首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cotton-seed residual cake, which is a byproduct of the process of oil extraction from the seed, was delignified with sodium hypochlorite (1% available chlorine). Xylan was then prepared from the delignified wet material by alkali extraction with 15% sodium hydroxide. The cotton-seed xylan contained 64.7% xylose and 9.4% uronic acid. The xylan was hydrolyzed with 0.125 M sulfuric acid at 90 degrees C for 15 min. The resultant hydrolysis products were separated by gel-permeation chromatography on BioGel P-4 and Toyopearl HW-40F columns connected in series, with water as an eluate. Xylose and xylooligosaccharides with a degree of polymerization ranging from DP 2 to 15 were separated under such conditions, and each xylooligosaccharide-containing peak fraction afforded a single band on fluorophore-assisted carbohydrate electrophoresis. These results suggest that cotton-seed xylan is suitable for the preparation of xylose and xylooligosaccharides.  相似文献   

2.
Maleic acid-catalyzed hemicellulose hydrolysis reaction in corn stover was analyzed by kinetic modeling. Kinetic constants for Saeman and biphasic hydrolysis models were analyzed by an Arrhenius-type expansion which include activation energy and catalyst concentration factors. The activation energy for hemicellulose hydrolysis by maleic acid was determined to be 83.3 +/- 10.3 kJ/mol, which is significantly lower than the reported E(a) values for sulfuric acid catalyzed hemicellulose hydrolysis reaction. Model analysis suggest that increasing maleic acid concentrations from 0.05 to 0.2 M facilitate improvement in xylose yields from 40% to 85%, while the extent of improvement flattens to near-quantitative by increasing catalyst loading from 0.2 to 1 M. The model was confirmed for the hydrolysis of corn stover at 1 M maleic acid concentrations at 150 degrees C, resulting in a xylose yield of 96% of theoretical. The refined Saeman model was used to evaluate the optimal condition for monomeric xylose yield in the maleic acid-catalyzed reaction: low temperature reaction conditions were suggested, however, experimental results indicated that bi-phasic behavior dominated at low temperatures, which may be due to the insufficient removal of acetyl groups. A combination of experimental data and model analysis suggests that around 80-90% xylose yields can be achieved at reaction temperatures between 100 and 150 degrees C with 0.2 M maleic acid.  相似文献   

3.
Biotechnological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically and with dilute or concentrate mineral acids. The present study used dilute sulfuric acid as a catalyst for hydrolysis of Eucalyptus grandis residue. The purpose of this paper was to optimize the hydrolysis process in a 1.4 l pilot-scale reactor and investigate the effects of the acid concentration, temperature and residue/acid solution ratio on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). This study was based on a model composition corresponding to a 2(3) orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of residue. The considered optimum conditions were: H(2)SO(4) concentration of 0.65%, temperature of 157 degrees C and residue/acid solution ratio of 1/8.6 with a reaction time of 20 min. Under these conditions, 79.6% of the total xylose was removed and the hydrolysate contained 1.65 g/l glucose, 13.65 g/l xylose, 1.55 g/l arabinose, 3.10 g/l acetic acid, 1.23 g/l furfural and 0.20 g/l 5-hydroxymethylfurfural.  相似文献   

4.
Sorghum straw is a waste that has been studied scarcely. The main application is its use as raw material for xylose production. Xylose is a hemicellulosic sugar mainly used for its bioconversion toward xylitol. An alternative use could be its conversion toward furfural. The objective of this work was to study the furfural production by hydrolysis of sorghum straw with phosphoric acid at 134 degrees C. Several concentrations of H(3)PO(4) in the range 2-6% and reaction time (range 0-300 min) were evaluated. Kinetic parameters of mathematical models for predicting the concentration of xylose, glucose, arabinose, acetic acid and furfural in the hydrolysates were found. Optimal conditions for furfural production by acid hydrolysis were 6% H(3)PO(4) at 134 degrees C for 300 min, which yielded a solution with 13.7 g furfural/L, 4.0 g xylose/L, 2.9 g glucose/L, 1.1g arabinose/L and 1.2g acetic acid/L. The furfural yield of the process was 0.1336 g furfural/g initial dry matter was obtained. The results confirmed that sorghum straw can be used for furfural production when it is hydrolyzed using phosphoric acid.  相似文献   

