首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Growth and nitrogenase activity were studied in cultures ofAzotobacter vinelandii growing with dinitrogen, ammonium sulfate, aspartic acid or yeast extract. Nitrogenase activity was measured by means of the C2H2 reduction test.In the presence of ammonium sulfate nitrogenase is completely repressed. After exhaustion of ammonia its activity is restored following a diauxic lag period of 30 min. With aspartic acid nitrogenase activity is partially repressed, and growth yield is higher than in the culture growing with N2 only. This is due to simultaneous use of dinitrogen and aspartate. Fluctuations of nitrogenase activity occurring during exponential growth and the mechanism of their regulation are discussed.Abbreviations NA nitrogenase activity - BNF Burk's nitrogen free medium  相似文献   

2.
Incubation of Azotobacter chroococcum in the presence of micromolar concentrations of MnCl2, but not MgCl2, prevented nitrogenase activity from NH 4 + inhibition. Mg(II), at a 100-fold concentration with respect to Mn(II), counteracted the protective effect of Mn(II) on nitrogenase activity. When Mn(II) was added to cells that had been given NH4Cl, stopping of NH 4 + uptake and recovery of nitrogenase activity took place, and a raise of NH 4 + concentration in medium developed. Furthermore, incubation of A. chroococcum cells with 20 M Mn(II) under air, but not under an argon: oxygen (79%:21%) gas mixture, resulted in NH 4 + excretion to the external medium. The Mn(II)-mediated uncoupling of nitrogen fixation from ammonium assimilation leads us to conclude that Mn(II) may act as a physiological inhibitor of glutamine synthetase.Abbreviations Hepes N-2-Hydroxyethylpiperazine-N-ethanesulfonic acid - Mops 3-(N-Morpholino)propanesulfonic acid  相似文献   

3.
Incubation in the dark of photoautotrophically grown N2-fixing heterocystous cyanobacteria leads to a loss of nitrogenase activity. Original levels of nitrogenase activity are rapidly regained upon re-illumination of the filaments, in a process dependent on de novo protein synthesis. Ammonia, acting indirectly through some of its metabolic derivatives, inhibits the light-promoted development of nitrogenase activity in filaments of Anabaena sp. ATCC 33047 and several other cyanobacteria containing mature heterocysts. The ammonia-mediated control system is also operative in N2-fixing filaments in the absence of any added source of combined nitrogen, with the ammonia resulting from N2-fixation already partially inhibiting full expression of nitrogenase. High nitrogenase levels, about two-fold higher than those in normal N2-fixing Anabaena sp. ATCC 33047, are found in cell suspensions which have been treated with the glutamine synthetase inhibitor l-methionine-d,l-sulfoximine or subjected to nitrogen starvation. Filaments treated in either way are insensitive to the ammonia-promoted inhibition of nitrogenase development, although this insensitivity is only transitory for the nitrogen-starved filaments, which become ammonia-sensitive once they regain their normal nitrogen status.Abbreviations Chl chlorophyll - EDTA ethylenediaminetetraacetic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

4.
Strains of the obligately aerobic nitrogen fixing organismAzotobacter chroococcum were constructed which contained defined chromosomal deletions in which the nitrogenase structural genenifHDK cluster (nifH for the polypeptide of the Fe-protein component of nitrogenase andnifD andnifK for the alpha and beta subunits respectively of the MoFe-protein component of the enzyme) was replaced by a kanamycin resistance gene. N2 fixation was nevertheless observed in deletion strains though only in a molybdenum-deficient medium or in spontaneously arising tungstate-resistant derivatives. In comparison with the parent strain growing in molybdenum-sufficient medium, diazotrophic growth was slow and the nitrogenase activity in vivo was characterised by disproportionately low rates of C2H2-reduction compared to H2-evolution and relative insensitivity of H2-evolution to inhibition by C2H2. The findings show reiteration of functional structural genes for nitrogenase inA. chroococcum consistent with our previous observation of twonifH genes in this organism and detection in this work of a secondnifK-like sequence in the genomes of both parent and deletion strains whenA. chroococcum nifK DNA was used as a probe.  相似文献   

