首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized the LCC15-MB cell line which was recently derived from a breast carcinoma metastasis resected from the femur of a 29-year-old woman. LCC15-MB cells are vimentin (VIM) positive, exhibit a stellate morphology in routine cell culture, and form penetrating colonies when embedded in three-dimensional gels of Matrigel or fibrillar collagen. They show high levels of activity in the Boyden chamber chemomigration and chemoinvasion assays, and like other invasive human breast cancer (HBC) cell lines, LCC15-MB cells activate matrix-metalloproteinase-2 in response to treatment with concanavalin A. In addition, these cells are tumorigenic when implanted subcutaneously in nude mice and recolonize bone after arterial injection. Interestingly, both the primary lesion and the bone metastasis from which LCC15-MB were derived, as well as the resultant cell line, abundantly express the bone matrix protein osteopontin (OPN). OPN is also expressed by the highly metastatic MDA-MB-435 cells, but not other invasive or noninvasive HBC cell lines. Expression of OPN is retained in the subcutaneous xenograft and intraosseous metastases of LCC15-MB as detected by immunohistochemistry. Both VIM and OPN expression have been associated with breast cancer invasion and metastasis, and their expression by the LCC15-MB cell line is consistent with its derivation from a highly aggressive breast cancer. These cells provide a useful model for studying molecular mechanisms important for breast cancer metastasis to bone and, in particular, the implication(s) of OPN and VIM expression in this process.  相似文献   

2.
Both the epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGF1R) require homo- and hetero-dimerisation with their own family members to acquire full function. We recently showed that IGF1R gene silencing led to EGFR hyper-phosphorylation in human breast cancer cells, and hypothesised that this crosstalk might be associated with direct IGF1R:EGFR interaction. Indeed we could detect reciprocal co-precipitation between the IGF1R and EGFR when overexpressed in SKUT-1 cells, and between endogenous IGF1R and EGFR in MDA-MB-468 breast carcinoma cells, two squamous cancer cell lines, and clinical samples of breast cancer. Interaction was abolished by knockdown of either receptor, and we noted that EGFR knockdown also suppressed IGF1R protein levels. Further investigation revealed that EGFR depletion induced enhancement of IGF1R ubiquitylation and degradation. These results indicate novel evidence of crosstalk between two key cancer treatment targets, capable of modifying the stability of IGF1R protein.  相似文献   

3.
We investigated the importance of the insulin‐like growth factor‐1 receptor (IGF‐1R) in hepatic metastases of uveal melanoma. The expression pattern of IGF‐1R in archival tissue samples of hepatic metastasis from 24 patients was analyzed by immunohistochemistry. All the samples of hepatic metastases stained positive for IGF‐1R. To investigate the biological role of IGF‐1R on the growth of metastatic uveal melanoma, a long‐term cell line obtained from a hepatic metastasis (TJU‐UM001) was evaluated. TJU‐UM001 expressed cell surface IGF‐1R (>90%) and proliferated in response to exogenous and endogenous insulin‐like growth factor‐1 (IGF‐1). Correlatively, anti‐IGF‐1R antibody completely blocked IGF‐1‐induced growth of TJU‐UM001 cells. IGF‐1 preferentially induced phosphorylation of Akt (S473) in quiescent TJU‐UM001 cells, and this was blocked by anti‐IGF‐1R antibody. This study suggests that autocrine and paracrine mechanisms underlie IGF‐1‐induced growth of metastatic uveal melanoma and underscore the potential benefit of IGF‐1 or IGF‐1R antagonism in treatment for metastatic uveal melanoma.  相似文献   

4.

Background

Cancer cell migration is fundamentally required for breast tumour invasion and metastasis. The insulin-like growth factor 1 tyrosine kinase receptor (IGF-1R) and the chemokine G-protein coupled receptor, CXCR4 have been shown to play an important role in breast cancer metastasis. Our previous study has shown that IGF-1R can transactivate CXCR4 via a physical association in the human MDA-MB-231 metastatic breast cancer cell line and that this plays a key role in IGF-I-induced migration of these cells. In the present study we used pharmacological inhibition and RNAi to identify PI3Kγ as an important migration signalling molecule downstream of receptor transactivation in MDA-MB-231 cells. To identify PI3Kγ-regulated proteins upon transactivation of CXCR4 by IGF-I, we undertook a comparative proteomics approach using 2-D- Fluorescence Difference Gel Electrophoresis (DIGE) and identified the proteins by mass spectrometry.