5.
A method of purification of endo-(1-->4)-beta-xylanase (endoxylanase; EC 3.2.1.8) from the culture liquid of Geotrichum candidum 3C, grown for three days, is described. The enzyme purified 23-fold had a specific activity of 32.6 U per mg protein (yield, 14.4%). Endoxylanase was shown to be homogeneous by SDS-PAGE (molecular weight, 60 to 67 kDa). With carboxymethyl xylan as substrate, the optimum activity (determined viscosimetrically) was recorded at pH 4.0 (pI 3.4). The enzyme retained stability at pH 3.0-4.5 and 30-45 degrees C for 1 h. With xylan from beach wood, the hydrolytic activity of the enzyme (ability to saccharify the substrate) was maximum at 50 degrees C. In 72 h of exposure to 0.2 mg/ml endoxylanase, the extent of saccharification of xylans from birch wood, rye grain, and wheat straw amounted to 10, 12, and 7.7%, respectively. At 0.4 mg/ml, the extent of saccharification of birch wood xylan was as high as 20%. In the case of birch wood xylan, the initial hydrolysis products were xylooligosaccharides with degrees of polymerization in excess of four; the end products were represented by xylobiose, xylotriose, xylose, and acid xylooligosaccharides.  相似文献   

6.
When N-[14C] acetylbenzotriazole, presented here as a new agent for the acetylation of proteins, reacted at pH 8 and 25 degrees C with delta-chymotrypsin, 15 amino groups (the epsilon-amino groups of lysing residues and the alpha-amino terminus of half-cystine-1) and two phenolic groups (those of the two exposed tyrosine residues) were acetylated with respective pseudo first-order constants of 0.056 +/- 0.003 and 0.15 +/- 0.03 min(-1). Surprisingly, in contrast with the acetic anhydride reaction, the alpha-amino group of Ile-16 was found to be not acetylated as shown by N-terminus determination and activity measurements: the modified delta-chymotrypsin (or acetylated delta-chymotrypsin) was fully active after neutral dialysis. Only a transient inactivation due to the incorporation of one [14C] acetyl group per mole of catalytic site was observed. The kinetic constant found for reactivation at pH 8.5 was 0.315 +/- 0.005 min(-1) at 25 degrees C. The enzyme-catalyzed hydrolysis of N-acetylbenzotriazole was described by a k(cat) value of 0.093 +/- 0.005 min(-1) at pH 7 and 25 degrees C. Circular dichroism changes observed at 230 nm during the reaction at pH 8.5, of acetylated delta-chymotrypsin with N-acetylbenzotriazole indicated a total conversion of the amount of enzyme molecules which were in the 'inactive' or 'alkaline' conformation at this pH, into the 'active' or 'neutral' one. Benzotriazole alone was unable to induce such a conformational change. The rate constant of the reverse structural process from the 'neutral' to the 'alkaline' conformation was 0.32 +/- 0.02 min(-1): identical to that of the deacetylation of the catalytic site. Thus, the unusual lack of acetylation of Ile-16 alpha-amino group during delta-chymotrypsin treatment with N-acetylbenzotriazole is interpreted as a stabilization of the enzyme 'neutral' conformation where the Ile-16 alpha-amino group is buried, thus inaccessible to the reagent. The properties of the delta-chymotrypsin modification using N-acetylbenzotriazole led to practical uses: direct spectrophotometric titration of chymotrypsin operational normality at pH 7 and rapid preparation of acetylated delta-chymotrypsin. As a protein reagent, N-acetylbenzotriazole is particularly interesting because of its reactivity towards amino and phenolic groups of amino acid residues, its stability at acid pH, i.e., k(hydrolysis=7.38 X 10(-3) min(-1) at 25 degrees C [Ravaux et al. (1971) Tetrahedron Letters, 4013-4015] and its aromaticity, responsible for optical properties.  相似文献   

