首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Actin, myosin, and a high molecular weight actin-binding protein were extracted from rabbit alveolar macrophages with low ionic strength sucrose solutions containing ATP, EDTA, and dithiothreitol, pH 7.0. Addition of KCl, 75 to 100 mM, to sucrose extracts of macrophages stirred at 25 degrees caused actin to polymerize and bind to a protein of high molecualr weight. The complex precipitated and sedimented at low centrifugal forces. Macrophage actin was dissociated from the binding protein with 0.6 M KCl, and purified by repetitive depolymerization and polymerization. Purified macrophage actin migrated as a polypeptide of molecular weight 45,000 on polyacrylamide gels with dodecyl sulfate, formed extended filaments in 0.1 M KCl, bound rabbit skeletal muscle myosin in the absence of Mg-2+ATP and activated its Mg-2+ATPase activity. Macrophage myosin was bound to actin remaining in the macrophage extracts after removal of the actin precipitated with the high molecular weight protein by KCl. The myosin-actin complex and other proteins were collected by ultracentrifugation. Macrophage myosin was purified from this complex or from a 20 to 50% saturated ammonium sulfate fraction of macrophage extracts by gel filtration on agarose columns in 0.6 M Kl and 0.6 M Kl solutions. Purified macrophage myosin had high specific K-+- and EDTA- and K-+- and Ca-2+ATPase activities and low specific Mg-2+ATPase activity. It had subunits of 200,000, 20,000, and 15,000 molecular weight, and formed bipolar filaments in 0.1 M KCl, both in the presence and absence of divalent cations. The high molecular weight protein that precipitated with actin in the sucrose extracts of macrophages was purified by gel filtration in 0.6 M Kl-0.6 M KCl solutions. It was designated a macrophage actin-binding protein, because of its association with actin at physiological pH and ionic strength. On polyacrylamide gels in dodecyl sulfate, the purified high molecular weight protein contained one band which co-migrated with the lighter polypeptide (molecular weight 220,000) of the doublet comprising purified rabbit erythrocyte spectrin. The macrophage protein, like rabbit erythrocyte spectrin, was soluble in 2 mM EDTA and 80% ethanol as well as in 0.6 M KCl solutions, and precipitated in 2 mM CaCl2 or 0.075 to 0.1 M KCl solutions. The macrophage actin-binding protein and rabbit erythrocyte spectrin eluted from agarose columns with a KAV of 0.24 and in the excluded volumes. The protein did not form filaments in 0.1 M KCl and had no detectable ATPase activity under the conditions tested.  相似文献   

2.
The ionic strength of the medium plays an important role in the structure and conformation of erythroid spectrin. The spectrin dimer is a flexible rod at physiological ionic strength. However, lower ionic strength results in elongation and rigidification (stiffening) of spectrin as shown earlier by electron microscopy and hydrodynamic studies. The ionic strength induced structural transition does not involve any specific secondary structural changes. In this article, we have used a combination of fluorescence spectroscopic approaches that include red edge excitation shift (REES), fluorescence quenching, time-resolved fluorescence measurements, and chemical modification of the spectrin tryptophans to assess the environment and dynamics of tryptophan residues of spectrin under different ionic strength conditions. Our results show that while REES, fluorescence anisotropy, lifetime, and chemical modification of spectrin tryptophans remain unaltered in low and high ionic strength conditions, quenching of tryptophan fluorescence by the aqueous quencher acrylamide (but not the hydrophobic quencher trichloroethanol) and resonance energy transfer to a dansyl-labeled fatty acid show differences in tryptophan environment. These results, which report tertiary structural changes in spectrin upon change in ionic strength, are relevant in understanding the molecular details underlying the conformational flexibility of spectrin.  相似文献   