5.
Azotobacter vinelandii was grown at constant growth rate in a chemostat with different molar ratios of sucrose to ammonium (C/N) in the influent media. Both compounds were consumed at essentially the same ratios as were present in the influent media. At low (C/N)-ratios, the cultures were ammonium-limited. At increased (C/N)-ratio ammonium-assimilating cultures additionally began to fix dinitrogen. The (C/N)-ratio at which nitrogenase activity became measurable, increased when the ambient oxygen concentration was increased. Immunoblotting revealed the appearance of nitrogenase proteins when the activity became detectable. Nitrogenase activity as determined either by acetylene reduction or by total nitrogen fixation gave constant relative activities of 1:3.8 (mol of N2 fixed per mol of acetylene reduced) under all sets of conditions used in this investigation. In spite of the oxygen dependent variation of the (C/N)-ratio, nitrogenase became active when the ammonium supply was less than about 14 nmol of ammonium per g of protein. This suggests that oxygen was not directly involved in the onset of dinitrogen fixation.  相似文献   

6.
One hundred and twenty-nine mutants of Azospirillum brasilense strain Sp6, resistant to methylammonium, were isolated. Three of the mutants were found to be able to reduce acetylene in the presence of 4 mM ammonium or 120mM methylammonium, concentrations which strongly reduced the nitrogenase activity of the parental strain. Under N2-fixing conditions, two mutants failed to switch off nitrogenase when NH4Cl was added. Moreover, the three mutants showed a reduced capacity to incorporate [14C]methylammonium. The level of glutamine synthetase activity found in the mutants was not reduced as compared to that of the parental strain. All of the data indicate an impairement in the mechanism of ammonium uptake by the bacterial cell.Abbreviations MEA Methylammonium - MSP minimal medium (ammonium free) - PY complete medium - GS glutamine synthetase  相似文献   

7.
The marine purple nonsulfur bacterium, Rhodopseudomonas sulfidophila, strain W4, was capable of photosynthetic growth on dinitrogen and malate. Higher growth rates were observed when either glutamate or ammonia replaced dinitrogen as nitrogen source and when bicarbonate was omitted from the culture medium. Although ammonia was released from cells growing on malate and N2, no nitrogenase activity could be detected unless -ketoglutarate was added to the culture medium. No nitrogenase activity was found in cultures grown in the presence of NH 4 + . In cultures grown on glutamate as nitrogen source, nitrogenase and hydrogenase activities were found to be 5.4 nmol C2H2 reduced · min-1 · mg-1 dry weight and 50 nmol methylene blue reduced · min-1 · mg-1 dry weight respectively. Such activities are significantly lower than those observed for other members of the Rhodospirillaceae e.g. Rhodopseudomonas capsulata. However, the hydrogenase activity would be sufficient to recycle all H2 produced by nitrogenase. It was indeed observed that growing cells did not evolve molecular hydrogen during photoheterotrophic growth and that H2 stimulated nitrogenase activity in resting cells of R. sulfidophila. The nitrogenase from this bacterium proved to be extremely sensitive to low concentrations of oxygen, half-inhibition occurring at between 1–1.5% O2 in the gas phase, depending on the bacterial concentration. Light was essential for nitrogenase activity. No activity was found during growth in the dark under extremely low oxygen concentrations (1–2% O2), which are still sufficient to support good growth. Resting cell suspensions prepared from such cultures were unable to reduce acetylene upon illumination. Optimum nitrogenase activities were broadly defined over the temperature range, 30–38°C, and between pH 6.9 and 8.0. The results are discussed in comparison with the non-marine purple nonsulfur bacterium, R. capsulata, which somewhat resembles R. sulfidophila.  相似文献   