Results

These experiments identified eukaryotic elongation factor 2 (eEF2) as a novel downstream target of PI3Kγ after activation of the IGF-1R-CXCR4 heterodimer by IGF-I. Further analysis demonstrated that eEF2 is phosphorylated in MDA-MB-231 cells in response to IGF-I and that this is dependent on PI3Kγ activity.

Conclusions

Our data imply a novel role for PI3Kγ in facilitating cell migration by regulating phosphorylation of eEF2.  相似文献   

5.
6.
Lu Z  Wu H  Mo YY 《Experimental cell research》2006,312(10):1865-1875
Posttranslational modifications mediated by ubiquitin-like proteins have been implicated in regulating a variety of cellular pathways. Although small ubiquitin-like modifier (SUMO) is a new member of this family, it has caught a great deal of attention recently because of its novel and distinguished functions. Sumoylation is a multiple-step process, involving maturation, activation, conjugation and ligation. Ubc9 is an E2 conjugating enzyme essential for sumoylation. We have previously shown that suppression of sumoylation by a dominant negative Ubc9 mutant (Ubc9-DN) in the estrogen receptor (ER) positive MCF-7 cells is associated with alterations of tumor cell's response to anticancer drugs as well as tumor growth in a xenograft mouse carcinoma model. To dissect the underlying mechanism of Ubc9-associated alterations of drug responsiveness and tumor growth, we profiled gene expression for the cells expressing wild type Ubc9 (Ubc9-WT) and Ubc9-DN. We found that several tumorigenesis-related genes were downregulated in the Ubc9-DN cells. Within this group, we found that over 10 genes are known to be regulated by ER. Experiments using the estrogen response element fused to the luciferase reporter showed that the basal level of luciferase activity was significantly reduced in the Ubc9-DN cells when compared to the vector alone or the Ubc9-WT cells. Furthermore, we found that both the stability and the subcellular localization of steroid hormone receptor coactivator-1 (SRC-1) were altered in the Ubc9-DN cells. Together, these results suggest that Ubc9 might regulate bcl-2 expression through the ER signaling pathway, which ultimately contributes to the alterations of drug responsiveness and tumor growth.  相似文献   

7.
Interactions between the hormone melatonin at pharmacological concentrations (10(-3) M) and 2 Hz, 0.3 mT pulsed electromagnetic fields (PEMF) on the proliferation and invasion of human breast cancer cells were studied in vitro. Three types of human breast cancer cells were used in this study: MDA-MB-435, MDA-MB-231, and MCF-7. Results showed that cellular growth of MDA-MB-231 cells, which were reported to be lowly metastatic, and MCF-7 cells, which were reported to be nonmetastatic, were both significantly reduced by melatonin regardless of the presence of the field. Results also showed that MDA-MB-435 and MDA-MB-231 cells were invasive, with MDA-MB-231 cells being more invasive than the MDA-MB-435 cells for both unexposed and experimental-PEMF groups. In addition, invasion studies showed that MCF-7 cells were not invasive and that melatonin did not have any effects on the invasion of these cells, with or without the PEMF. It is also suggested that since metastasis requires growth and invasion into tissue, anti-invasion agents can be used in conjunction with melatonin to prevent formation of secondary metastases. The overall studies suggest that PEMF at 2 Hz, 0.3 mT does not influence cancer metastasis; while having clinical merit in the healing of soft tissue injury, this field has shown no influence on cancer cells as 60 Hz power line fields have.  相似文献   

