首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although most enveloped viruses acquire their membrane from the host by budding or by a wrapping process, collective data argue that nucleocytoplasmic large DNA viruses (NCLDVs) may be an exception. The prototype member of NCLDVs, vaccinia virus (VACV) may induce rupture of endoplasmic‐reticulum‐derived membranes to build an open‐membrane sphere that closes after DNA uptake. This unconventional membrane assembly pathway is also used by at least 3 other members of the NCLDVs. In this study, we identify the VACV gene product of A11, as required for membrane rupture, hence for VACV membrane assembly and virion formation. By electron tomography, in the absence of A11, the site of assembly formed by the viral scaffold protein D13 is surrounded by endoplasmic reticulum cisternae that are closed. We use scanning transmission electron microscopy–electron tomography to analyse large volumes of cells and demonstrate that in the absence of A11, no open membranes are detected. Given the pivotal role of D13 in initiating VACV membrane assembly, we also analyse viral membranes in the absence of D13 synthesis and show that this protein is not required for rupture. Finally, consistent with a role in rupture, we show that during wild‐type infection, A11 localises predominantly to the small ruptured membranes, the precursors of VACV membrane assembly. These data provide strong evidence in favour of the unusual membrane biogenesis of VACV and are an important step towards understanding its molecular mechanism.  相似文献   

2.
During the entry process many icosahedral viruses must adopt a lower-order symmetry or incur a symmetry mismatch to release their genome through a single site. A membrane model system in which poliovirus was bound to receptor-decorated liposomes was used to pioneer techniques that studied the break in the symmetry of the initial attachment complex by cryo-electron microscopy. Novel methods involving a fiducial marker for the membrane contact point were developed to objectively determine the symmetry of this complex and provide a starting model to initiate a bootstrap orientation refinement. Here we analyze how errors in the subjective assignment of this position affect the determination of symmetry, and the accuracy of calculating Euler angles for each raw image. In this study we have optimized the method and applied it to study the membrane-attachment complex of Semliki Forest virus (SFV), a model system for enveloped virus fusion. The resulting reconstruction of the SFV-membrane complex with a fiducial provides the first experimental evidence that this pre-fusion cell entry intermediate approaches the membrane along the viral 5-fold axis. The analysis reported here, and its subsequent application to enveloped virus fusion, indicate that this is a robust tool for solving the structures of mixed-symmetry complexes.  相似文献   

3.
Many phleboviruses (family Bunyaviridae) are emerging as medically important viruses. These viruses enter target cells by endocytosis and low pH-dependent membrane fusion in late endosomes. However, the necessary and sufficient factors for fusion have not been fully characterized. We have studied the minimal fusion requirements of a prototypic phlebovirus, Uukuniemi virus, in an in vitro virus-liposome assay. We show that efficient lipid mixing between viral and liposome membranes requires close to physiological temperatures and phospholipids with negatively charged headgroups, such as the late endosomal phospholipid bis(monoacylglycero)phosphate. We further demonstrate that bis(monoacylglycero)phosphate increases Uukuniemi virus fusion beyond the lipid mixing stage. By using electron cryotomography of viral particles in the presence or absence of liposomes, we observed that the conformation of phlebovirus glycoprotein capsomers changes from the native conformation toward a more elongated conformation at a fusion permissive pH. Our results suggest a rationale for phlebovirus entry in late endosomes.  相似文献   

4.
For many viruses, one or two proteins allow cell attachment and entry, which occurs through the plasma membrane or following endocytosis at low pH. In contrast, vaccinia virus (VACV) enters cells by both neutral and low pH routes; four proteins mediate cell attachment and twelve that are associated in a membrane complex and conserved in all poxviruses are dedicated to entry. The aim of the present study was to determine the roles of cellular and viral proteins in initial stages of entry, specifically fusion of the membranes of the mature virion and cell. For analysis of the role of cellular components, we used well characterized inhibitors and measured binding of a recombinant VACV virion containing Gaussia luciferase fused to a core protein; viral and cellular membrane lipid mixing with a self-quenching fluorescent probe in the virion membrane; and core entry with a recombinant VACV expressing firefly luciferase and electron microscopy. We determined that inhibitors of tyrosine protein kinases, dynamin GTPase and actin dynamics had little effect on binding of virions to cells but impaired membrane fusion, whereas partial cholesterol depletion and inhibitors of endosomal acidification and membrane blebbing had a severe effect at the later stage of core entry. To determine the role of viral proteins, virions lacking individual membrane components were purified from cells infected with members of a panel of ten conditional-lethal inducible mutants. Each of the entry protein-deficient virions had severely reduced infectivity and except for A28, L1 and L5 greatly impaired membrane fusion. In addition, a potent neutralizing L1 monoclonal antibody blocked entry at a post-membrane lipid-mixing step. Taken together, these results suggested a 2-step entry model and implicated an unprecedented number of viral proteins and cellular components involved in signaling and actin rearrangement for initiation of virus-cell membrane fusion during poxvirus entry.  相似文献   

