首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In the quest for improved performance from polymers that offer biodegradation and therefore environmental acceptability, one approach is the addition of natural clays to produce nanocomposites. This study examines nanocomposites of glycerol-plasticized starch, with untreated montmorillonite and hectorite. Treated hectorite and kaolinite were added to produce conventional composites within the same clay volume fraction range for comparison. X-ray diffraction and transmission electron microscopy are used to confirm the type of composite. The ultrasonic pulse-echo technique was used to measure Young's and shear modulus. The nanocomposites presented greater increases in modulus for a given volume fraction of clay thus contributing to this new class of biodegradable and environmentally acceptable materials, although the results indicate that a plasticizer other than glycerol is preferable.  相似文献   

2.
Unmodified and modified natural rubber latex (uNRL and mNRL) were used to prepare thermoplastic starch/natural rubber/montmorillonite type clay (TPS/NR/Na+-MMT) nanocomposites by twin-screw extrusion. After being dried, the nanocomposites were injection molded to produce test specimens. Scanning electron micrographs of fractured samples revealed that chemical modification of NRL enhanced the interfacial adhesion between NR and TPS; improving their dispersion. X-ray diffraction (XRD) showed that the nanocomposites exhibited partially intercalated/exfoliated structures. Surprisingly, transmission electron microscopy (TEM) showed that clay nanoparticles were preferentially intercalated into the rubber phase. Elastic modulus and tensile strength of TPS/NR blends were dramatically improved from 1.5 to 43 MPa and from 0.03 to 1.5 MPa, respectively, as a result of rubber modification. Properties of blends were almost unaffected by the dispersion of the clay except for the TPS/mNR blend loading 2% MMT. This was attributed to the exfoliation of the MMT.  相似文献   

3.
The effects of incorporating various montmorillonite nanoclays into wheat, potato, corn, and waxy corn starch samples were examined by rheology and X-ray diffraction. The nanoclays included the hydrophilic Cloisite Na+ clay as well as the more hydrophobic Cloisite 30B, 10A, and 15A clays. Frequency sweep and creep results for wheat starch–nanoclay samples at room temperature indicated that the Cloisite Na+ samples formed more gel-like materials than the other nanoclay samples. X-ray diffraction results showed no intercalation of Cloisite Na+ clays at room temperature, suggesting that starch granules interacted only with the clay surface and not the interlayer. When the various wheat starch–nanoclay samples were heated to 95 °C, the Cloisite Na+ samples exhibited a large increase in modulus. In contrast, the more hydrophobic nanoclay samples had comparable modulus values to the neat starch sample. These results suggested that during gelatinization, the leached amylose interacted with the Cloisite Na+ interlayer, producing better reinforcement and higher modulus values. X-ray diffraction results supported this interpretation since the data showed greater intercalation of Cloisite Na+ clay in the gelatinized samples. The samples containing wheat and corn starch showed comparable elastic modulus values during gelatinization. However, the potato and waxy corn samples had modulus values that rapidly decreased at higher temperatures.  相似文献   

4.
A facile two steps extrusion processing conditions are used to prepare thermoplastic starch (TPS)/glycerol modified-montmorillonite (GMMT) nanocomposites. X-ray diffraction (XRD) and transmission electron microscopy (TEM) demonstrate glycerol can enlarge the d-spacing and destruct the multilayer structure of montmorillonite (MMT) effectively using high speed emulsifying machine (HSEM) in the first modification step. So the enlarged d-spacing and destructed platelets of MMT are favorable to form intercalated or exfoliated TPS/GMMT nanocomposites in the second melt extrusion processing. However, scanning electron microscopy (SEM) and XRD show the possible competition between TPS matrix and plasticizer for the intercalation between MMT layers can deteriorate the plasticization of TPS. In addition, citric acid (CA) can increase the plasticization of TPS and dispersion of MMT in nanocomposites effectively detected by fourier transform infrared (FT-IR) spectroscopy and SEM. At the same time, this facile processing conditions and CA can improve the mechanical properties and water vapor permeability (WVP) of TPS/GMMT nanocomposites obviously.  相似文献   