8.
Pyruvate carboxylase (PC) is an anaplerotic enzyme that catalyzes the carboxylation of pyruvate to oxaloacetate, which is crucial for replenishing tricarboxylic acid cycle intermediates when they are used for biosynthetic purposes. We examined the expression of PC by immunohistochemistry of paraffin-embedded breast tissue sections of 57 breast cancer patients with different stages of cancer progression. PC was expressed in the cancerous areas of breast tissue at higher levels than in the non-cancerous areas. We also found statistical association between the levels of PC expression and tumor size and tumor stage (P < 0.05). The involvement of PC with these two parameters was further studied in four breast cancer cell lines with different metastatic potentials; i.e., MCF-7, SKBR3 (low metastasis), MDA-MB-435 (moderate metastasis) and MDA-MB-231 (high metastasis). The abundance of both PC mRNA and protein in MDA-MB-231 and MDA-MB-435 cells was 2-3-fold higher than that in MCF-7 and SKBR3 cells. siRNA-mediated knockdown of PC expression in MDA-MB-231 and MDA-MB-435 cells resulted in a 50% reduction of cell proliferation, migration and in vitro invasion ability, under both glutamine-dependent and glutamine-depleted conditions. Overexpression of PC in MCF-7 cells resulted in a 2-fold increase in their proliferation rate, migration and invasion abilities. Taken together the above results suggest that anaplerosis via PC is important for breast cancer cells to support their growth and motility.  相似文献   

9.
Oligomerization of the mannose 6-phosphate/insulin-like growth factor?II receptor (M6P/IGF2R) is important for optimal ligand binding and internalization. M6P/IGF2R is a tumor suppressor gene that exhibits loss of heterozygosity and is mutated in several cancers. We tested the potential dominant-negative effects of two cancer-associated mutations that truncate M6P/IGF2R in ectodomain repeats 9 and 14. Our hypothesis was that co-expression of the truncated receptors with the wild-type/endogenous full-length M6P/IGF2R would interfere with M6P/IGF2R function by heterodimer interference. Immunoprecipitation confirmed formation of heterodimeric complexes between full-length M6P/IGF2Rs and the truncated receptors, termed Rep9F and Rep14F. Remarkably, increasing expression of either Rep9F or Rep14F provoked decreased levels of full-length M6P/IGF2Rs in both cell lysates and plasma membranes, indicating a dominant-negative effect on receptor availability. Loss of full-length M6P/IGF2R was not due to increased proteasomal or lysosomal degradation, but instead arose from increased proteolytic cleavage of cell-surface M6P/IGF2Rs, resulting in ectodomain release, by a mechanism that was inhibited by metal ion chelators. These data suggest that M6P/IGF2R truncation mutants may contribute to the cancer phenotype by decreasing the availability of full-length M6P/IGF2Rs to perform tumor-suppressive functions such as binding/internalization of receptor ligands such as insulin-like growth factor II.  相似文献   

10.
One-third of women with breast cancer will develop bone metastases and eventually die from disease progression at these sites. Therefore, we analyzed the ability of human MG-63 osteoblast-like cells (MG-63 cells), MG-63 conditioned media (MG-63 CM), insulin-like growth factor I (IGF-I), and transforming growth factor beta 1 (TGF-beta1) to alter the effects of adriamycin on cell cycle and apoptosis of estrogen receptor negative (ER-) MDA-MB-231 and positive (ER+) MCF-7 breast cancer cells, using cell count, trypan blue exclusion, flow cytometry, detection of DNA fragmentation by simple agarose gel, and the terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labeling method for apoptosis (TUNEL assay). Adriamycin arrested MCF-7 and MDA-MB-231 cells at G2/M phase in the cell cycle and inhibited cell growth. In addition, adriamycin arrested the MCF-7 cells at G1/G0 phase and induced apoptosis of MDA-MB-231 cells. Exogenous IGF-I partially neutralized the adriamycin cytotoxicity/cytostasis of cancer cells. MG-63 CM and TGF-beta1 partially neutralized the adriamycin cytotoxicity of MDA-MB-231 cells but enhanced adriamycin blockade of MCF-7 cells at G1/G0 phase. MG-63 osteoblast-like cells inhibited growth of MCF-7 cells while promoting growth and rescued MDA-MB-231 cells from adriamycin apoptosis in a collagen co-culture system. These data suggest that osteoblast-derived growth factors can alter the chemotherapy response of breast cancer cells. Conceivably, host tissue (bone)-tumor cell interactions can modify the clinical response to chemotherapy in patients with advanced breast cancer.  相似文献   

