein (E2C) is known to involve both direct readout and DNA-dependent indirect readout mechanisms, while protein-dependent indirect readout has been deduced but not directly observed. We have investigated coupling between specific DNA binding and the dynamics of the unusual E2C fold, using pH as an external variable. Nuclear magnetic resonance and isothermal titration calorimetry show that pH titration of His318 in the complex interface and His288 in the core of the domain is coupled to both binding and the dynamics of the β-barrel core of E2C, with a tradeoff between dimer stability and function. Specific DNA binding is, in turn, coupled to the slow dynamics and amide hydrogen exchange in the entire β-barrel, reaching residues far apart from the DNA recognition elements but not affecting the two helices of each monomer. The changes are largest in the dimerization interface, suggesting that the E2C β-barrel acts as a hinge that regulates the relative position of the DNA recognition helices. In conclusion, the cooperative dynamics of the human papillomavirus type 16 E2C β-barrel is coupled to sequence recognition in a protein-dependent indirect readout mechanism. The patterns of residue substitution in genital papillomaviruses support the importance of the protonation states of His288 and His318 and suggest that protein-dependent indirect readout and histidine pH titration may regulate DNA binding in the cell.  相似文献   

10.
Integrins are hetero-dimeric (α and β subunits) type I transmembrane proteins that facilitate cell adhesion and migration. The cytoplasmic tails (CTs) of integrins interact with a plethora of intra-cellular proteins that are required for integrin bidirectional signaling. In particular, the β CTs of integrins are known to recruit a variety of cytosolic proteins that often have overlapping recognition sites. However, the chronological sequence of β CTs/cytosolic proteins interactions remains to be fully characterized. Previous studies have shown that the scaffold protein 14-3-3ζ binds to phosphorylated β CTs in activated integrins, whereas interactions of Dok-1 with phosphorylated β CTs maintained integrins in the resting state. In this study, we examined the binding interactions between 14-3-3ζ, Dok1, and phosphorylated integrin β2 and β3 CTs. We show that the scaffold protein 14-3-3ζ interacts with the phosphotyrosine binding (PTB) domain of Dok1 even in the absence of the phosphorylated integrin β CTs. The interactions were mapped onto the β-sheet region of the PTB domain of Dok1. Furthermore, we provide evidence that the 14-3-3ζ/Dok1 binary complex is able to bind to their cognate phosphorylated sequence motifs in the integrin β CTs. We demonstrate that Thr phosphorylated pTTT β2 CT or pTST β3 CT can bind to 14-3-3ζ that is in complex with the Dok1 PTB domain, whereas Ser phosphorylated β2 CT or Tyr phosphorylated β3 CT interacted with Dok1 in 14-3-3ζ/Dok1 complex. Based on these data, we propose that 14-3-3ζ/Dok1 complex could serve as a molecular switch providing novel molecular insights into the regulating integrin activation.  相似文献   

11.
The mammalian SPRY domain- and SOCS box-containing proteins, SPSB1 to SPSB4, belong to the SOCS box family of E3 ubiquitin ligases. Substrate recognition sites for the SPRY domain are identified only for human Par-4 (ELNNNL) and for the Drosophila orthologue GUSTAVUS binding to the DEAD-box RNA helicase VASA (DINNNN). To further investigate this consensus motif, we determined the crystal structures of SPSB1, SPSB2, and SPSB4, as well as their binding modes and affinities for both Par-4 and VASA. Mutation of each of the three Asn residues in Par-4 abrogated binding to all three SPSB proteins, while changing EL to DI enhanced binding. By comparison to SPSB1 and SPSB4, the more divergent protein SPSB2 showed only weak binding to Par-4 and was hypersensitive to DI substitution. Par-4(59-77) binding perturbed NMR resonances from a number of SPSB2 residues flanking the ELNNN binding site, including loop D, which binds the EL/DI sequence. Although interactions with the consensus peptide motif were conserved in all structures, flanking sites in SPSB2 were identified as sites of structural change. These structural changes limit high-affinity interactions for SPSB2 to aspartate-containing sequences, whereas SPSB1 and SPSB4 bind strongly to both Par-4 and VASA peptides.  相似文献   