7.
Hyaluronic acid (HA) was hydrolyzed using varying temperatures (40, 60, and 80 degrees C) and acid concentrations (0.0010, 0.010, 0.10, 0.50, 1.0, and 2.0 M HCl). The degradation process was monitored by determination of weight average molecular weight ( M w) by size-exclusion chromatography with online multiangle laser light scattering, refractive index, and intrinsic viscosity detectors (SEC-MALLS-RI-visc) on samples taken out continuously during the hydrolysis. SEC-MALLS-RI-visc showed that the degradation gave narrow molecular weight distributions with polydispersity indexes ( M w/ M n) of 1.3-1.7. Kinetic plots of 1/ M w versus time gave linear plots showing that acid hydrolysis of HA is a random process and that it follows a first order kinetics. For hydrolysis in HCl at 60 and 80 degrees C, it was shown that the kinetic rate constant ( k h) for the degradation depended linearly on the acid concentration. Further, the dependence of temperature on the hydrolysis in 0.1 M HCl was found to give a linear Arrhenius plot (ln k h vs 1/ T), with an activation energy ( E a) of 137 kJ/mol and Arrhenius constant ( A) of 7.86 x 10 (15) h (-1). (1)H NMR spectroscopy was used to characterize the product of extensive hydrolysis (48 h at 60 degrees C in 0.1 M HCl). No indication of de- N-acetylation of the N-acetyl glucosamine (GlcNAc) units or other byproducts were seen. Additionally, a low molecular weight HA was hydrolyzed in 0.1 M DCl for 4 h at 80 degrees C. It was shown that it was primarily the beta-(1-->4)-linkage between GlcNAc and glucuronic acid (GlcA) that was cleaved during hydrolysis at pH < p K a,GlcA. The dependence of the hydrolysis rate constant was further studied as a function of pH between -0.3 and 5. The degradation was found to be random (linear kinetic plots) over the entire pH range studied. Further, the kinetic rate constant was found to depend linearly on pH in the region -0.3 to 3. Above this pH (around the p K a of HA), the kinetic constant decreased more slowly, probably due to either a change in polymer conformation or due to an increased affinity for protons due to the polymer becoming charged as the GlcA units dissociated.  相似文献   

8.
The disappearance of xylose and xylooligosaccharides with degrees of polymerization (DP) ranging from 2 to 5 was followed at 160 degrees C with sulfuric acid added to adjust the pH from near neutral to 1.45, and the impact on the yields of lower DP xylooligomers and xylose monomer was determined. In addition, the experimental data for the disappearance of these xylooligomers was kinetically modeled assuming first-order reaction kinetics for xylose degradation and xylooligomer hydrolysis to evaluate how the pH affected the selectivity of monomer formation from xylooligomers and direct oligomer degradation to unknown products. The yield of xylose from xylooligomers increased appreciably with increasing acid concentration but decreased with increasing xylooligomer DP at a given acid concentration, resulting in more acid being required to realize the same xylose yields for higher DP species. For example, the maximum xylose yields were 49.6%, 28.0%, 13.2% and 3.2% for DP values of 2, 3, 4, and 5, respectively, at pH 4.75. Kinetic modeling revealed that all the xylooligomers disappeared at a higher rate compared to xylose monomer and the disappearance rate constant increased with DP at all pH. The kinetics for lower DP oligomers of 2 and 3 showed that these species directly degrade to unknown compounds in the absence of acid. On the other hand, higher oligomers of DP 4 and 5 exhibited negligible losses to degradation products at all pH. Therefore, only xylooligomers of DP 2 and 3 were found to directly degrade to undesired products in the absence of acid, but more work is needed to determine how higher DP species behave. This study also revealed that the source of water and the material used for the construction of the reactor impacted xylose degradation kinetics.  相似文献   