5.
李亚东  寸韡 《生命科学》2014,(8):782-789
人们发现第一个病毒以来,病毒学科取得了迅猛的发展,人们对病毒大小的认知也已经基本成型。21世纪初,科学家发现了拟菌病毒,开启了巨大病毒的大门,此后人们又陆续发现了多种巨大病毒。这些病毒体积较大,基因复杂,已经超出了以往以大小区分病毒的标准,其体积和基因组大小甚至与很多原核和真核生物相当。此外,科学家们还发现了数种能够感染巨大病毒和其他核质大DNA病毒(nucleocytoplasmic large DNA virus,NCLDV)的病毒,将其命名为噬病毒体。这一系列新发现极大地触动了人们对病毒认识的知识体系,并导致了关于病毒起源与进化问题的讨论,这在病毒学史上具有重大的意义。  相似文献   

6.
Experiments in the 1960s showed that Sendai virus, a paramyxovirus, fused its membrane with the host plasma membrane. After membrane fusion, the virus spontaneously “uncoated” with diffusion of the viral membrane proteins into the host plasma membrane and a merging of the host and viral membranes. This led to deposit of the viral ribonucleoprotein (RNP) and interior proteins in the cell cytoplasm. Later work showed that the common procedure then used to grow Sendai virus produced damaged, pleomorphic virions. Virions, which were grown under conditions that were not damaging, made a connecting structure between virus and cell at the region where the fusion occurred. The virus did not release its membrane proteins into the host membrane. The viral RNP was seen in the connecting structure in some cases. Uncoating of intact Sendai virus proceeds differently from uncoating described by the current standard model developed long ago with damaged virus. A model of intact paramyxovirus uncoating is presented and compared to what is known about the uncoating of other viruses.Enveloped virus entry at the plasma membrane includes binding of the virion to one or more receptors, changes in the virion components, membrane fusion, and membrane uncoating. The term “membrane uncoating” is being used to describe the separation of internal virion components from the viral membrane so the internal components can enter the cell. The term “uncoating” is sometimes used to mean the release of the viral genome from the capsid or other structures that have also entered the cell, but in this review, the term “membrane uncoating” will be used to represent only the separation of the virion internal contents and the viral envelope.Much of the original model of membrane fusion and uncoating was generally accepted as a result of a 1968 paper by Morgan and Howe (41). That paper provided strong evidence that Sendai virus (a paramyxovirus) entered a cell by fusion of the viral membrane with the cell plasma membrane. After membrane fusion, the virion rapidly lost its structure as the viral membrane merged with the host membrane and its components became part of the host membrane. The viral ribonucleoprotein (RNP) and internal proteins were released into the cytoplasm. This model of membrane uncoating is still generally accepted. For instance, in a 2007 virology text (24), this model was presented and illustrated with a figure from the Morgan and Howe paper. (The same figure is shown here as Fig. 2B.)Later, it was shown that Sendai viruses, which had been grown in fertilized chicken eggs, had different properties depending whether they had been harvested after growth for roughly 1 day (“early harvest”) or for several days (“late harvest”). The early-harvest viruses appear to be intact, but the late-harvest viruses have a different morphology and appear to be damaged (20, 26).This review summarizes data showing that intact early-harvest Sendai viruses uncoat quite differently from the way damaged late-harvest Sendai viruses uncoat. A model of intact paramyxovirus membrane uncoating is presented. The membrane uncoating of some other enveloped viruses that enter at the plasma membrane is compared to that described by this model.  相似文献   