5.
Potassium (K) is a major element for plant growth. The K+ ions fixed in soil 2:1 clay mineral interlayers contribute to plant K nutrition. Such clay minerals are most often the majority in temperate soils. Field and laboratory observations based on X-ray diffraction techniques suggest that 2:1 clay minerals behave as a K reservoir. The present work investigated this idea through data from a replicated long term fertilization experiment which allowed one to address the following questions: (1) Do fertilization treatments induce some modifications (as seen from X-ray diffraction measurements) on soil 2:1 clay mineralogy? (2) Are soil 2:1 clay mineral modifications related to soil K budget in the different plots? (3) Do fertilizer treatments modify clay Al, Si, Mg, Fe or K elemental content? (4) Are clay mineral modifications related to clay K content modifications? (5) Are clay mineral changes related to clay Al, Si, Mg or Fe content as well as those of K content? Our results showed that K fertilization treatments considered in the context of soil K budget are very significantly related to 2:1 soil clay mineralogy and clay K content. The 2:1 clay mineral modifications observed through X-ray measurements were quantitatively correlated with chemically analyzed clay K content. Clay K content modifications are independent from clay Al, Si, Mg or Fe contents. These results show that the soil chemical environment can modify interlayer site occupations (illite content) which suggests that high level accumulation of potassium can occur without any modification of the clay sheet structure. This study therefore validates the view of 2:1 clay minerals as a K reservoir easily quantifiable through X-ray observations.  相似文献   

6.
Thermoplastic starch (TPS) materials present several advantages to the plastic industry and when blended with other materials they can exhibit improved mechanical and moisture sensitivity properties compared to pure TPS materials. However, the biodegradability of these blends, through such processes as enzymatic degradation, needs to be characterised to ensure the beneficial properties of TPS are not compromised. The aims of the study were to investigate the effect of varying polyvinyl alcohol (PVOH) content and polyol type within the TPS blends on the rate and extent of starch enzymatic hydrolysis using enzymes α-amylase and amyloglucosidase. The results of this study have revealed that TPS:PVOH blends with a PVOH content at 50 wt% exhibited a significantly reduced rate and extent of starch hydrolysis. The results suggest that this may have been attributed to interactions between starch and PVOH that further prevented enzymatic attack on the remaining starch phases within the blend. The extent of starch hydrolysis was not significantly affected by polyol type, however, the rate of starch hydrolysis from the maltitol blend was significantly reduced compared to sorbitol and glycerol substrates.  相似文献   

7.
This is, to our knowledge, the first study of the injection molding of materials where wheat gluten (WG) is the main component. In addition to a plasticizer (glycerol), 5 wt.% natural montmorillonite clay was added. X-ray indicated intercalated clay and transmission electron microscopy indicated locally good clay platelet dispersion. Prior to feeding into the injection molder, the material was first compression molded into plates and pelletized. The filling of the circular mold via the central gate was characterized by a divergent flow yielding, in general, a stronger and stiffer material in the circumferential direction. It was observed that 20-30 wt.% glycerol yielded the best combination of processability and mechanical properties. The clay yielded improved processability, plate homogeneity and tensile stiffness. IR spectroscopy and protein solubility indicated that the injection molding process yielded a highly aggregated structure. The overall conclusion was that injection molding is a very promising method for producing WG objects.  相似文献   

8.
Trivalent europium (Eu3+) and terbium (Tb3+) ions are important activator centers used in different host lattices to produce red and green emitting materials. The current work shows the design of new clay minerals to act as host lattices for rare earth (RE) ions. Based on the hectorite structure, nano‐chlorohectorites and nano‐fluorohectorites were developed by replacing the OH? present in the hectorite structure with Cl? or F?, thus avoiding the luminescence quenching expected due to the OH? groups. The produced matrices were characterized through X‐ray powder diffraction (XPD), transmission electron microscopy (TEM), FT‐IR, 29Si MAS (magic angle spinning) NMR, nitrogen sorption, thermogravimetry‐differential scanning calorimetry (TGA‐DSC) and luminescence measurements, indicating all good features expected from a host lattice for RE ions. The nano‐clay materials were successfully doped with Eu3+ and/or Tb3+ to yield materials preserving the hectorite crystal structure and showing the related luminescence emissions. Thus, the present work shows that efficient RE3+ luminescence can be obtained from clays without the use of organic ‘antenna’ molecules.  相似文献   