11.
The type 1 insulin-like growth factor receptor (IGF1R) is a promising anticancer treatment target, being frequently overexpressed by tumours, and mediating proliferation, motility and apoptosis protection. Design of specific kinase inhibitors is problematic because of homology between the IGF1R and insulin receptor. This obstacle can be circumvented using sequence-specific molecular agents including antisense, triplex and ribozymes. Recent studies indicate that profound sequence-specific IGF1R gene silencing can be induced by small interfering RNAs that mediate RNA interference in mammalian cells. IGF1R downregulation blocks tumour growth and metastasis, and enhances sensitivity to cytotoxic drugs and irradiation. In murine melanoma cells, radiosensitisation is associated with impaired activation of Atm, which is required for initiation of cell cycle checkpoints and DNA repair pathways after double-strand DNA breaks. Furthermore, tumour cells killed in vivo following IGF1R downregulation can provoke an immune response, protecting against tumour rechallenge. After years of studying the role of the IGF system in tumour biology, novel agents for IGF1R targeting will soon be available for clinical testing. This review summarises the development of molecular agents, and considers factors that will influence clinical activity, including the requirement of established tumours for IGF signalling, and the efficacy and toxicity of IGF1R inhibitors.  相似文献   

12.
Signaling via the type 1 insulin-like growth factor receptor (IGF1R) confers resistance to EGF receptor (EGFR) inhibitors. It is plausible that reciprocal EGFR compensation could mediate resistance to IGF1R inhibition, prompting us to investigate effects of IGF1R depletion on EGFR signaling in breast cancer cells expressing relatively high (MDA-MB-468) or low (MCF7) EGFR. Transient IGF1R knockdown induced enhanced phosphorylation of the EGFR and its effectors JNK, ERKs and STAT5, but this did not prevent apoptosis induction and inhibition of clonogenic survival following IGF1R knockdown. We used IGF1R shRNA to induce chronic IGF1R depletion, and achieved stable gene silencing in MCF-7 cells; here, EGFR overexpression led to EGFR hyperphosphorylation, again without abrogating survival inhibition after IGF1R knockdown. In both cell lines, dual receptor knockdown prevented EGFR hyperphosphorylation, but induced no greater inhibition of clonogenic survival than IGF1R knockdown alone. These results suggest that the EGFR cannot compensate for IGF1R depletion, and are encouraging for the strategy of IGF1R targeting.  相似文献   

13.
Progesterone action contributes to the signaling of many growth factor pathways relevant to breast cancer tumor biology, including the insulin-like growth factor (IGF) system. Previous work has shown that insulin receptor substrate-2 (IRS-2) but not IRS-1 levels were regulated by progestin in progesterone receptor-B (PR-B) isoform expressing MCF-7 cells (C4-12 PR-B). Furthermore, type 1 IGF receptor (IGF1R) signaling via IRS-2 correlated with the increased cell migration observed in a number of breast cancer cell lines. Consequently, in this study, we examined whether the elevation of IRS-2 protein induced by progestin was sufficient to promote IGF-I-stimulated cell motility. Treatment of C4-12 PR-B cells with progestin shifted the balance of phosphorylation from IRS-1 to IRS-2 in response to IGF-I. This shift in IRS-2 activation was associated with enhanced migration in C4-12 PR-B cells pretreated with progestin, but had no effect on cell proliferation or survival. Treatment of C4-12 PR-B cells with RU486, an antiprogestin, inhibited IGF-induced cell migration. Attenuation of IRS-2 expression using small interfering RNA resulted in decreased IGF-stimulated motility. In addition, IRS-2 knockdown resulted in an abrogation of PKB/Akt phosphorylation but not mitogen-activated protein kinase. Consequently, LY294002, a phosphoinositide-3-kinase inhibitor, abolished IGF-induced cell motility in progestin-treated C4-12 PR-B cells. These data show a role for the PR in functionally promoting growth factor signaling, showing that levels of IRS proteins can determine IGF-mediated biology, PR-B signaling regulates IRS-2 expression, and that IRS-2 can mediate IGF-induced cell migration via phosphoinositide-3-kinase in breast cancer cells.  相似文献   