12.
13.
14.
The human ubiquitin-conjugating enzyme Rad6 (E2), with ubiquitin ligase enzyme Rad18 (RING E3), monoubiquitinates proliferating cell nuclear antigen at stalled replication forks in DNA translesion synthesis. Here, we determine the structure of the homodimeric Rad18 RING domains by X-ray crystallography and classify it to RING-RING dimers that dimerize through helices adjacent to the RING domains and through the canonical RING domains. Using NMR spectroscopy and site-directed mutagenesis, we demonstrate that the Rad6b binding site, for the Rad18 RING domain, strongly resembles that of other E2/E3 RING/U-box complexes. We show that the homodimeric Rad18 RING domain can recruit two Rad6b E2 enzymes, whereas the full-length Rad18 homodimer binds only to a single Rad6b molecule. Such asymmetry is a common feature of RING-RING heterodimers and has been observed for the CHIP U-box homodimer. We propose that asymmetry may be a common feature of dimeric RING E3 ligases.  相似文献   

15.
Pro-survival proteins in the B-cell lymphoma-2 (Bcl-2) family have a defined specificity profile for their cell death-inducing BH3-only antagonists. Solution structures of myeloid cell leukaemia-1 (Mcl-1) in complex with the BH3 domains from Noxa and Puma, two proteins regulated by the tumour suppressor p53, show that they bind as amphipathic α-helices in the same hydrophobic groove of Mcl-1, using conserved residues for binding. Thermodynamic parameters for the interaction of Noxa, Puma and the related BH3 domains of Bmf, Bim, Bid and Bak with Mcl-1 were determined by calorimetry. These unstructured BH3 domains bind Mcl-1 with affinities that span 3 orders of magnitude, and binding is an enthalpically driven and entropy-enthalpy-compensated process. Alanine scanning analysis of Noxa demonstrated that only a subset of residues is required for interaction with Mcl-1, and these residues are localised to a short highly conserved sequence motif that defines the BH3 domain. Chemical shift mapping of Mcl-1:BH3 complexes showed that Mcl-1 engages all BH3 ligands in a similar way and that, in addition to changes in the immediate vicinity of the binding site, small molecule-wide structural adjustments accommodate ligand binding. Our studies show that unstructured peptides, such as the BH3 domains, behave like their structured counterparts and can bind tightly and selectively in an enthalpically driven process.  相似文献   

16.
Talin is a large cytoskeletal protein that is involved in coupling the integrin family of cell adhesion molecules to the actin cytoskeleton, colocalising with the integrins in focal adhesions (FAs). However, at the leading edge of motile cells, talin colocalises with the hyaluronan receptor layilin in what are thought to be transient adhesions, some of which subsequently mature into more stable FAs. During this maturation process, layilin is replaced with integrins, which are highly clustered in FAs, where localised production of PI(4,5)P2 by type 1 phosphatidyl inositol phosphate kinase type 1γ (PIPK1γ) is thought to play a role in FA assembly. The talin FERM F3 subdomain binds both the integrin β-subunit cytoplasmic domain and PIPK1γ, and these interactions are understood in detail at the atomic level. The talin F3 domain also binds to short sequences in the layilin cytoplasmic domain, and here we report the structure of the talin/layilin complex, which shows that talin binds integrins, PIPK1γ and layilin in similar although subtly different ways. Based on structure comparisons, we designed a set of talin F3 mutations that selectively affected the affinity of talin for its targets, as determined by stopped-flow fluorescence measurements. Such mutations will help to assess the importance of the interactions between talin and its various ligands in cell adhesion and migration.  相似文献   

17.
We have determined the solution structure of epidermal growth factor receptor pathway substrate 8 (Eps8) L1 Src homology 3 (SH3) domain in complex with the PPVPNPDYEPIR peptide from the CD3ε cytoplasmic tail. Our structure reveals the distinct structural features that account for the unusual specificity of the Eps8 family SH3 domains for ligands containing a PxxDY motif instead of canonical PxxP ligands. The CD3ε peptide binds Eps8L1 SH3 in a class II orientation, but neither adopts a polyproline II helical conformation nor engages the first proline-binding pocket of the SH3 ligand binding interface. Ile531 of Eps8L1 SH3, instead of Tyr or Phe residues typically found in this position in SH3 domains, renders this hydrophobic pocket smaller and nonoptimal for binding to conventional PxxP peptides. A positively charged arginine at position 512 in the n-Src loop of Eps8L1 SH3 plays a key role in PxxDY motif recognition by forming a salt bridge to D7 of the CD3ε peptide. In addition, our structural model suggests a hydrogen bond between the hydroxyl group of the aromatic ring of Y8 and the carboxyl group of E496, thus explaining the critical role of the PxxDY motif tyrosine residue in binding to Eps8 family SH3. These finding have direct implications also for understanding the atypical binding specificity of the amino-terminal SH3 of the Nck family proteins.  相似文献   