9.
With the purpose of testing the Paired Equivalent Isothermal Exposures (PEIE) method to determine reaction kinetic parameters under non-isothermal conditions, continuous pasteurizations were carried out with a tropical fruit nectar [25% cupua?u (Theobroma grandiflorum) pulp and 15% sugar] to estimate the ascorbic acid thermal degradation kinetic parameters. Fifteen continuous thermal exposures were studied, with seven being cycled. The experimental ascorbic acid thermal degradation kinetic parameters were estimated by the PEIE method (E(a) = 73 +/- 9 kJ/mol, k(8)(0)( degrees )(C) = 0.017 +/- 0.001 min(-)(1)). These values compared very well to the previously determined values for the same product under isothermal conditions (E(a) = 73 +/- 7 kJ/mol, k(8)(0)( degrees )(C) = 0.020 +/- 0.001 min(-)(1)). The predicted extents of reaction presented a good fit to the experimental data, although the cycled thermal treatments presented some deviation. In addition to being easier and faster than the Isothermal method, the PEIE method can be a more reliable method to estimate first-order reaction kinetic parameters when continuous heating is considered.  相似文献   

10.
A comprehensive experimental and modelling study on the acid-catalysed hydrolysis of the water hyacinth plant (Eichhornia crassipes) to optimise the yield of levulinic acid (LA) is reported (T=150-175 degrees C, [Formula: see text] , water hyacinth intake=1-5wt%). At high acid concentrations (>0.5M), LA was the major organic acid whereas at low acid concentrations (<0.1M) and high initial intakes of water hyacinth, the formation of propionic acid instead of LA was favoured. The highest yield of LA was 53mol% (35wt%) based on the amount of C6-sugars in the water hyacinth (T=175 degrees C, [Formula: see text] , water hyacinth intake=1wt%). The LA yield as a function of the process conditions was modelled using a kinetic model originally developed for the acid-catalysed hydrolysis of cellulose and good agreement between the experimental and modelled data was obtained.  相似文献   

11.
alpha 2-Macroglobulin and the complement components C3 and C4 each contain a metastable binding site that is essential for covalent attachment. Two cyclic peptides are useful models of these unusual protein sites. Five-membered lactam 1 (CH3CO-Gly-Cys-Gly-Glu-Glp-Asn-NH2) contains an internal residue of pyroglutamic acid (Glp). Fifteen-membered thiolactone 2 (CH3CO-Gly-Cys-Gly-Glu-Glu-Asn-NH2 15-thiolactone) contains a thiol ester bond between Cys-2 and Glu-5. These isomeric hexapeptides are spontaneously interconverted in water. Competing with the two isomerization reactions are three reactions involving hydrolysis of 1 and 2. These five processes were found to occur simultaneously under physiologic conditions (phosphate-buffered saline, pH 7.3, 37 degrees C). Best estimates of the five rate constants for these apparent first-order reactions were obtained by comparing the observed molar percentages of peptides 1-4 with those calculated from a set of exponential equations. Both isomerization reactions (ring expansion of 1 to 2, k1 = 6.4 X 10(-5) s-1; ring contraction of 2 to 1, k-1 = 69 X 10(-5) s-1) proceeded faster than any of the hydrolysis reactions: alpha-cleavage of 1 with fragmentation to form dipeptide 3 (k2 = 3.3 X 10(-5) s-1), gamma-cleavage of 1 with ring opening to yield mercapto acid 4 (k3 = 0.35 X 10(-5) s-1), and hydrolysis of 2 with ring opening to give 4 (k4 = 1.9 X 10(-5) s-1). The isomerization rate ratio (k1/k-1 = 10.9) agreed with the isomer ratio at equilibrium (1:2 = 11 starting from 1 and 10 starting from 2). The alpha/gamma regioselectivity ratio (k2/k3 = 9.7) for hydrolysis of the internal Glp residue of 1 was consistent with results for model tripeptides. Part of the chemistry of the protein metastable binding sites can be explained by similar isomerization and hydrolysis reactions.  相似文献   