14.
The migratory activity of tumor cells and their ability to extravasate from the blood stream through the vascular endothelium are important steps within the metastasis cascade. We have shown previously that norepinephrine is a potent inducer of the migration of MDA-MB-468 human breast carcinoma cells and therefore investigated herein, whether the interaction of these cells as well as MDA-MB-231 and MDA-MB-435S human breast carcinoma cells with the vascular endothelium is affected by this neurotransmitter as well. By means of a flow-through assay under physiologic flow conditions, we show that norepinephrine induces an increase of the adhesion of the MDA-MB-231 cells, but not of MDA-MB-468 and MDA-MB-435S cells to human pulmonary microvascular endothelial cells (HMVEC). The adhesion of MDA-MB-231 cells was based on a norepinephrine-mediated release of GROα from HMVECs. GROα caused a β1-integrin-mediated increase of the adhesion of MDA-MB-231 cells. Most interestingly, this effect of norepinephrine, similar to the aforementioned induction of migration in MDA-MB-468 cells, was mediated by β-adrenergic receptors and therefore abrogated by β-blockers. In conclusion, norepinephrine has cell line-specific effects with regard to certain steps of the metastasis cascade, which are conjointly inhibited by clinically established β-blockers. Therefore, these results may deliver a molecular explanation for our recently published retrospective data analysis of patients with breast cancer which shows that β-blockers significantly reduce the development of metastases.  相似文献   

15.
Insulin-like growth factors I and II (IGF-I and II) and insulin are chemotactic agents for the human melanoma cell line A2058. As shown in this report, the motility receptor mediating this response is the heterodimeric type I IGF receptor. These three factors are able to compete with 125I-labeled IGF-I for binding to the cell surface with IC50 values equal to approximately 2 (IGF-I), approximately 150 (IGF-II), and approximately 300 nM (insulin). Cross-linking of 125I-IGF-I to the cell surface with disuccinimidyl suberate followed by analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography reveals a 130-kDa protein (reduced) consistent with the alpha component of a type I receptor and a 38-kDa protein which does not bind insulin, and thus could be another IGF-I cell surface binding protein. The anti-IGF-I receptor monoclonal antibody (alpha IR-3) also competes with labeled IGF-I in binding experiments. In contrast, a control monoclonal antibody, matched to alpha IR-3 with respect to IgG subclass, has no significant effect on IGF-I binding. While alpha IR-3 inhibits the motility induced by IGF-I, IGF-II, and insulin, pertussis toxin (0.01-1.0 micrograms/ml) has no significant effect on the motility induced by the insulin-like growth factors or insulin on this cell line. Therefore, the type I IGF receptor appears to mediate a highly potent pertussis toxin-insensitive motility response to IGF-I, IGF-II, and insulin. In contrast, motility induced by the autocrine motility factor, a cytokine produced by the A2058 cells, is not affected by alpha IR-3 but is extremely sensitive to pertussis toxin. When mixtures of autocrine motility factor and IGF-I are employed to induce chemotaxis, the resulting motility is greater than that induced by either agent alone. These data indicate that motility in this melanoma cell line can be initiated through multiple receptors that stimulate the cells by separate transduction pathways. This capability to respond to multiple stimuli could enhance the metastatic potential.  相似文献   

16.
Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer.  相似文献   

17.
Overexpression of type 1 insulin-like growth factor receptor (IGF1R) contributes to the progression and metastasis of liver cancer, implying that IGF1R gene is a suitable target of RNA interference (RNAi) for liver cancer therapy. To investigate the possible regulation of IGF1R by P53, we examined the level of IGF1R expression in liver cancer cell lines in response to adriamycin. Levels of IGF1R mRNA and protein in cell lines with wild-type P53 decreased dramatically after P53 induction, but no such reduction of IGF1R was observed in cell lines with mutated P53. Inhibition of wild-type P53 in HEPG2 cells by small interfering RNA (siRNA) significantly upregulated the expression of IGF1R. IGF1R inhibition by siRNA in Huh7 cells with mutated P53 significantly depressed cell proliferation. To investigate the sensitivity of cancer cells to adriamycin after inhibition of IGF1R, we depressed IGF1R expression using siRNA, and then added adriamycin at an IC50 dose. After a further 48 h incubation with adriamycin, proliferation was significantly depressed in the cells treated with siRNA targeting IGF1R, in comparison with siRNA targeting scramble. Furthermore, both TUNEL and pro-caspase-3 expression assay showed a significant increase in apoptosis after combined treatment with adriamycin and siRNA targeting IGF1R. Our results demonstrate that IGF1R is downregulated by P53, and that siRNA targeting of IGF1R increases liver cancer cells sensitivity to adriamycin and promotes apoptosis. siRNA targeting of IGF1R could be potentially useful for increasing sensitivity to anti-cancer drugs, especially in drug-resistant cells with mutated P53.  相似文献   

