首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We examined the effects of acute and chronic psychogenic stress on the activation pattern of enkephalin-containing perikarya in the rat ventrolateral medulla. Rats allocated to the chronic stress groups were subjected to 90 min of immobilization for 10 days. On the 11th day, the chronically stressed rats were exposed to homotypic (90-min immobilization) or to heterotypic but still psychogenic (90-min immobilization coupled to air jet stress) stress. The acute stress group was subjected once to an acute 90-min immobilization. For each group, the rats were anesthetized either before stress (time 0) or 90, 180, and 270 min after the onset of stress. Brain sections were then processed using immunocytochemistry (Fos protein) followed by radioactive in situ hybridization histochemistry (enkephalin mRNA). Following immobilization, the acute group displayed a marked increase in the number of activated enkephalin-containing perikarya within the paragigantocellularis and lateral reticular nuclei. This level of activation was sustained up to 180 min following the onset of the immobilization stress and had returned to baseline levels by 270 min from the initiation of the stress. However, this stress-induced activation of enkephalin-containing perikarya of the ventrolateral medulla was not seen following either homotypic or heterotypic stress in the chronically stressed group. These results provide evidence that enkephalin-containing perikarya of the ventrolateral medulla may constitute a potential circuit through which they regulate some aspect of the stress responses. Conversely, this enkephalinergic influence from the ventrolateral medulla was shown to be absent following chronic stress exposure. This would suggest a decrease in enkephalin inhibitory input originating from the ventrolateral medulla, thereby allowing a neuroendocrine and/or autonomic response to chronic stress.  相似文献   

2.
We evaluated whether regional differences in the magnitude of glutamate, gamma-aminobutyric acid (GABA), and glycine release could explain why some regions are vulnerable to ischemia whereas others are spared. By means of the microdialysis technique, the temporal profile of ischemia-induced changes in extracellular levels of glutamate, GABA, and glycine was compared in regions that demonstrate differing susceptibilities to a 10- and 20-min ischemic insult (dorsal hippocampus, anterior thalamus, somatosensory cortex, and dorsolateral striatum). The degree of ischemia (as established by local cerebral blood flow reduction) and the magnitude of histopathological neuronal damage were also evaluated in these regions. The blood flow reduction was severe and uniform in all regions; however, the histopathological outcome illustrated a different pattern. Whereas the CA1 sector of the hippocampus was severely damaged, the thalamus and cortex were relatively spared from both 10 and 20 min of ischemia. Striatal neurons were resistant to a 10-min insult but severely damaged after 20 min of ischemia. Ischemia-induced increase in glutamate and GABA content were of a similar magnitude and temporal profile in all four brain regions. A uniform increase in extracellular glycine levels was also observed in all four brain structures. The postischemic response, however, was different. Glycine levels remained twofold higher than baseline in the hippocampus but fell to baseline in the cortex and thalamus after both 10- and 20-min insults. In the striatum, glycine levels returned to baseline after 10 min of ischemia but remained relatively high after a 20-min insult.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Two distinct periods of sensitivity to elevated glucocorticoid hormone levels during postnatal development of the pituitary-adrenal axis were studied. Wistar rats were injected subcutaneously (s.c.) with cortisol (1 mg/kg) on postnatal days 1-5 or 14-18. The steroid treatment during the first postnatal week resulted in a decrease of the morning basal and stress-induced plasma corticosterone levels in 30 day-old male rats, as well as in rats that were injected with cortisol on the third postnatal week. Stress-induced corticosterone levels in 90-day old cortisol-treated rats were determined in blood samples drawn from the tail vein before the restraint stress, immediately after the 20-min long stress, then 60 and 180 min afterwards. Only the rats treated with cortisol during the third week showed a prolonged stress-induced corticosterone secretion, with the highest corticosterone level in 180 min after the restraint stress. The early neonatal cortisol treatment had no effect on (3)H-corticosterone binding in all studied brain areas of the 90-day old rats. The rats treated with cortisol at the 14-17th postnatal days showed a significantly lower (3)H-corticosterone binding in the frontal cortex, hippocampus, and hypothalamus. These findings suggest that the third week of life in rats is more sensitive to elevated levels of corticosterone than the first one. The high level of glucocorticoids at this period has long-term effects on the efficiency of the negative feedback mechanisms provided by hypothalamus-pituitary-adrenal axis.  相似文献   