3.
The properties of brain fodrin have been analyzed and compared with those of erythrocyte spectrin. Both proteins consist of high molecular weight polypeptide doublets on SDS polyacrylamide gels and in solution behave as very large asymmetric molecules. Both proteins show a characteristic increase in sedimentation coefficient in the presence of 20 mM KCl. Antibodies against the brain protein cross-react with erythrocyte spectrin and cross-react with similar high molecular weight doublet polypeptides in SDS polyacrylamide gels of other cell types and plasma membrane preparations. Both proteins bind actin. The brain protein and erythrocyte spectrin show specific and competitive binding to erythrocyte membranes and this binding is inhibited by antibodies against erythrocyte ankyrin. Several of these properties distinguish these proteins from the class of high molecular weight actin-binding proteins that includes filamin and macrophage actin-binding protein. We conclude that together with erythrocyte spectrin, the brain protein and equivalent, immunologically related proteins in other cell types belong to a single class of proteins with the common function of attachment of actin to plasma membranes. Based on the structural and functional similarities, the name spectrin would seem appropriate for this whole class of proteins.  相似文献   

4.
R R Weihing 《Biochemistry》1983,22(8):1839-1847
The high molecular weight protein (HMWP) which was previously observed to be a major component of the actin based gels formed by incubating cytoplasmic extracts of HeLa cells at 25 degrees C [Weihing, R. R. (1977) J. Cell Biol. 75, 95-103] has now been purified by gel filtration of 0.6 M KCl extracts of precipitated gels. A few hundred micrograms of HMWP, which is about 90% pure, can be isolated from 4 X 10(9) cells. HMWP can gel muscle actin and cross-link it into filament bundles. Its subunit molecular weight is 250 0000, its Stokes radius is 125 A, and its sedimentation coefficient is 9 S. A native molecular weight of 480 000 was calculated by using the latter two parameters, and therefore the native molecule is a dimer. Its amino acid analysis is nearly indistinguishable from that of macrophage actin binding protein and of mammalian and avian filamins. All of these findings indicate that HMWP is homologous to the latter proteins. However, HeLa cell HMWP and avian filamin must differ in their primary sequences because their partial peptide maps are distinct and because an antiserum against HMWP reacts only weakly with filamin. For studies on the intracellular location of HMWP, a goat antiserum against purified HMWP was prepared and characterized and then used to localize HMWP in suspension grown cells. The technique of immunoblotting revealed that the antiserum reacted virtually exclusively with the high molecular weight polypeptide that comigrates with HMWP in cell lysates and in ZnCl2-stabilized plasma membrane ghosts prepared from HeLa cells [Gruenstein, E., Rich, A., & Weihing, R. R. (1975) J. Cell Biol. 64, 223-234] and that it did not react with rabbit myosin heavy chain, microtubule proteins (MAPS and tubulin) from HeLa cells and calf brain, or the proteins of human erythrocyte ghosts including spectrin. Suspension-grown cells which were stained with the antiserum by the technique of indirect immunofluorescence showed bright fluorescence at the rim of the cells and less intense generalized fluorescence. If preimmune serum or immune serum treated with HMWP was substituted for the immune serum, then staining at the rim was not observed, but the generalized fluorescence was only slightly reduced; unpermeabilized cells were not stained. These results indicate that HMWP is a component of the cortical cytoplasm of HeLa cells. Possible functions of cortical HMWP are discussed briefly.  相似文献   

5.
We have purified the high molecular weight actin-binding protein, filamin from guinea pig vas deferens. We find this mammalian filamin is very similar to chicken gizzard filamin in subunit molecular weight, amnio acid composition, actin-binding properties, immunological cross-reactivity, and the ability to be phosphorylated by cyclic AMP-dependent protein kinase. Anti-filamin antibodies cross-react with a high molecular weight macrophage actin-binding protein, and with a high molecular weight protein in platelets and fibroblasts. Furthermore like filamin, these proteins are also phosphorylated and cyclic AMP stimulates their phosphorylation. Anti-filamin antibodies do not cross-react with the erythrocyte membrane protein spectrin or with high molecular weight proteins in brain extracts. We conclude that filamin from avian and mammalian smooth muscle are very similar proteins and furthermore that many, but not all, non-muscle cells contain a protein closely related to filamin.  相似文献   

6.
Spectrin reversibly self-associates to high molecular weight oligomers through a concentration-driven process characterized by association constants of about 105 mol?1. This association is prominent under physiological conditions of pH, ionic strength, and temperature. It is disrupted by urea, but not Triton X-100. The process of spectrin association appears mathematically to resemble that for tropomyosin, although the mechanism is probably different. Spectrin association is weak compared to other prominent protein–protein associations in the red cell membrane skeleton. The linkage of these weak and strong associations suggests a process whereby the membrane skelton spontaneously assembles. Such affinity-modulated assembly involving weak associations is likely to be the focus of numerous membrane control mechanisms.  相似文献   