18.
Primary lung tumors, breast tumors, and melanoma metastasize mainly in the brain where therapy is limited to surgery and radiation. To investigate the molecular basis of brain metastases, we isolated brain-trophic metastatic MDA-MB-435-LvBr2 (LvBr2) cells via left ventricle (LV) injection of MDA-MB-435 cells into immunodeficiency (NOD/SCID) mice. Whereas parent MDA-MB-435 cells displayed an elongated morphology, LvBr2 cells were round and displayed an aggregated distribution. LvBr2 cells expressed lower β-catenin levels and higher heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNPC) levels than parental cells. Since microRNAs are known to play an important role in cancer progression including metastasis, we screened microRNAs expressed specifically in brain metastases. MicroRNA-146a was almost undetectable in LvBr2 cells and highly expressed in the parental cells. Overexpression of miR-146a increased β-catenin expression and suppressed the migratory and invasive activity of LvBr2 cells. The miR-146a-elicited decrease in hnRNPC in turn lowered the expression of MMP-1, uPA, and uPAR and inhibited the migratory and invasive activity of LvBr2 cells. Taken together, our findings indicate that miR-146a is virtually absent from brain metastases and can suppress their metastatic potential including their migratory and invasive activities associated with upregulation of β-catenin and downregulation of hnRNPC.  相似文献   

19.
Cross-talk between insulin-like growth factor (IGF)- and estrogen receptor (ER)-signaling pathways results in synergistic growth. We show here that estrogen enhances IGF signaling by inducing expression of three key IGF-regulatory molecules, the type 1 IGF receptor (IGFR1) and its downstream signaling molecules, insulin receptor substrate (IRS)-1 and IRS-2. Estrogen induction of IGFR1 and IRS expression resulted in enhanced tyrosine phosphorylation of IRS-1 after IGF-I stimulation, followed by enhanced mitogen-activated protein kinase activation. To examine whether these pathways were similarly activated in vivo, we examined MCF-7 cells grown as xenografts in athymic mice. IRS-1 was expressed at high levels in estrogen-dependent growth of MCF-7 xenografts, but withdrawal of estrogen, which decreased tumor growth, resulted in a dramatic decrease in IRS-1 expression. Finally, we have shown that high IRS-1 expression is an indicator of early disease recurrence in ER-positive human primary breast tumors. Taken together, these data not only reinforce the concept of cross-talk between IGF- and ER-signaling pathways, but indicate that IGF molecules may be critical regulators of estrogen-mediated growth and breast cancer pathogenesis.  相似文献   

20.
Pang Y  Thomas P 《Steroids》2011,76(9):921-928
The functional characteristics of membrane progesterone receptors (mPRs) have been investigated using recombinant mPR proteins over-expressed in MDA-MB-231 breast cancer cells. Although these cells do not express the full-length progesterone receptor (PR), it is not known whether they express N-terminally truncated PR isoforms which could possibly account for some progesterone receptor functions attributed to mPRs. In the present study, the presence of N-terminally truncated PR isoforms was investigated in untransfected and mPR-transfected MDA-MB-231 cells, and in MDA-MB-468 breast cancer cells. PCR products were detected in PR-positive T47D Yb breast cancer cells using two sets of C-terminus PR primers, but not in untransfected and mPR-transfected MDA-MB-231 cells, nor in MDA-MB-468 cells. Western blot analysis using a C-terminal PR antibody, 2C11F1, showed the same distribution pattern for PR in these cell lines. Another C-terminal PR antibody, C-19, detected immunoreactive bands in all the cell lines, but also recognized α-actinin, indicating that the antibody is not specific for PR. High affinity progesterone receptor binding was identified on plasma membranes of MDA-MB-468 cells which was significantly decreased after treatment with siRNAs for mPRα and mPRβ. Plasma membranes of MDA-MB-468 cells showed very low binding affinity for the PR agonist, R5020, ≤1% that of progesterone, which is characteristic of mPRs. Progesterone treatment caused G protein activation and decreased production of cAMP in MDA-MB-468 cells, which is also characteristic of mPRs. The results indicate that the progestin receptor functions in these cell lines are mediated through mPRs and do not involve any N-terminally truncated PR isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号