4.
African catfish Clarias gariepinus (=119.9&30.6 g) were exposed to periods of emersion (5, 30, 60, 90 and 180 min) and the ammonia and nitrogen excretion rates measured following re-immersion. Immediately following re-immersion (0–30 min), the ammonia excretion and relative ammonia excretion was greatest for the 5-min emersion gro up. Exposure to extended periods of emersion resulted in a decrease in total nitrogen excretion, notably ammonia excretion, although no significant changes were observed in the non-ammonia component of C. gariepinus .  相似文献   

5.
To investigate the localization of the earliest damage in ischemic and ischemic-reperfused myocardium, anesthetized rats were subjected to coronary occlusion for 15, 30, 45, or 90 min. One-half of the animals in each group had no reperfusion, whereas the other half was reperfused for 14 min. With the use of histological methods, preferentially in the periphery of the area at risk, localized zones were detected that lacked the hypoxia-specific increase in NADH fluorescence. The extent of these areas displaying injured tissue was found to be significantly smaller in the ischemic-nonreperfused hearts than in the ischemic-reperfused organs (15-min ischemia: 0.22 +/- 0.12% vs. 43.0 +/- 5.0%; 30-min ischemia: 5.7 +/- 2.7% vs. 64.6 +/- 2.9%; 45-min ischemia: 5.6 +/- 1.2% vs. 66.0 +/- 7.5%; 90-min ischemia: 39.3 +/- 5.5% vs. 86.7 +/- 1.8% of the area at risk). The results point to a localized initiation of the damage close to the surrounding oxygen-supplied tissue during ischemia and an expansion of this injury by intercellular actions into yet-intact areas upon reperfusion.  相似文献   

6.
Urinary leukotriene E4 excretion in exercise-induced asthma.   总被引:8,自引:0,他引:8  
Recent evidence suggests that the cysteinyl-leukotrienes (LTC4, LTD4, and LTE4) may be important in the pathogenesis of exercise-induced asthma. To evaluate the role of these mediators further, nine asthmatic subjects with exercise-induced bronchoconstriction were studied on two occasions. On visit 1, subjects performed 6 min of treadmill exercise; the mean maximal percent fall in FEV1 was 38.0 +/- 5.3%. On visit 2, maximal bronchoconstriction observed after exercise was matched with aerosolized methacholine. Urine was collected in two 90-min fractions (0-90 and 90-180 min) after challenges and analyzed by high-performance liquid chromatography-radioimmunoassay for LTE4. There were no significant differences in urinary LTE4 excretion between exercise and methacholine challenges for the periods 0-90 min (16.9 +/- 5.4 vs. 20.4 +/- 4.2 ng/mmol urinary creatinine), 90-180 min (24.9 +/- 8.2 vs. 20.1 +/- 5.5), or 0-180 min (21.5 +/- 6.5 vs. 18.8 +/- 4.1). Thus in contrast to allergen-induced bronchoconstriction, there is little evidence for enhanced cysteinyl-leukotriene generation in exercise-induced bronchoconstriction as assessed by urinary LTE4. If local release and subsequent participation of functionally active cysteinyl-leukotrienes in the pathways that ultimately lead to bronchoconstriction after exercise challenge do occur, these are of insufficient magnitude to perturb urinary LTE4 excretion.  相似文献   

7.
We studied the effects of single (45 min) and repeated (ten daily 45-min sessions) microwave exposures (2450-MHz, 1 mW/cm2, average whole-body SAR of 0.6 W/kg, pulsed at 500 pps with pulse width of 2 microseconds) on the concentration and affinity of benzodiazepine receptors in the cerebral cortex, hippocampus, and cerebellum of the rat. We used a receptor-binding assay with 3H-flunitrazepam as ligand. Immediately after a single exposure, an increase in the concentration of receptor was observed in the cerebral cortex, but no significant effect was observed in the hippocampus or cerebellum. No significant change in binding affinity of the receptors was observed in any of the brain-regions studied. In rats subjected to repeated exposures, no significant change in receptor concentration was found in the cerebral cortex immediately after the last exposure, which may indicate an adaptation to repeated exposures. Our data also show that handling and exposure procedures in our experiments did not significantly affect benzodiazepine receptors in the brain. Because benzodiazepine receptors in the brain are responsive to anxiety and stress, our data support the hypothesis that low-intensity microwave irradiation can be a source of stress.  相似文献   