8.
In order to shed new light on the mechanisms of salt-mediated symbiotic N2-fixation inhibition, the effect of salt stress (75 mM) on N2-fixation in pea root nodules induced by R. leguminosarum was studied at the gene expression, protein production and enzymatic activity levels. Acetylene reduction assays for nitrogenase activity showed no activity in salt-stressed plants. To know whether salt inhibits N2-fixing activity at a molecular or at a physiological level, expression of the nifH gene, encoding the nitrogenase reductase component of the nitrogenase enzyme was analyzed by RT-PCR analysis of total RNA extracted from nodulated roots. The nifH messenger RNA was present both in plants grown in the presence and absence of salt, although a reduction was observed in salt-stressed plants. Similar results were obtained for the immunodetection of the nitrogenase reductase protein in Western-blot assays, indicating that nitrogen fixation failed mainly at physiological level. Given that nutrient imbalance is a typical effect of salt stress in plants and that Fe is a prosthetic component of nitrogenase reductase and other proteins required by symbiotic N2-fixation, as leghemoglobin, plants were analyzed for Fe contents by atomic absorption and the results confirmed that Fe levels were severely reduced in nodules developed in salt-stressed plants. In a previous papers (El-Hamdaoui et al., 2003b), we have shown that supplementing inoculated legumes with boron (B) and calcium (Ca) prevents nitrogen fixation decline under saline conditions stress. Analysis of salt-stressed nodules fed with extra B and Ca indicated that Fe content and nitrogenase activity was similar to that of non-stressed plants. These results indicate a linkage between Fe deprivation and salt-mediated failure of nitrogen fixation, which is prevented by B and Ca leading to increase of salt tolerance.  相似文献   

9.
[目的]来自Paenibacillus polymyxa WLY78的固氮基因簇(nifBHDKEfNXhesAnifV)可以转化入Escherichia coli中表达并使重组大肠杆菌合成有固氮活性的固氮酶。本文拟通过对重组大肠杆菌E.coli 78-7的转录组分析以提高其固氮能力。[方法]对固氮条件(无氧无NH4+)和非固氮条件(空气和100 mmol/L NH4+)培养的重组大肠杆菌E.coli 78-7进行转录组分析。[结果]nif基因在两种培养条件下显著表达,说明在重组大肠杆菌中可规避原菌中氧气和NH4+nif基因的负调控。对于固氮过程必需的非nif基因,如参与钼、硫、铁元素转运的modcysfeoAB,这些基因在两种培养条件下表达水平有差异。而参与铁硫簇合成的sufisc基因簇在两条件下表达水平差异巨大。此外,参与氮代谢的基因在固氮条件下显著上调。[结论]重组大肠杆菌中与固氮相关的非nif基因在该菌的固氮过程中具有较大影响,本文对在异源宿主中调高固氮酶活性研究具有重要意义。  相似文献   

10.
To investigate the role of ammonium-assimilating enzyme in heterocyst differentiation, pattern formation and nitrogen fixation, MSX-resistant and GS-impaired mutants of Anabaena 7120 were isolated using transposon (Tn5-1063) mutagenesis. Mutant Gs1 and Gs2 (impaired in GS activity) exhibited a similar rate of nitrogenase activity compared to that of the wild type under dinitrogen aerobic conditions in the presence and absence of MSX. Filaments of Gs1 and Gs2 produced heterocysts with an evenly spaced pattern in N2-grown conditions, while addition of MSX altered the interheterocyst spacing pattern in wild type as well as in mutant strains. The wild type showed complete repression of heterocyst development and nitrogen fixation in the presence of NO3 or NH4 +, whereas the mutants Gs1 and Gs2 formed heterocysts and fixed nitrogen in the presence of NO3 and NH4 +. Addition of MSX caused complete inhibition of glutamine synthetase activity in wild type but Gs1 and Gs2 remained unaffected. These results suggest that glutamine but not ammonium is directly involved in regulation of heterocyst differentiation, interheterocyst spacing pattern and nitrogen fixation in Anabaena.  相似文献   