12.
Fermentation of xylooligosaccharides by 11 strains of Selenomonas ruminantium was examined. Xylooligosaccharides were prepared by the partial hydrolysis of oat spelt xylan in dilute phosphoric acid (50 mM, 121°C, 15 min) and were added to a complex, yeast extract-Trypticase-containing medium. Strains of S. ruminantium varied considerably in their capacity to ferment xylooligosaccharides. Strains GA192, GA31, H18, and D used arabinose, xylose, and the oligosaccharides xylobiose through xylopentaose, as well as considerable quantities of larger, unidentified oligosaccharides. Other strains of S. ruminantium (HD4, HD1, 20-21a, H6a, W-21, S23, 5-1) were able to use only the simple sugars present in the substrate mixture. The ability of S. ruminantium strains to utilize xylooligosaccharides was correlated with the presence of xylosidase and arabinosidase activities. Both enzyme activities were induced by growth on xylooligosaccharides, but no activity was detected in glucose- or arabinose-grown cultures. Xylooligosaccharide-fermenting strains of S. ruminantium exhibited considerable variation in substrate utilization patterns, and the assimilation of individual carbohydrate species also appeared to be regulated. Lactic, acetic, and propionic acids were the major fermentation end products detected. Received: 2 August 1997 / Accepted: 18 September 1997  相似文献   

13.
Beta-D-xylosidases are hemilcellulases that hydrolyze short xylooligosaccharides into xylose units. Here, we describe the characterization and kinetic analysis of a family 43 beta-xylosidase from Geobacillus stearothermophilus T-6 (XynB3). Enzymes in this family use an inverting single-displacement mechanism with two conserved carboxylic acids, a general acid, and a general base. XynB3 was most active at 65 degrees C and pH 6.5, with clear preference to xylose-based substrates. Products analysis indicated that XynB3 is an exoglycosidase that cleaves single xylose units from the nonreducing end of xylooligomers. On the basis of sequence homology, amino acids Asp15 and Glu187 were suggested to act as the general-base and general-acid catalytic residues, respectively. Kinetic analysis with substrates bearing different leaving groups showed that, for the wild-type enzyme, the k(cat) and k(cat)/K(m) values were only marginally affected by the leaving-group reactivity, whereas for the E187G mutant, both values exhibited significantly greater dependency on the pK(a) of the leaving group. The pH-dependence activity profile of the putative general-acid mutant (E187G) revealed that the protonated catalytic residue was removed. Addition of the exogenous nucleophile azide did not affect the activities of the wild type or the E187G mutant but rescued the activity of the D15G mutant. On the basis of thin-layer chromatography and (1)H NMR analyses, xylose and not xylose azide was the only product of the accelerated reaction, suggesting that the azide ion does not attack the anomeric carbon directly but presumably activates a water molecule. Together, these results confirm the suggested catalytic role of Glu187 and Asp15 in XynB3 and provide the first unequivocal evidence regarding the exact roles of the catalytic residues in an inverting GH43 glycosidase.  相似文献   

14.
S H Lin  H C Cheung 《FEBS letters》1992,304(2-3):184-186
Temperature-jump measurements were carried out on myosin subfragment 1 (S1) labeled at Cys-707 with 5-(iodoacetamido)fluorescein (S1-AF). The relaxation was monitored by following the increase in the fluorescence intensity of the attached probe after a jump of 5.8 degrees C. A single relaxation process was observed over a range of final temperatures, and the relaxation time decreased from 16.69 ms at 15 degrees C to 3.91 ms at 27 degrees C. The relaxation results are interpreted in terms of a two-state transition: (S1-AF)L K+ in equilibrium with K- (S1-AF)H, and the observed single relaxation time (tau) equals l/(k(+) + k-). The individual first-order rate constants, k+ and k-, were calculated from tau and the equilibrium constant previously determined. The activation energy was 21.9 kcal/mol for the forward reaction and 9.3 kcal/mol for the reverse reaction, corresponding to an enthalpy value of 12.6 kcal/mol for the two-state transition. The results provide, for the first time, direct kinetic evidence of a two-state transition of S1 in the absence of bound nucleotide, and support a two-state model of unliganded myosin subfragment 1.  相似文献   