7.
Background information. VACV (vaccinia virus) is one of the most complex viruses, with a size exceeding 300 nm and more than 100 structural proteins. Its assembly involves sequential interactions and important rearrangements of its structural components. Results. We have used electron tomography of sections of VACV‐infected cells to follow, in three dimensions, the remodelling of the membrane components of the virus during envelope maturation. The tomograms obtained suggest that a number of independent ‘crescents’ interact with each other to enclose the volume of an incomplete ellipsoid in the viral factory area, attaining the overall shape and size characteristic of the first immature form of the virus [IV (immature virus)]. The incorporation of the DNA into these forms leads to particles with a nucleoid [IVN (IV with nucleoid)] that results in local disorganization of the envelope in regions near the condensed DNA. These particles suffer the progressive disappearance of the membrane outer spikes with a change in the shape of the membrane, becoming locally curled. The transformation of the IVN into the mature virus involves an extreme rearrangement of the particle envelope, which becomes fragmented and undulated. During this process, we also observed connections between the outer membranes with internal ones, suggesting that the latter originate from internalization of the IV envelope. Conclusions. The main features observed for VACV membrane maturation during morphogenesis resemble the breakdown and reassembly of cellular endomembranes.  相似文献   

8.
The replication of HIV‐1, like that of all viruses, is intimately connected with cellular structures and pathways. For many years, bulk biochemical and cell biological methods were the main approaches employed to investigate interactions between HIV‐1 and its host cell. However, during the past decade advancements in fluorescence imaging technologies opened new possibilities for the direct visualization of individual steps occurring throughout the viral replication cycle. Electron microscopy (EM) methods, which have traditionally been employed for the study of viruses, are complemented by fluorescence microscopy (FM) techniques that allow us to follow the dynamics of virus–cell interaction. Subdiffraction fluorescence microscopy, as well as correlative EM/FM approaches, are narrowing the fundamental gap between the high structural resolution provided by EM and the high temporal resolution and throughput accomplished by FM. The application of modern microscopy to the study of HIV‐1–host cell interactions has provided insights into the biology of the virus which could not easily, or not at all, have been gained by other methods. Here, we review how modern fluorescence imaging techniques enhanced our knowledge of the dynamic and structural changes involved in HIV‐1 particle formation.   相似文献   

9.
Tagging of viral proteins with fluorescent proteins has proven an indispensable approach to furthering our understanding of virus-host interactions. Vaccinia virus (VACV), the live vaccine used in the eradication of smallpox, is particularly amenable to fluorescent live-cell microscopy owing to its large virion size and the ease with which it can be engineered at the genome level. We report here an optimized protocol for generating recombinant viruses. The minimal requirements for targeted homologous recombination during vaccinia replication were determined, which allows the simplification of construct generation. This enabled the alliance of transient dominant selection (TDS) with a fluorescent reporter and metabolic selection to provide a rapid and modular approach to fluorescently label viral proteins. By streamlining the generation of fluorescent recombinant viruses, we are able to facilitate downstream applications such as advanced imaging analysis of many aspects of the virus-host interplay that occurs during virus replication.  相似文献   

10.
Vaccinia virus (VACV) is being developed as a recombinant viral vaccine vector for several key pathogens. Dendritic cells (DCs) are specialised antigen presenting cells that are crucial for the initiation of primary immune responses; however, the mechanisms of uptake of VACV by these cells are unclear. Therefore we examined the binding and entry of both the intracellular mature virus (MV) and extracellular enveloped virus (EV) forms of VACV into vesicular compartments of monocyte-derived DCs. Using a panel of inhibitors, flow cytometry and confocal microscopy we have shown that neither MV nor EV binds to the highly expressed C-type lectin receptors on DCs that are responsible for capturing many other viruses. We also found that both forms of VACV enter DCs via a clathrin-, caveolin-, flotillin- and dynamin-independent pathway that is dependent on actin, intracellular calcium and host-cell cholesterol. Both MV and EV entry were inhibited by the macropinocytosis inhibitors rottlerin and dimethyl amiloride and depended on phosphotidylinositol-3-kinase (PI(3)K), and both colocalised with dextran but not transferrin. VACV was not delivered to the classical endolysosomal pathway, failing to colocalise with EEA1 or Lamp2. Finally, expression of early viral genes was not affected by bafilomycin A, indicating that the virus does not depend on low pH to deliver cores to the cytoplasm. From these collective results we conclude that VACV enters DCs via macropinocytosis. However, MV was consistently less sensitive to inhibition and is likely to utilise at least one other entry pathway. Definition and future manipulation of these pathways may assist in enhancing the activity of recombinant vaccinia vectors through effects on antigen presentation.  相似文献   