9.
Ionic liquids (ILs), 1-allyl-3-methylimidazolium chloride ([amim]Cl) is found to be a novel plasticizer for cornstarch. [Amim]Cl-plasticized starch film also has a potential application as solid biopolymer electrolytes. In this study, different proportional [amim]Cl/glycerol mixtures are used to plasticize starch by casting. Atomic force microscopy (AFM) finds the diameter of residual starch granules existed in [amim]Cl or glycerol-plasticized starch films is only about 10 nm. However, glycerol can form more intensive hydrogen bond with starch than [amim]Cl detected by Fourier transform infrared (FT-IR) spectroscopy. So some novel ILs with high concentration and active hydrogen bond acceptors are necessary. Moreover, high [amim]Cl content can improve the water absorption and conductance of TPS film simultaneously. The conductance of TPS film with 30 wt% [amim]Cl content can achieve to 10?1.6 S cm?1 at 14.5 wt% water content.  相似文献   

10.
Potassium (K) availability influences many processes in cultivated and natural ecosystems. Several studies suggest that “non-exchangeable” K+ ions fixed in 2:1 clay mineral interlayers contribute to plant nutrition. Although depletion of these K+ ions could be observed by X-ray diffractometry, this technique has never been considered for the observation of short-term changes in illitic 2:1 clay minerals. We established in this study that new treatments of X-ray diffraction patterns allow quantification of short-term 2:1 clay mineral changes through K addition in solution and removal of interlayer K by Lolium multiflorum. Moreover, we obtained a significant relationship (r 2 = 0.95, P < 0.0001) between an indicator calculated from X-ray diffraction patterns and analyzed clay K content. X-ray diffraction should therefore be considered as an appropriate tool to follow qualitatively and quantitatively clay mineral modifications induced by soil K balance. Our results suggest that 2:1 clay minerals behave as a huge, renewable K reservoir whose theoretical capacity in fertile soils could exceed 3 t/ha. Beyond obvious agronomical implications, this new vision of soil K cycle raises ecological questions about plant inter specific competition and soil fertility. Finally, our study clearly shows that soil 2:1 clay minerals could react as quickly as a biological system.  相似文献   

11.
The purpose of this article was to explore an environmentally friendly strategy to synthesis of biomass-based hybrids. Herein, microwave-assisted ionic liquids method was applied to fabricate the hybrids from cellulose and AgX (X = Cl, Br) using cellulose and AgNO3. The ionic liquids act simultaneously as a solvent, a microwave absorber, and a reactant. Ionic liquids provided Cl or Br to the synthesis of AgCl or AgBr crystals; thus no additional reactant is needed. The products are characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). The cellulose–Ag/AgCl hybrid and cellulose–Ag/AgBr hybrid were also obtained by using cellulose–AgCl and cellulose–AgBr hybrids as precursors. This environmentally friendly microwave-assisted ionic liquids method is beneficial to the hybrids with high dispersion.  相似文献   

12.
Maleated thermoplastic starch by reactive extrusion   总被引:2,自引:0,他引:2  
Novel maleated thermoplastic starch (MTPS) with both improved processing and reactivity useful in the melt-blending with biodegradable polyester was prepared through in situ reactive modification of thermoplastic starch (TPS) with maleic anhydride (MA) as esterification agent. Glycerol was used as plasticizer. Physico-chemical parameters of MTPS were determined at different MA contents, while keeping both the content in glycerol (20 wt% by starch), and the processing temperature constant (150 °C). Soxhlet extraction attested for the complete incorporation of glycerol into the starch backbone during the maleation process at low content in MA. In addition, two-dimensional liquid-phase NMR measurements attested for the preferential esterification of starch backbone at C6, together with the occurrence of some hydrolysis and glucosidation reactions. Such reactions promoted by MA moieties reduced the intrinsic viscosity of the MTPS, expecting an improvement in its processability. WAXS diffraction analyses confirmed the complete disruption of the granular structure of native starch in MTPS during the reactive extrusion processing.  相似文献   