18.
The relationship between helical stability and binding affinity was examined for the intrinsically disordered transactivation domain of the myeloblastosis oncoprotein, c-Myb, and its ordered binding partner, KIX. A series of c-Myb mutants was designed to either increase or decrease helical stability without changing the binding interface with KIX. This included a complimentary series of A, G, P, and V mutants at three non-interacting sites. We were able to use the glycine mutants as a reference state and show a strong correlation between binding affinity and helical stability. The intrinsic helicity of c-Myb is 21%, and helicity values of the mutants ranged from 8% to 28%. The c-Myb helix is divided into two conformationally distinct segments. The N-terminal segment, from K291–L301, has an average helicity greater than 60% and the C-terminal segment, from S304–L315, has an average helicity less than 10%. We observed different effects on binding when these two segments were mutated. Mutants in the N-terminal segment that increased helicity had no effect on the binding affinity to KIX, while helix destabilizing glycine and proline mutants reduced binding affinity by more than 1 kcal/mol. Mutants that either increased or decreased helical stability in the C-terminal segment had almost no effect on binding. However, several of the mutants reveal the presence of multiple conformations accessible in the bound state based on changes in enthalpy and linkage analysis of binding free energies. These results may explain the high level of sequence identity (> 90%), even at non-interacting sites, for c-Myb homologues.  相似文献   

19.
Interleukin (IL)-12 and IL-23 are heterodimeric proinflammatory cytokines that share a common p40 subunit, paired with p35 and p19 subunits, respectively. They represent an attractive class of therapeutic targets for the treatment of psoriasis and other immune-mediated diseases. Ustekinumab is a fully human monoclonal antibody (mAb) that binds specifically to IL-12/IL-23p40 and neutralizes human IL-12 and IL-23 bioactivity. The crystal structure of ustekinumab Fab (antigen binding fragment of mAb), in complex with human IL-12, has been determined by X-ray crystallography at 3.0 Å resolution. Ustekinumab Fab binds the D1 domain of the p40 subunit in a 1:1 ratio in the crystal, consistent with a 2 cytokines:1 mAb stoichiometry, as measured by isothermal titration calorimetry. The structure indicates that ustekinumab binds to the same epitope on p40 in both IL-12 and IL-23 with identical interactions. Mutational analyses confirm that several residues identified in the IL-12/IL-23p40 epitope provide important molecular binding interactions with ustekinumab. The electrostatic complementarity between the mAb antigen binding site and the p40 D1 domain epitope appears to play a key role in antibody/antigen recognition specificity. Interestingly, this structure also reveals significant structural differences in the p35 subunit and p35/p40 interface, compared with the published crystal structure of human IL-12, suggesting unusual and potentially functionally relevant structural flexibility of p35, as well as p40/p35 recognition. Collectively, these data describe unique observations about IL-12p35 and ustekinumab interactions with p40 that account for its dual binding and neutralization of IL-12 and IL-23.  相似文献   

20.
The oligomerization and aggregation of the amyloid-β (Aβ) peptide, a cleavage product of the amyloid precursor protein predominantly 40 or 42 amino acids in length, has been implicated in the pathogenesis of Alzheimer's disease. The identification of Aβ-binding agents, e.g., antibodies or peptides, constitutes a promising therapeutic approach. However, the amount of structural and biophysical data on the underlying Aβ interactions is currently very limited. We have earlier determined the structure of Aβ(1-40) in complex with the affibody protein ZAβ3, a selected binding protein based on a three-helix bundle scaffold (Z domain). ZAβ3 is a dimer of affibody subunits linked via a disulfide bridge involving a selected cysteine mutation at position 28. ZAβ3 binds to the central and C-terminal part of Aβ (residues 17-36), which adopts a β-hairpin conformation in the complex. Here we present a detailed biophysical analysis of the ZAβ3:Aβ(1-40) interaction, employing NMR, circular dichroism spectroscopy, 8-anilino-1-naphthalenesulfonic acid and tyrosine fluorescence, size-exclusion chromatography, thermal denaturation profiles and isothermal titration calorimetry. We conclude that (i) free ZAβ3 is characterized by conformational exchange and the loss of helix 1 of the three-helix bundle scaffold; (ii) a high-energy barrier is associated with the conversion of an initial ZAβ3:Aβ(1-40) recognition complex into the native complex structure, entailing slow binding kinetics; (iii) both Aβ and ZAβ3 fold upon binding, which, e.g., becomes manifest in the binding thermodynamics that feature a large negative change in heat capacity; (iv) the C28-disulfide does not merely afford dimerization, but its impact on the binding interfaces of the affibody subunits and Aβ is a prerequisite for tight binding. The extensive folding coupled to binding observed here likely constitutes an obligate feature of biomolecular interactions involving the central and C-terminal part of Aβ. Options for improvement of Z binding proteins are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号