7.
We have examined the structure of actin-binding molecules in solution and interacting with actin filaments. At physiological ionic strength, actin-binding protein has a Mr value of 540 × 103 as determined by direct and indirect hydrodynamic measurements. It is an asymmetrical dimer composed of 270 × 103 dalton subunits. Viewed in the electron microscope after negative staining or low angle shadowing, actin-binding protein molecules assume a broad range of conformations varying from closed circular structures to fully extended strands 162 nm in contour length. All configurations are apparently derived from the same structure which consists of two monomer chains connected end-to-end. The radius of gyration determined from the electron microscopic images was 21.3 nm in agreement with the value of 17.6 nm calculated from hydrodynamic assays. The average axial ratio from hydrodynamic measurements was 17:1, whereas fully extended dimer molecules in the electron microscope would have an axial ratio of 54:1. All of these observations indicate that actin-binding protein dimers are extremely flexible. The flexibility parameter λ (Landau &; Lifshits, 1958) for actinbinding protein is 0.18 nm?1.As determined by sedimentation, actin-binding protein binds to actin filaments with a Ka value of 2 × 106m?1 and a capacity of one dimer to 14 actin monomers in filaments. After incubation of high concentrations (molar ratio to actin ≥ 1:10) of actin-binding protein with actin filaments, long filament bundles are visible in the electron microscope. Under these conditions, actin-binding protein molecules decorate the actin filaments in the bundles at regular 40 nm intervals or once every 15 monomers, approximately equivalent to the binding capacity measured by sedimentation. Low concentrations of actin-binding protein (molar ratio to actin ≥ 1:50) which promote the gelation of actin filaments in solution, did not detectably alter the isotropy of the actin filaments. Direct visualization of actinbinding protein molecules between actin filaments in the electron microscope showed that dimers are sufficient for crossbridging of actin filaments and that actinbinding protein dimers are bipolar, composed of monomers connected head-to-head and having actin-binding sites located on the free tails.We conclude that actin-binding protein is a dimer at physiological ionic strength. Each dimer has two actin filament binding sites and is therefore sufficient to gel actin filaments in solution. The length and flexibility of the actin-binding protein subunits render this molecule structurally suited for the crosslinking of large helical filaments into isotropic networks.  相似文献   

8.
The high-molecular-weight protein component from human erythrocytes has been isolated and its solubility properties studied. In physiological solvent conditions the spectrin is not aggregated and is unaffected, both in hydrodynamic properties and conformation, as judged by circular dichroism and intrinsic fluorescence, by the addition of calcium ions. When the pH is decreased an opalescence first sets in, which corresponds to an associated fibrous state of the protein, and when a critical pH is reached precipitation ensues. The precipitation profile is characterised by extreme sharpness, of the kind observed in the phase separation of polyacid-polybase mixtures or of polyampholytes. The addition of calcium ions displaces this precipitation edge towards higher pH. Sodium ions have a similar but smaller effect. The position of the profile is significantly displaced in aged spectrin preparations, or those from frozen erythrocyte ghosts. Fresh preparations of spectrin consist predominantly of a component sedimenting at 9.7 S, with a minor component at 4.4 S (and traces of higher aggregates). The pattern is independent of the ionic strength, or of the presence or absence of calcium ions. The proportion of the small component increases with time, and in spectrin preparations from frozen ghosts it invariably predominates. At low concentrations of guanidine hydrochloride the larger component gives place progressively to the smaller, and vanishes completely when the concentration of the denaturant reaches 1 M. The two components coexist at concentrations below this, and are not in rapid interconversion equilibrium. On recovery of the protein from the guanidine hydrochloride by dialysis, the original pattern of two components is regained. On the other hand the larger component is not found in the material recovered from guanidine hydrochloride solutions of preparations that contain only the small component at the outset. The recovered spectrin is similar to the starting material in its circular dichroism, in its pH-precipitation profiles, and the manner in which the latter is modified by calcium ions. Molecular weight determination by sedimentation equilibrium shows that the 4.4-S species has a molecular weight of some 230 000, which is also the value derived from the extrapolated sedimentation coeffiecient in 6 M guanidine hydrochloride, and thus corresponds to single chains (of which two or more species are resolved in acrylamide gel electrophoresis in the presence of sodium dodecylsulphate); the 9.7-S species, which characterises what is evidently the native state of the extracted spectrin, is found to be a dimer. The frictional coefficients of the monomer and dimer are appreciably different. That of the dimer is compatible with a somewhat asymmetric structure, but by no means to the extent expected for a myosin-like or paramyosin-like molecule.  相似文献   