11.
Nucleo cytoplasmic large DNA viruses (NCLDVs) are a group of double‐stranded DNA viruses that replicate their DNA partly or entirely in the cytoplasm in association with viral factories (VFs). They share about 50 genes suggesting that they are derived from a common ancestor. Using transmission electron microscopy (TEM) and electron tomography (ET) we showed that the NCLDV vaccinia virus (VACV) acquires its membrane from open membrane intermediates, derived from the ER. These open membranes contribute to the formation of a single open membrane of the immature virion, shaped into a sphere by the assembly of the viral scaffold protein on its convex side. We now compare VACV with the NCLDV Mimivirus by TEM and ET and show that the latter also acquires its membrane from open membrane intermediates that accumulate at the periphery of the cytoplasmic VF. In analogy to VACV this membrane is shaped by the assembly of a layer on the convexside of its membrane, likely representing the Mimivirus capsid protein. By quantitative ET we show for both viruses that the open membrane intermediates of assembly adopt an ‘open‐eight’ conformation with a characteristic diameter of 90 nm for Mimi‐ and 50 nm for VACV. We discuss these results with respect to the common ancestry of NCLDVs and propose a hypothesis on the possible origin of this unusual membrane biogenesis.  相似文献   

12.
A quantitative understanding of viral trafficking would be useful in treating viral-mediated diseases, designing protocols for viral gene therapy, and optimizing heterologous protein production. In this article, a model for the trafficking of Semliki Forest virus and its RNA synthesis in baby hamster kidney (BHK-21) cells is presented. This model includes the various steps leading to infection such as attachment, endocytosis, and viral fusion in the endosome. The model estimates a mean fusion time of 4 to 6 min for the wild-type virus, and 38 min for Fus-1, an SFV mutant which requires a lower pH for fusion. These mean fusion times are consistent with the time-scale of endosomal acidification, suggesting viruses fuse almost instantaneously with the endosomal membrane as soon as the pH of the endosome drops below the pH threshold of the virus. Infection is most likely controlled at the level of viral uncoating, as shown by the close agreement between the efficiency of uncoating and the experimentally determined fraction of viruses that is infectious. The viral RNA synthesized per cell is best described by assuming that it depends on the number of uncoated viruses prior to the onset of replication according to a saturation-type expression. A Poisson distribution is used to determine the distribution of uncoated viruses among the cells. Because attachment is the rate-limiting step in the uncoating of the virus, increasing the attachment rate can lead to enhanced RNA synthesis and, hence, new virion production. Such an increase in the attachment rate may be obtained by lowering the medium pH or the addition of a polycation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

13.
Many viruses depend on nuclear proteins for replication. Therefore, their viral genome must enter the nucleus of the host cell. In this review we briefly summarize the principles of nucleocytoplasmic transport, and then describe the diverse strategies used by viruses to deliver their genomes into the host nucleus. Some of the emerging mechanisms include: (1) nuclear entry during mitosis, when the nuclear envelope is disassembled, (2) viral genome release in the cytoplasm followed by entry of the genome through the nuclear pore complex (NPC), (3) capsid docking at the cytoplasmic side of the NPC, followed by genome release, (4) nuclear entry of intact capsids through the NPC, followed by genome release, and (5) nuclear entry via virus-induced disruption of the nuclear envelope. Which mechanism a particular virus uses depends on the size and structure of the virus, as well as the cellular cues used by the virus to trigger capsid disassembly and genome release. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.  相似文献   

14.
Novel Entry Pathway of Bovine Herpesvirus 1 and 5   总被引:2,自引:0,他引:2       下载免费PDF全文
Herpesviruses enter cells by a yet poorly understood mechanism. We visualized the crucial steps of the entry pathway of bovine herpesvirus 1 (BHV-1) and BHV-5 by transmission and scanning electron microscopy, employing cryotechniques that include time monitoring, ultrarapid freezing, and freeze substitution of cultured cells inoculated with virus. A key step in the entry pathway of both BHV-1 and BHV-5 is a unique fusion of the outer phospholipid layer of the viral envelope with the inner layer of the plasma membrane and vice versa resulting in “crossing” of the fused membranes and in partial insertion of the viral envelope into the plasma membrane. The fusion area is proposed to function as an axis for driving the virus particle into an invagination that is concomitantly formed close to the fusion site. The virus particle enters the cytoplasm through the opened tip of the invagination, and the viral envelope defuses from the plasma membrane. There is strong evidence that the intact virus particle is then transported to the nuclear region.  相似文献   