13.
Adsorption/desorption characteristics for the organic pollutant pentachlorophenol (PCP) were determined for the organomineral complex (OMC) prepared in the laboratory with clay mineral (zeolite–clinoptilolite) and organic matter (humic acids), both natural products with excellent sorption properties. Sorption experiments were carried out in three characterized soil samples, Calcaro-haplic Chernozem, Gleyic Fluvisol, and Arenic Regosol. The results of this study indicate that OMC has better retention abilities than the clay minerals alone. Higher amounts of humic acids (HAs), bound to zeolite, enhance its potential to adsorb and retain PCP. An OMC containing approx. 5 mg HA g−1 of zeolite possessed the best retention ability for PCP and presented an optimal economic solution from the preparation point of view. Then biodegradation of PCP was studied in the same types of sterilized soils bioaugmented with the bacterial isolate Comamonas testosteroni CCM 7350, with and without the addition of OMC. The immobilization effect of OMC in relation to PCP depends on the concentration of PCP and the content of organic carbon in the soil. The activity of the microorganisms and the effect of acid rain led to the gradual release and biodegradation of the irreversibly bound PCP, without any initial toxic effect on indigenous or bioaugmented microorganisms. OMC appeared to be a good adsorbant for PCP, with potential application in remediation technology. Fast and effective adsorption and low desorption may serve as a pretreatment step for bioremediation technology for reducing PCP content in soil and thus for reducing its potential toxicity, reducing bioavailability, and in this way facilitating biodegradation.  相似文献   

14.
This study examined a new method of mitigating harmful algal blooms (HABs) by combining biosurfactant sophorolipid and yellow clay. To investigate the effects and practicability of this HAB mitigation method, field experiments were carried out during a Cochlodinium bloom near Miruk Island, South Korea, in August 2002. Field experiments examined the effects of sophorolipid and yellow clay on Cochlodinium bloom mitigation and on marine plankton such as bacteriaplankton, heterotrophic protists, and zooplankton. A mixture of 5 mg l−1 sophorolipid and 1 g l−1 yellow clay was sprayed directly on the sea surface and its effect was compared with that of 10 g l−1 of yellow clay applied under similar conditions. The sophorolipid–yellow clay mixture more efficiently mitigated the Cochlodinium bloom (95% removal efficiency after 30 min) than yellow clay alone (79% after 30 min). Further, no variation in bacterial abundance occurred 30 min after spraying the sophorolipid–yellow clay mixture. After 30 min, heterotrophic protist abundance at the surface decreased 21 and 41%, respectively, following the sophorolipid–yellow clay mixture and yellow clay treatments. Zooplankton decreased by 38% 15 min after spraying the mixture and 67% 30 min after spraying the yellow clay. These results indicate that the mixture of sophorolipid and yellow clay had a less adverse effect on bacteriaplankton, heterotrophic protists, and zooplankton than the yellow clay, suggesting that the sophorolipid–yellow clay mixture can mitigate HABs efficiently with fewer negative effects on the pelagic ecosystem.  相似文献   

15.
The cellulose/silica hybrid biomaterials are prepared by sol–gel covalent crosslinking process. The tetraethoxysilane (TEOS) as precursor, γ-aminopropyltriethoxylsilane (APTES) as couple agent, and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) as crosslinking agent, are used in the sol–gel crosslinking process. The chemical and morphological structures of cellulose/silica covalent crosslinking hybrids are investigated with micro-FT-IR spectra, nitrogen element analysis, X-ray diffraction, SEM, AFM, and DSC. The results show that the cellulose/silica hybrids form new macromolecular structures. In sol–gel process, inorganic particles are dispersed at the nanometer scale in the cellulose host matrix, bounding to the cellulose through covalent bonds. The cellulose/silica covalent crosslinking hybrid can form good and smooth film on the cellulose. The thermal properties of organic/inorganic hybrids are improved.  相似文献   