9.
We compared on red cell membrane proteins and hemoglobin (Hb) the effects of (i) natural oxidant stress that has been suggested to occur in a variety of oxidative hemolytic anemias, and (ii) experimental stress induced by hydrogen peroxide. SDS-polyacrylamide gel electrophoresis was used for protein analysis. Under natural conditions (thalassemias, hemoglobinopathies with Hb unstability), a high molecular weight polymer (HMWP) and variable amounts of globin mono- and dimers became apparent. Furthermore, a major 12 kDa polypeptide, its dimer, and conspicuous spectrin degradation products in the band 2.2–2.6 region occurred in a patient carrying the highly unstable Hb Hammersmith. Under experimental conditions, incubation of erythrocyte ghosts with H2O2 in the presence of minimal concentration (25 μM) of Hb generated a HMWP at the expense of membrane proteins, mainly spectrin. Incubation of a diluted (200 μM) membrane-free hemolysate with H2O2 induced a HMWP, an array of globin oligomers and a 12 kDa polypeptide similar to that mentionned above. Therefore, the damage to the red cell membrane present in various oxidative hemolytic anemias, including polypeptide polymerisation and breakdown, can be produced by experimental oxidant stress. These observations support the view that the alterations described in the patients result directly from oxidative reactions. However, we did not observe in the patient the sharp breakdown of polyunsaturated fatty acids that was triggered in vitro by H2O2 in the presence of Hb acting as a catalyst. In most cases, oligo- and polymers were resistant to β-mercaptoethanol, and the chemical nature of the underlying cross-links is discussed. To our knowledge, the 12 kDa polypeptide, that we consider as arising from globin proteolysis, has never been reported under pathological conditions.  相似文献   

10.
The binding of the isolated alpha-subunit of human erythrocyte spectrin to calmodulin is demonstrated by partitioning in aqueous two-phase systems. The affinity of the alpha-subunit for calmodulin is slightly higher than that of the spectrin dimer, whereas the beta-subunit interacts only very weakly. The binding is in all cases calcium-dependent and is abolished on addition of chlorpromazine. At an ionic strength close to physiological conditions, about 1 microM free calcium is required to induce maximum binding of calmodulin to spectrin dimer.  相似文献   

11.
kappa-Bungarotoxin. Self-association of a neuronal nicotinic receptor probe   总被引:1,自引:0,他引:1  
kappa-Bungarotoxin is a postsynaptic neurotoxin purified from the venom of the elapid snake Bungarus multicinctus. The amino acid sequence of this basic polypeptide reveals a single chain containing 66 amino acids having a Mr of 7,313. kappa-Bungarotoxin is a potent antagonist of nicotinic cholinergic transmission in avian and murine autonomic ganglia, a characteristic which distinguishes the toxin from other postsynaptic neurotoxins isolated from snake venoms. The self-association of kappa-bungarotoxin has now been examined using molecular sizing columns, sedimentation velocity, and sedimentation equilibrium. The results demonstrate that, under physiological solvent conditions, kappa-bungarotoxin exists as a dimer (Mr = 14,000 +/- 3,000) of identical subunits. kappa-Bungarotoxin monomers are not observed at toxin concentrations typically used in electrophysiological experiments (0.5-22 micrograms/ml), indicating that the dimer may be physiologically active. Denaturation with sodium dodecyl sulfate or urea dissociates kappa-bungarotoxin dimers into monomers. Significant amounts of monomers are also produced under nondenaturing conditions of high ionic strength and high pH. However, complete reassociation of nondenatured monomers occurs following return to a physiological buffer. The unique pharmacological spectrum of kappa-bungarotoxin may be due in part to its strong tendency to self-associate.  相似文献   