15.
The mode of entry of herpes simplex virus type 1 into Vero cells   总被引:3,自引:0,他引:3  
The mode of entry of herpes simplex virus type 1 (HSV-1) into Vero cells was investigated quantitatively with biological techniques. The entry of virus occurred rapidly when the virus-adsorbed cells were incubated at 37 C. The kinetics of virus entry was found to be similar to that of the process of uncoating, indicating that the uncoating of HSV-1 occurs simultaneously with the entry of virus into the cell. Experiments with ammonium chloride revealed that acidity in endosomes is not necessary for the entry or uncoating of HSV-1, in contrast with the cases of enveloped RNA viruses. In addition, endocytosis of the virus seems to be one of the processes of entry for HSV-1. However, the kinetics of endocytosis showed that the cell-bound virus is endocytosed gradually and suggested that the endocytosis of HSV-1 does not lead the virus to an uncoating process. These results are most consistent with a mechanism of entry for HSV-1 involving fusion of the viral envelope with the plasma membrane of the host cell.  相似文献   

16.
We describe biophysical and ultrastructural differences in genome release from adeno-associated virus (AAV) capsids packaging wild-type DNA, recombinant single-stranded DNA (ssDNA), or dimeric, self-complementary DNA (scDNA) genomes. Atomic force microscopy and electron microscopy (EM) revealed that AAV particles release packaged genomes and undergo marked changes in capsid morphology upon heating in physiological buffer (pH 7.2). When different AAV capsids packaging ss/scDNA varying in length from 72 to 123% of wild-type DNA (3.4 to 5.8 kb) were incrementally heated, the proportion of uncoated AAV capsids decreased with genome length as observed by EM. Genome release was further characterized by a fluorimetric assay, which demonstrated that acidic pH and high osmotic pressure suppress genome release from AAV particles. In addition, fluorimetric analysis corroborated an inverse correlation between packaged genome length and the temperature needed to induce uncoating. Surprisingly, scAAV vectors required significantly higher temperatures to uncoat than their ssDNA-packaging counterparts. However, externalization of VP1 N termini appears to be unaffected by packaged genome length or self-complementarity. Further analysis by tungsten-shadowing EM revealed striking differences in the morphologies of ssDNA and scDNA genomes upon release from intact capsids. Computational modeling and molecular dynamics simulations suggest that the unusual thermal stability of scAAV vectors might arise from partial base pairing and optimal organization of packaged scDNA. Our work further defines the biophysical mechanisms underlying adeno-associated virus uncoating and genome release.  相似文献   

17.
The process by which Ectocarpus fasciculatus virus type 1 (EfasV‐1) infects zoospores of its brown algal host was studied by electron microscopy. Upon virus attachment to the target cell, the integral membrane component of the viral capsid fuses with the host plasma membrane, and the 140‐nm viral DNA‐protein core enters the cytosol. Within 5 min after infection, particles resembling viral cores appeared in the nucleus. The entry mechanism of EfasV‐1 into the host nucleus remains enigmatic.  相似文献   

18.
Research over a period of more than half a century has provided a reasonably accurate picture of mechanisms involved in animal virus entry into their host cells. Successive steps in entry include binding to receptors, endocytosis, passage through one or more membranes, targeting to specific sites within the cell, and uncoating of the genome. For some viruses, the molecular interactions are known in great detail. However, as more viruses are analyzed, and as the focus shifts from tissue culture to in vivo experiments, it is evident that viruses display considerable redundancy and flexibility in receptor usage, endocytic mechanism, location of penetration, and uncoating mechanism. For many viruses, the picture is still elusive because the interactions that they engage in rely on sophisticated adaptation to complex cellular functions and defense mechanisms.  相似文献   

19.
Gammaretroviruses that enter cells via binding to a surface receptor use one of two fundamental mechanisms. In the first, binding of the virus particle to its cognate receptor is followed by fusion and internalization. The second, less common mechanism requires the addition of an accessory protein in order to achieve fusion and entry into the target cells; this protein is usually the soluble form of the envelope protein containing the receptor-binding domain (RBD). For some viruses, such as amphotropic murine leukemia virus (A-MLV), particles with fusion-defective envelope proteins can enter cells in the presence of their own RBD or that of another viral envelope, regardless of its cognate receptor, suggesting that these viruses share a common entry mechanism. A notable exception is gibbon ape leukemia virus (GALV). Fusion-impaired GALV envelope mutants can be trans-activated for infectivity only by GALV RBDs. Using dually functional GALV/A-MLV receptors, we examined the role of receptor with respect to which RBD could overcome fusion impaired virus entry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号