11.
Bellenger  J. P.  Darnajoux  R.  Zhang  X.  Kraepiel  A. M. L. 《Biogeochemistry》2020,149(1):53-73

Biological nitrogen fixation (BNF), a key reaction of the nitrogen cycle, is catalyzed by the enzyme nitrogenase. The best studied isoform of this metalloenzyme requires molybdenum (Mo) at its active center to reduce atmospheric dinitrogen (N2) into bioavailable ammonium. The Mo-dependent nitrogenase is found in all diazotrophs and is the only nitrogenase reported in diazotrophs that form N2-fixing symbioses with higher plants. In addition to the canonical Mo nitrogenase, two alternative nitrogenases, which use either vanadium (V) or iron (Fe) instead of Mo are known to fix nitrogen. They have been identified in ecologically important groups including free-living bacteria in soils and freshwaters and as symbionts of certain cryptogamic covers. Despite the discovery of these alternative isoforms more than 40 years ago, BNF is still believed to primarily rely on Mo. Here, we review existing studies on alternative nitrogenases in terrestrial settings, spanning inland forests to coastal ecosystems. These studies show frequent Mo limitation of BNF, ubiquitous distribution of alternative nitrogenase genes and significant contributions of alternative nitrogenases to N2 fixation in ecosystems ranging from the tropics to the subarctic. The effect of temperature on nitrogenase isoform activity and regulation is also discussed. We present recently developed methods for measuring alternative nitrogenase activity in the field and discuss the associated analytical challenges. Finally, we discuss how the enzymatic diversity of nitrogenase forces a re-examination of existing knowledge gaps and our understanding of BNF in nature.

  相似文献   

12.
The aerobic hydrogen-oxidizing bacterium Alcaligenes latus represented by three strains was found to be able to grow with dinitrogen as the sole nitrogen source: The doubling time of total (Kjeldahl) nitrogen during growth on glucose at 30°C under an atmosphere containing 2% (v/v) oxygen in dinitrogen amounted to 39 h, while that in the presence of ammonium was 3 h. Nitrogen fixation did apparently not occur under air. During diazotrophic growth the cells accumulated up to 75% (w/dry weight) poly--hydroxybutyric acid. The efficiency of nitrogen fixation varied between 10 and 15 mg N per g glucose utilized. The specific nitrogenase activity measured in the acetylene reduction assay amounted to 5–17 nmol C2H4 formed per min and mg protein.  相似文献   

13.
At growth temperatures above 37°C, Klebsiella pneumoniae does not grow in a medium containing N2 or NO 3 - as nitrogen sources. However, both the growth in the presence of other nitrogen sources as well as the in vitro nitrogenase activity are not affected at this temperature. The inability to fix N2 at high temperature is due to the failure of the cells to synthesize nitrogenase and other nitrogen fixation (nif) gene encoded proteins. When cells grown under nitrogen fixing conditions at 30°C were shifted to 39°C, there was a rapid decrease of the rate of de novo biosynthesis of nitrogenase (component 1), nitrogenase reductase (component 2), and the nifJ gene product. There was no degradation of nitrogenase at the elevated temperature since preformed enzyme remained stable over a period of at least 3 h at 39°C. Thus, temperature seems to represent a third control system, besides NH 4 + and O2, governing the expression of nif genes of K. pneumoniae.  相似文献   

14.
Diazotrophy of Rhodopseudomonas acidophila and Rhodopseudomonas capsulata was not obligatorily linked to photosynthesis. In the dark R. acidophila grew with dinitrogen as sole nitrogen source at a dissolved oxygen tension of 15 Torr (= 2.0 kPa); the doubling time was 8 h. Acetylene reduction by whole cells was more sensitive to oxygen in the light than in the dark. 16.5 mg N2 were fixed per g lactic acid consumed. R. capsulata synthesized nitrogenase and fixed dinitrogen in the dark at a dissolved oxygen tension of less than one Torr (= 0.13 kPa). The doubling time of this bacterium was 16 h and 10.5 mg N2 were fixed per g lactic acid consumed.Abbreviation kPa kilopascal  相似文献   