12.
ORD and CD measurements of spectrin, in both the dimer and tetramer association state, indicate a high proportion of alpha-helix in this protein. At temperatures below 27 degrees C and in 0.1 M NaCl, the tetramer has an apparent helix content of 73% and the dimer, 68%. The conformation of both states is dependent on salt concentration and temperature. Low ionic strength solutions of spectrin display lowered sedimentation coefficients and a decreased apparent helix content, indicating perhaps a slight refolding and expansion of the molecule. In addition, spectrin in low ionic strength solutions undergoes a broad temperature-dependent transition spread from 20 to 50 degrees C, while in the presence of salt the transition is sharp and centered on 49 degrees C. The temperature-dependent changes in low ionic strength solutions appear to parallel the dissociation of tetramer to dimer.  相似文献   

13.
The oligomeric state of spectrin in the erythrocyte membrane skeleton of the rat was investigated following extraction in a low ionic strength buffer for 24 and 96 h. All analyses were quantitatively compared with preparations from human erythrocyte membranes. After nondenaturing agarose-polyacrylamide gel electrophoresis, the human samples revealed their characteristic spectrin oligomer pattern; there were high molecular weight complexes near the origin of the gel, followed by several high order oligomers, tetramers, and dimers. The pattern in the rat membrane skeleton also included tetramers and a high molecular weight complex band, but had only one oligomer and no dimers. With time the high molecular weight complex diminished and oligomers accumulated in both the rat and human, while dimers accumulated only in the human and tetramers accumulated only in the rat. Tetramers decreased with time in the human. Extraction of spectrin increased with time and was greater from rat than the human red cell membrane at both time points. The percentage of spectrin and actin in the low ionic strength extract was similar between species, as analyzed by SDS-polyacrylamide electrophoresis, staining, and densitometry. Proteins 4.1 and 4.9 were present in greater percentages in the human. The only temporal effect on monomeric protein composition was an increase of protein A in the rat. There was no species difference in protein A percentage at 24 h, but at 96 h the rat was greater than the human. The results suggest that there are significant differences in the structural arrangement of the rat and human erythrocyte membrane skeleton.  相似文献   

14.
The thermal stability of the methionine repressor protein from Escherichia coli (MetJ) has been examined over a wide range of pH (pH 3.5-10) and ionic strength conditions using differential scanning calorimetry. Under reducing conditions, the transitions are fully reversible, and thermograms are characteristic of the cooperative unfolding of a globular protein with a molecular weight corresponding to the MetJ dimer, indicating that no dissociation of this dimeric protein occurs before unfolding of the polypeptide chains under most conditions. In the absence of reducing agent, repeated scans in the calorimeter show only partial reversibility, though the thermodynamic parameters derived from the first scans are comparable to those obtained under fully reversible conditions. The protein is maximally stable (Tm 58.5 degrees C) at about pH 6, close to the estimated isoelectric point, and stability is enhanced by increasing ionic strength in the range I = 0.01-0.4 M. The average calorimetric transition enthalpy (delta Hm) for the dimer is 505 +/- 28 kJ mol-1 under physiological conditions (pH 7, I = 0.125, Tm = 53.2 degrees C) and shows a small temperature dependence which is consistent with an apparent denaturational heat capacity change (delta Cp) of about +8.9 kJ K-1 mol-1. The effects of both pH and ionic strength on the transition temperature and free energy of MetJ unfolding are inconsistent with any single amino acid contribution and are more likely the result of more general electrostatic interactions, possibly including significant contributions from electrostatic repulsion between the like-charged monomers which can be modeled by a Debye-Hückel screened potential.  相似文献   