15.
A method of purification of endo-( 1 → 4)-β-xylanase (endoxylanase; EC 3.2.1.8) from the culture liquid ofGeotrichum candidum 3C, grown for three days, is described. The enzyme, purified 23-fold, had a specific activity of 32.6 U per mg protein (yield, 14.4%). Endoxylanase was shown to be homogeneous by SDS-PAGE (molecular weight, 60 to 67 kDa). With carboxymethyl xylan as the substrate, the optimum activity (determined viscosimetrically) was recorded at pH 4.0 (pI 3.4). The enzyme retained stability at pH 3.0-4.5 and 30–45°C for 1 h. With xylan from birch wood, the hydrolytic activity of the enzyme (ability to saccharify the substrate) was maximum at 50°C. In 72 h of exposure to 0.2 mg/ml endoxylanase, the extent of saccharification of xylans from birch wood, rye grain, and wheat straw amounted to 10,12, and 7.7%, respectively. At 0.4 mg/ml, the extent of saccharification of birch wood xylan was as high as 20%. In the case of birch wood xylan, the initial hydrolysis products were xylooligosaccharides with degrees of polymerization in excess of four; the end products were represented by xylobiose, xylotriose, xylose, and acid xylooligosaccharides.  相似文献   

16.
Dry mycelium of a strain of Aspergillus oryzae efficiently catalyzed the esterification between free acetic acid and primary alcohols (geraniol and ethanol) in organic solvent. The growth conditions to obtain high activity of mycelium-bound enzymes were firstly evaluated. A medium containing Tween 80 as carbon source furnished mycelium with the highest activity in the hydrolysis of alpha-naphthyl esters (alpha-N-acetate, butyrate, caprylate). Dry mycelium was employed to select suited conditions for an efficient acetylation of ethanol and geraniol in heptane. Maximum productions were obtained using 30 g l(-)(1) of lyophilized cells: 12.4 g l(-)(1) of geranyl acetate were produced at 80 degrees C starting from 75 mM geraniol and acetic acid (84% molar conversion) and 4.1 g l(-)(1) of ethyl acetate at 50 degrees C from 50 mM ethanol and acetic acid (94% molar conversion) after 24 h. The stability of the mycelium-bound carboxylesterases are notable since only 10-30% loss of activity was observed after 14 days at temperatures between 30 and 50 degrees C.  相似文献   

17.
The production of fermentable sugars from olive tree biomass was studied by dilute acid pretreatment and further saccharification of the pretreated solid residues. Pretreatment was performed at 0.2%, 0.6%, 1.0% and 1.4% (w/w) sulphuric acid concentrations while temperature was in the range 170-210 degrees C. Attention is paid to sugar recovery both in the liquid fraction issued from pretreatment (prehydrolysate) and that in the water-insoluble solid (WIS). As a maximum, 83% of hemicellulosic sugars in the raw material were recovered in the prehydrolysate obtained at 170 degrees C, 1% sulphuric acid concentration, but the enzyme accessibility of the corresponding pretreated solid was not very high. In turn, the maximum enzymatic hydrolysis yield (76.5%) was attained from a pretreated solid (at 210 degrees C, 1.4% acid concentration) in which cellulose solubilization was detected; moreover, sugar recovery in the prehydrolysate was the poorest one among all the experiments performed. To take account of fermentable sugars generated by pretreatment and the glucose released by enzymatic hydrolysis, an overall sugar yield was calculated. The maximum value (36.3 g sugar/100 g raw material) was obtained when pretreating olive tree biomass at 180 degrees C and 1% sulphuric acid concentration, representing 75% of all sugars in the raw material. Dilute acid pretreatment improves results compared to water pretreatment.  相似文献   