15.
Four from 18 strains of Erwinia herbicola tested had nitrogenase activity and grew with N2 as sole source of nitrogen under strict anaerobic conditions with a doubling time of 20–24 h. Nitrogenase activity started only 96–120 h after transfer to a special medium maintained under anaerobic conditions. A ten fold increase in protein per culture found after the maximum nitrogenase activity of 80–130 nmol C2H4. mg protein-1·min-1 was accompanied by a fall in pH of the medium (20 mM phosphate buffer and in 125 mM Tris-buffer) from pH 7.2 to 5.4 or less, but only to 6.8 in 100 mM phosphate buffer. In all cases we found a sharp curtailing of nitrogenase activity 48 h after the maximum. The bacteria utilized only 35–50% of the nitrogen fixed for growth. Erwinia herbicola strains differed from two strains of Enterobacter agglomerans in being unable to fix nitrogen on agar surfaces exposed to air. Specific nitrogenase activity in Erwinia herbicola is compared with data reported for other Enterobacteriaceae and is found to be higher than that reported for Klebsiella pneumoniae, Enterobacter cloacae or Citrobacter freundii.  相似文献   

16.
The effect of oxygen, ammonium ion, and amino acids on nitrogenase activity in the root-associated N2-fixing bacterium Herbaspirillum seropedicae was investigated in comparison with Azospirillum spp. and Rhodospirillum rubrum. H. seropedicae is microaerophilic, and its optimal dissolved oxygen level is from 0.04 to 0.2 kPa for dinitrogen fixation but higher when it is supplied with fixed nitrogen. No nitrogenase activity was detected when the dissolved O2 level corresponded to 4.0 kPa. Ammonium, a product of the nitrogenase reaction, reversibly inhibited nitrogenase activity when added to derepressed cell cultures. However, the inhibition of nitrogenase activity was only partial even with concentrations of ammonium chloride as high as 20 mM. Amides such as glutamine and asparagine partially inhibited nitrogenase activity, but glutamate did not. Nitrogenase in crude extracts prepared from ammonium-inhibited cells showed activity as high as in extracts from N2-fixing cells. The pattern of the dinitrogenase and the dinitrogenase reductase revealed by the immunoblotting technique did not change upon ammonium chloride treatment of cells in vivo. No homologous sequences were detected with the draT-draG probe from Azospirillum lipoferum. There is no clear evidence that ADP-ribosylation of the dinitrogenase reductase is involved in the ammonium inhibition of H. seropedicae. The uncoupler carbonyl cyanide m-chlorophenylhydrazone decreased the intracellular ATP concentration and inhibited the nitrogenase activity of whole cells. The ATP pool was not significantly disturbed when cultures were treated with ammonium in vivo. Possible mechanisms for inhibition by ammonium of whole-cell nitrogenase activity in H. seropedicae are discussed.  相似文献   

17.
Strains of filamentous, non-heterocystous cyanobacteria from the Pasteur Culture Collection (PCC), able to synthesize nitrogenase under anaerobic test conditions, were tested for growth with N2 as sole nitrogen source at low O2 partial pressure (less than 0.05%). Plectonema boryanum (PCC 73110) exhibited exponential growth under these conditions. This capacity was restricted to light intensities not exceeding 500 lux. Growth rates were 0.014/h at 200 and 0.023 at 500 lux and similar to those of anaerobic and aerobic control cultures with nitrate as N-source. For N2-fixing cultures incubated at 200 and 500 lux, acetylene reduction rates were 4–8 and 5–14 nmol C2H4 per mg protein per min, respectively. The ratio of phycocyanine to chlorophyll was higher (200 lux) or slightly reduced (500 lux) in N2-fixing cultures as compared to control cultures with nitrate as N-source. On the basis of epifluorescence microscopy and microfluorimetry, no differences in pigment contents were found between individual cells or filaments of N2-fixing cultures. Also no noteworthy differences were observed between the pycobiliprotein composition of individual cells in N2 fixing cultures as compared to nitrate-grown controls. Thus the observed exponential growth of P. boryanum at low light intensities implies simultaneous nitrogen fixation and oxygenic photosynthesis. Additional continuous culture experiments showed that N2-fixing exponential growth was dependent on O2 partial pressures lower than 0.2–0.4%.The other strains tested (PCC 6412, 6602, 7403, 7104) did not grow under such conditions.Abbreviations Chl chlorophyll - PBP phycobiliproteins - PC phycocyanin - PCC Pasteur Culture Collection - OD optical density  相似文献   