15.
In conventional electrooptic studies the sample ionic strength must for technical reasons be kept below about 3 mm, which is only 2% of the ionic strength at physiological conditions. In particular for flexible polyelectrolytic macromolecules it can in general not be ruled out that both the conformational average and dynamics at ionic strength 3 mm and below may differ significantly from what it is at physiological conditions. Here we report on the first electrooptic study of human erythroid spectrin dimers and tetramers at ionic strengths higher than 3 mm. All measurements in this study were carried out at both ionic strength 4 mm (2.5 mm HEPES + 1 mm NaCl) and 53 mm (2.5 mm HEPES + 50 mm NaCl). Spectrin tetramers were studied only at 4°C whereas the dimers were studied at both 4 °C and 37°C. At 4°C there is a striking quantitative similarity between the transient electric birefringence (TEB) of spectrin dimers and tetramers. Also, the TEB of spectrin dimers at 37°C was very similar to the results at 4°C. The contour length and the molecular weight of spectrin dimers and tetramers are known. The dominating TEB relaxation time is in all cases only a fraction of what is predicted theoretically if the spectrin dimers and tetramers are assumed to be stiff and extended molecules. In sum, the new TEB data constitute strong electrooptic evidence confirming that spectrin dimers and tetramers have a highly flexible structure, and demonstrate for the first time that a major part of the intrachain dynamics of the spectrin is quite insensitive to an increase of the ionic strength from 4 mm to 53 mm. Use of the reversing electric field pulse technique for all conditions studied yields TEB data suggesting that the orientation of both spectrin dimers and tetramers in an electric field is dominated by a permanent rather than an induced electric dipole moment. Received: 26 August 1998 / Revised version: 8 February 1999 / Accepted: 11 February 1999  相似文献   

16.
《The Journal of cell biology》1984,99(6):1970-1980
I have purified a high molecular weight actin filament gelation protein (GP-260) from Acanthamoeba castellanii, and found by immunological cross-reactivity that it is related to vertebrate spectrins, but not to two other high molecular weight actin-binding proteins, filamin or the microtubule-associated protein, MAP-2. GP-260 was purified by chromatography on DEAE-cellulose, selective precipitation with actin and myosin-II, chromatography on hydroxylapatite in 0.6 M Kl, and selective precipitation at low ionic strength. The yield was 1-2 micrograms/g cells. GP-260 had the same electrophoretic mobility in SDS as the 260,000-mol-wt alpha-chain of spectrin from pig erythrocytes and brain. Electron micrographs of GP-260 shadowed on mica showed slender rod-shaped particles 80-110 nm long. GP-260 raised the low shear apparent viscosity of solutions of Acanthamoeba actin filaments and, at 100 micrograms/ml, formed a gel with a 8 microM actin. Purified antibodies to GP-260 reacted with both 260,000- and 240,000-mol-wt polypeptides in samples of whole ameba proteins separated by gel electrophoresis in SDS, but only the 260,000-mol-wt polypeptide was extracted from the cell with 0.34 M sucrose and purified in this study. These antibodies to GP-260 also reacted with purified spectrin from pig brain and erythrocytes, and antibodies to human erythrocyte spectrin bound to GP-260 and the 240,000-mol-wt polypeptide present in the whole ameba. The antibodies to GP-260 did not bind to chicken gizzard filamin or pig brain MAP-2, but they did react with high molecular weight polypeptides from man, a marsupial, a fish, a clam, a myxomycete, and two other amebas. Fluorescent antibody staining with purified antibodies to GP-260 showed that it is concentrated near the plasma membrane in the ameba.  相似文献   

17.
Spectrin dimers interact weakly with F-actin under physiological solvent conditions (with an association constant of about 5 X 10(3) M-1 at 20 degrees C). In the presence of the membrane skeletal constituent, protein 4.1, strong binding is observed; an analysis of the profiles for formation of a ternary complex leads to an association constant of about 1 X 10(12) M-2. This association becomes weaker at low ionic strength, whereas the opposite applies to the spectrin-actin interaction. The stability of the ternary complex is maximal at physiological ionic strength and somewhat above. The effect of temperature in the range 0-20 degrees C on the formation of the ternary complex is small, whereas the spectrin-actin interaction almost vanishes at low temperature. There is no detectable calcium sensitivity in either the binary or the ternary system within the limits of precision of our assay. The ternary complex resembles the natural system in the membrane in that the actin is resistant to dissociation and unavailable in the deoxyribonuclease assay; after selective proteolytic destruction of spectrin and 4.1, all the actin becomes available. In the absence of 4.1, spectrin dimers do not measurably protect the actin against dissociation.  相似文献   