18.
Hydrolysis of four timber species (aspen, balsam fir, basswood, and red maple) and switchgrass was studied using dilute sulfuric acid at 50 g dry biomass/L under similar conditions previously described as acid pretreatment. The primary goal was to obtain detailed kinetic data of xylose formation and degradation from a match between a first order reaction model and the experimental data at various final reactor temperatures (160-190 degrees C), sulfuric acid concentrations (0.25-1.0% w/v), and particle sizes (28-10/20 mesh) in a glass-lined 1L well-mixed batch reactor. Reaction rates for the generation of xylose from hemicellulose and the generation of furfural from xylose were strongly dependent on both temperature and acid concentration. However, no effect was observed for the particle sizes studied. Oligomer sugars, representing incomplete products of hydrolysis, were observed early in the reaction period for all sugars (xylose, glucose, arabinose, mannose, and galactose), but were reduced to low concentrations at later times (higher hemicellulose conversions). Maximum yields for xylose ranged from 70% (balsam) to 94% (switchgrass), for glucose from 10.6% to 13.6%, and for other minor sugars from 8.6% to 58.9%. Xylose formation activation energies and the pre-exponential factors for the timber species and switchgrass were in a range of 49-180 kJ/mol and from 7.5 x 10(4) to 2.6 x 10(20)min(-1), respectively. In addition, for xylose degradation, the activation energies and the pre-exponential factors ranged from 130 to 170 kJ/mol and from 6.8 x 10(13) to 3.7 x 10(17)min(-1), respectively. There was a near linear dependence on acid concentration observed for xylose degradation. Our results suggest that mixtures of biomass species may be processed together and still achieve high yields for all species.  相似文献   

19.
Kinetic studies of corn stover saccharification using sulphuric acid   总被引:1,自引:0,他引:1  
The kinetics of crystalline cellulose and hemicellulose hydrolysis in corn stover were studied with a nonisothermal technique. Reactions were arrested at temperatures between 160 and 240 degrees C and product sugars were analyzed using a Bio-Rad HPX-85 liquid chromatographic column. A simple first-order series reaction model was used for both cellulose and hemicellulose hydrolysis reactions. Kinetic parameters were obtained for three different sulphuric acid concentrations (0.49, 0.92, and 1.47 wt %). Activation energies remained constant over this acid concentration range but the preexponential factors showed an increase with acid concentration. Relationships were obtained between the preexponential factors and acid concentrations. Cellulose hydrolysis and glucose degradation reactions were observed to be of higher order with respect to acid concentration in comparison with the previous studies with other raw materials.  相似文献   

20.
AIM: Pentose-utilizing yeast development by protoplast fusion and sequential mutations and ethanol fermentation using lignocellulosic substrate. METHODS AND RESULTS: Protoplasts of thermotolerant Saccharomyces cerevisiae and mesophilic, xylose-utilizing Candida shehatae were fused by electrofusion. The fusants were selected based on their growth at 42 degrees C and ability to utilize xylose. The selected best fusant was mutated sequentially and 3 mutant fusants obtained were tested for their stability. The mutant fusant CP11 was found to be stable and used for lignocellulosic fermentation. The Prosopis juliflora wood material was hydrolysed with 1% sulphuric acid initially for 18 h at room temperature and then for 20 min at 121 degrees C. The acid hydrolysate was separated and used for detoxification by ethyl acetate and overliming. The hard cellulosic fraction was hydrolysed with Aspergillus niger crude cellulase enzyme for 18 h at 50 degrees C. The substrate (15% w/v) yielded 84 g l(-1) sugars, representing 80% (w/w) hydrolysis of carbohydrate content present in the lignocellulosic material. The acid and enzyme hydrolysates were then equally mixed and used for fermentation with the developed fusant yeast (CP11). The fusant yeast gave an ethanol yield of 0.459 +/- 0.012 g g(-1), productivity of 0.67 +/- 0.015 g l(-1) h(-1) and fermentation efficiency of 90%. CONCLUSIONS: Protoplast fusion followed by sequential mutations method gave a stable and good performing fusant with maximum utilization of reducing sugars in the media. SIGNIFICANCE AND IMPACT OF THE STUDY: This new method could be applied to develop fusants for better biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号