18.
Five strains of heterocystous blue-green algae capable of high rates of growth and nitrogenase activity were isolated from shallow coastal environments. Growth of the organisms was characterized with respect to temperature, NaCl concentration in the medium, and nitrogen source. The temperature optima ranged from 35–42°C, and all but one of the strains displayed a requirement for added NaCl. The generation times under N2-fixing conditions were 5.1–5.9 h, and were as low as 3.4 h for growth on NH4Cl. Nitrogenase activity (C2H2 reduction) was high throughout the logarithmic growth phase of each strain. The maximum value observed for one strain was 65.5 nmoles C2H4 produced/mg protein x min, and the average values for the five strains ranged from 24.5–46.7 nmoles C2H4/mg protein x min. The organisms all belong to the genusAnabaena. The growth and nitrogenase activity of these strains are much higher than those of the heterocystous blue-green algae commonly used for investigation of nitrogen metabolism, and they thus should prove to be useful physiological tools. Their prevalence, as judged by the ease of their enrichment and isolation, in bay and estuarine environments suggests that they are important contributors of combined nitrogen.  相似文献   

19.
Long lasting batch cultures of Azospirillum brasilense SP 7 ATCC 29145 grown in liquid malate medium for 8–14 days without any fixed nitrogen source exhibited a biphasic nitrogenase activity, when incubated under gas atmospheres of 99.0% N2 and 1.0% O2 or 99.5% N2 and 0.5% O2 respectively. Maximum specific nitrogenase activity was 1100 nmol C2H4·mg protein-1·h-1. Poly-3-hydroxybutanoic acid (PHBA) synthesis and growth of the cells also showed two phases. Maxima and minima of glutamine synthetase activity developed synchronously with nitrogenase activity, whereas those of glutamate dehydrogenase and alanine aminotransferase were reverse. During a 192 h period of growth protein increased 3–4-fold and PHBA 25 fold. At maximum accumulation of the polymer the PHBA-nitrogen ratio was 6:1 or 8:1. Azospirillum brasilense was also able to fix nitrogen on agar surfaces exposed to air, but nitrogen fixation was monophasic under these conditions during a 14 d period. Specific nitrogenase activity was dependent on the type and concentration of the source of fixed nitrogen (leucine, ammonia) in solidified media. With 1 mM leucine maximum specific nitrogenase activity was 110 nmol C2H4·mg protein-1·h-1.Non-Standard Abbreviations PHBA poly-3-hydroxybutanoic acid - TAPS tris(hydroxymethyl)methylaminopropane sulfonic acid - TES N-tris(hydroxymethyl)methyl-2-aminoethane sulfonic acid - TRICINE N-tris(hydroxymethyl)methylglycine - TRIS tris(hydroxymethyl)aminomethane  相似文献   

20.
Valverde  Claudio  Wall  Luis Gabriel 《Plant and Soil》2003,250(1):155-165
N2-fixation is sensitive to limitation in the availability of newly synthesised carbohydrates for the nodules. We decided to explore the response of the D. trinervis - Frankia symbiosis to a transient decrease in carbohydrate supply to nodules. Feedback inhibition of nodulation as well as nodule growth was not released by a 6-day dark stress in D. trinervis nodulated plants. However, nitrogen fixation and assimilation were affected by the imposed stress. Nitrogenase activity was totally inhibited after 4 days of darkness although high levels of nitrogenase components were still detected at this time. Degradation of FeMo and Fe nitrogenase subunits – both at similar rates – was observed after 6 days of dark stress, revealing the need for inactivation to precede enhancement of protein turnover. Glutamine synthetase (GS), malate dehydrogenase (MDH) and asparagine synthetase (AS) polypeptides were also degraded during the dark stress, although at a lower rate than nitrogenase. ARA and nitrogenase were totally recovered 8 days after resuming normal illumination. It seems that current nitrogenase activity and ammonium assimilation are not, or are only weakly linked with the feedback control of nodulation in D. trinervis. These observations give support to the persistence of an autoregulatory signal in mature nodules that is not sensitive to transient shortages of carbon supply and sustains the inhibition of nodulation in the transient absence of N2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号