18.
Hemoglobin and the low molecular weight proteins 8 and 9 are extracted from ghosts during low ionic washing after the hypotonic hemolysis of erythrocytes. Furthermore, a loss of the proteins 4.5 and 7 was observed. The protein patterns of ghosts after isotonic hemolysis by freezing and thawing resemble the ghost protein patterns after hypotonic hemolysis and incomplete deprivation of Hb. Many if not all membrane proteins are eluted by repeated incubations of the ghosts in solutions of low ionic strength in the presence of EDTA. The spectrins, the proteins 5, 4.5, 7 and residual Hb are extracted preferentially. A selective extraction of the spectrins and the protein 5 is not detectable under these conditions. Often the spectrin bands are subdivided following low ionic incubation.  相似文献   

19.
Members of the spectrin protein family can be found in many different cells and organisms. In all cases studied, the major functional role of these proteins is believed to be structural rather than enzymatic. All spectrin proteins are highly elongated and consist mainly of homologous repeats that constitute rigid segments connected in tandem. It is commonly believed that the details of the spectrin function depend critically on the flexibility of the links between the segments. Here we report on a work addressing this question by studying the transient electric birefringence of recombinant spectrin fragments consisting of segments 14, 14-15, 14-16, and 14-17, respectively, from Drosophila alpha-spectrin. Transient electric birefringence depends sharply on both molecular length and flexibility. We found that the birefringence relaxation time of segment 14 measured at 4 degrees C, but scaled to what is expected at 20 degrees C, equals 16 ns (+/-15%) at pH 7.5 and ionic strength 6 mM. This is consistent with this single segment being rigid, 5 nm long and having an axial ratio equal to about two. Under the same conditions, segments 14-15, 14-16 and 14-17 show relaxation times of 45, 39 and 164 ns (all +/-20%), respectively, scaled to what is expected at 20 degrees C. When the temperature is increased to 37 degrees C the main relaxation time for each of these multisegment fragments, scaled to what is expected at 20 degrees C, increased to 46, 80, and 229 ns (all +/-20%), respectively. When the ionic strength and the Debye shielding is low, the dynamics of these short fragments even at physiological temperature is nearly the same as for fully extended weakly bending rods with the same lengths and axial ratios. When the ionic strength is increased to 85 mM, the main relaxation time for each of these multisegment fragments is reduced 20-50% which suggests that at physiological salt and temperature conditions the links in 2-4-segment-long fragments exhibit significant thermally induced flexing. Provided that the recombinant spectrin fragments can serve as a model for native spectrin, this implies that, at physiological conditions, the overall conformational dynamics of a native spectrin protein containing 20-40 segments equals that of a flexible polymer.  相似文献   

20.
Properties of talin from chicken gizzard smooth muscle   总被引:9,自引:0,他引:9  
This paper describes the structural and biochemical characterization of talin, a protein localized to various cellular sites where bundles of actin filaments attach to the plasma membrane. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the protein has a molecular mass of 225,000 +/- 5,000 daltons. Hydrodynamic measurements at protein concentrations less than 0.72 mg/ml indicate a monomeric protein with a native molecular mass of 213,000 +/- 15,000 daltons. Sedimentation equilibrium experiments indicate self-association at protein concentrations of 0.72 mg/ml and higher. The data suggest that this self-association is a simple monomer:dimer equilibrium over the range of concentrations observed. At low protein concentrations where talin is a monomer, the Stokes radius and sedimentation coefficient vary with ionic strength. Under low ionic strength conditions (5-20 mM NaCl), talin has a Stokes radius of 6.5 nm and a sedimentation value of 9.4, suggesting an asymmetric globular molecule; whereas under high ionic strength conditions (200 mM NaCl), the Stokes radius increases to 7.7 nm and the sedimentation coefficient decreases to 8.8, suggesting a more elongated protein. This conformation change is confirmed by electron microscopy which reveals a more globular protein at low ionic strength which unfolds to become an elongated flexible molecule as the ionic strength is increased to physiological and higher levels. The amino acid composition of talin indicates a low level of aromatic residues, consistent with its relatively low extinction coefficient, talin has an isoelectric point between pH 6.7 and 6.8 based on isoelectric focusing. The detailed purification of talin is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号