16.
The objective of the present study was to investigate the effects of processing variables and formulation factors on the characteristics of hot-melt extrudates containing a copolymer (Kollidon® VA 64). Nifedipine was used as a model drug in all of the extrudates. Differential scanning calorimetry (DSC) was utilized on the physical mixtures and melts of varying drug–polymer concentrations to study their miscibility. The drug–polymer binary mixtures were studied for powder flow, drug release, and physical and chemical stabilities. The effects of moisture absorption on the content uniformity of the extrudates were also studied. Processing the materials at lower barrel temperatures (115–135°C) and higher screw speeds (50–100 rpm) exhibited higher post-processing drug content (~99–100%). DSC and X-ray diffraction studies confirmed that melt extrusion of drug–polymer mixtures led to the formation of solid dispersions. Interestingly, the extrusion process also enhanced the powder flow characteristics, which occurred irrespective of the drug load (up to 40% w/w). Moreover, the content uniformity of the extrudates, unlike the physical mixtures, was not sensitive to the amount of moisture absorbed. The extrusion conditions did not influence drug release from the extrudates; however, release was greatly affected by the drug loading. Additionally, the drug release from the physical mixture of nifedipine–Kollidon® VA 64 was significantly different when compared to the corresponding extrudates (f2 = 36.70). The extrudates exhibited both physical and chemical stabilities throughout the period of study. Overall, hot-melt extrusion technology in combination with Kollidon® VA 64 produced extrudates capable of higher drug loading, with enhanced flow characteristics, and excellent stability.KEY WORDS: extrusion, Kollidon® VA 64, moisture absorption, nifedipine, solid dispersion  相似文献   

17.
"Green" nanocomposites have been successfully fabricated from cellulose acetate (CA) powder, eco-friendly triethyl citrate (TEC) plasticizer and organically modified clay. The effect of the amount of plasticizer varying from 15 to 40 wt % on the performance of the nanocomposites has been evaluated. The morphologies of these nanocomposites were evaluated through X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) studies. The mechanical properties of nanocomposites are correlated with the XRD and TEM observations. Cellulosic plastic-based nanocomposites with 20 wt % TEC plasticizer and 5 wt % organoclay showed better intercalation and an exfoliated structure than the counterpart having 30/40 wt % plasticizers. The tensile strength, modulus and thermal stability of cellulosic plastic reinforced with organoclay showed a decreasing trend with an increase of plasticizer content from 20 to 40 wt %. The nano-reinforcement at the lower volume fractions (phi < or = 0.02) reduced the water vapor permeability of cellulosic plastic by 2 times and the relative permeability better fits with larger platelet aspect ratios (alpha = 150).  相似文献   

18.
Blends of PS and TPS were prepared using two different plasticizers: glycerol or buriti oil by solvent casting technique. PS/TPS blends were submitted to degradation by soil burial tests in perforated boxes for 6 months and later analyzed by TG and CPMAS 13C NMR. After degradation, blends with glycerol presented less stages of thermal degradation and NMR signals of minor intensity compared to the original blends. The presence of TPS at contents of 50% or greater improved the degradation of the blends. After 6 months, PS/TPS blends with buriti oil presented only one thermal degradation stage with a significant increase in mass loss. Moreover, all absorptions related to starch disappeared in NMR spectra after soil buried test, probably due to the consumption of starch by microorganisms. These results revealed that PS’s degradability can be improved when TPS plasticized with buriti oil is added to it.  相似文献   

19.
Summary The immobilization intensity of cells of Penicillium frequentans and Candida parapsilosis on materials such as granular clay, granular clay + aquifer sand and aquifer sand alone, was followed by scanning electron microscopy (SEM). The results demonstrate that the granular clay was the best adsorbent for both organisms, followed by the mixture of both granular clay and aquifer sand. Poor adhesion of cells was detected on using aquifer sand alone with C. parapsilosis.The highest degree of degradation of the alkane mixture (C12–C18) used was achieved by cells immobilized on granular clay, followed by those cells adsorbed on clay and sand. The weakest degradation was observed with cells immobilized on the sand alone.  相似文献   

20.
New biodegradable polyhydroxybutyrate/layered silicate nanocomposites   总被引:1,自引:0,他引:1  
Poly(hydroxybutyrate) (PHB)/layered silicate nanocomposites were prepared via melt extrusion. The nanostructure, as observed from wide-angle X-ray diffraction and transmission electron microscopy, indicates intercalated hybrids. The extent of intercalation depends on the amount of silicate and the nature of organic modifier present in the layered silicate. The nanohybrids show significant improvement in thermal and mechanical properties of the matrix as compared to the neat polymer. The silicate particles act as a strong nucleating agent for the crystallization of PHB. The biodegradability of pure PHB and its nanocomposites was studied at two different temperatures under controlled conditions in compost media. The rate of biodegradation of PHB is enhanced dramatically in the nanohybrids. The change in biodegradation is rationalized in terms of the crystallization behavior of the nanohybrids as compared to that of the neat polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号