8.
Stress in rats causes acute release of hypothalamic somatostatin (SS) in median eminence (ME) that induces a marked and prolonged suppression of growth hormone (GH) secretion. This was evidenced by immunocytochemistry (ICC) and radioimmunoassay (RIA) in the present study. Adult female rats were decapitated under nonstress or for 30, 60, 120 and 180 min after 15 min leg restraint stress. The rabbit anti-SS was used to detect SS-14 and SS-28 containing cell bodies with ICC in preoptic-anterior hypothalamus (PO-AH). At 30, 60, 120 min after stress, there was marked decrease in the number and size of subsets of SS cell bodies. RIA demonstrated striking increase in SS in ME and significant decrease in GH of the portal blood. The most reproducible changes in cell bodies involved subsets of PeV neurons. Interestingly, these changes were largely reversed by 180 min. The results of the study demonstrate that stress cause acute changes in PO-AH, SS system and it appears that stress affects both SS synthesis and the secretion.  相似文献   

9.
An epileptic seizure is regularly followed by a postictal depression and then by a phase of increased excitability. The time course of these two phases was described for two types of epileptic after-discharges induced by stimulation of the hippocampus and/or the thalamus in acute experiments in rats. Using hippocampal stimulation, an interval of 10 min was necessary for induction of the second self-sustained after-discharge (SSAD) of the same duration as the first one. Significant prolongation of the second SSAD appeared with a 30-min interstimulation interval. The spike-and-wave rhythm induced by stimulation of thalamic nuclei exhibited a shorter refractory phase - up to 5 min - and also the facilitation took place sooner: with 15-min intervals a significant increase in duration of SSAD was recovered. The results are discussed in connection with the kindling model of epilepsy.  相似文献   

10.
The effect of electrical foot shock stress on dopamine and DOPAC levels was examined in the frontal cortex, nucleus accumbens, striatum, substantia nigra and medial basal hypothalamus of rats. DA content did not change after stress in any of the structures analyzed except in the substantia nigra in which DA level decreased by about 35% following 20, 60 or 180 min of stress. DOPAC level did not change in the striatum, medial basal hypothalamus and substantia nigra, but increased in the frontal cortex and in n. accumbens by about 75% and 40%, respectively. Pretreatment with diazepam, but not with pentobarbital, prevented stress-induced increased in DOPAC levels.  相似文献   

11.
The present study was conducted (1) to examine the effect of an acute increase in ambient temperature on the development of porcine day 6 embryos in culture and after transfer to recipient gilts, and (2) to analyze intracellular production of heat shock proteins (hsps). The viability of porcine day 6 embryos following a temporary acute elevation in ambient temperature (at 42°–45.5°C and for 10–180 min) was examined. Synthesis of 70 kDa hsp (hsp 70) and 90 kDa hsp (hsp90) was determined by SDS-PAGE and Western blot analysis in porcine day 6 embryos subjected to heat stresses. Nonheat-stressed embryos were considered as control. Significantly higher numbers of viable nuclei were observed in treatment groups of 42°C-10 min (236.6 ± 71.4; P < 0.05) and 43°C-30 min (276.8 ± 89.4; P < 0.005) compared to control (173.9 ± 53.9). The 42°C-180 min group (158.0 ± 27.1 μm) had a greater increase in diameter after 24 hr in culture following heat stress compared to control (82.5 ± 47.3 μm), while heat stress with 43°C for ≧60 min, 44°–44.5°C for ≧30 min, or 45°-45.5°C for ≧10 min impaired their survival, as assessed by differences in number of viable nuclei. The embryos subjected to heat stresses under the conditions of 42°C-180 min, 43°C-10 min, 43°C-30 min, 44°C-10 min, or 45°C-10 min developed to normal piglets after transfer to recipient gilts. Overall pregnancy rate was 75% (6/8), and farrowing rate 62.5% (5/8). Of heat-stressed embryos transferred, 59% (36/61) developed to normal piglets. Heat-stress conditions of 42°C for 180 min, 43°C for 30 min, 44°C for 10 min, and 45°C for 10 min were determined as critical with respect to the in vitro and in vivo survival of porcine embryos. Porcine day 6 embryos constitutively synthesized hsp70 even without heat stress, while hsp90 was detected only at trace level. Neither hsp70 nor hsp90 levels increased in the embryos subjected to heat stresses. In conclusion, porcine day 6 embryos could continue to develop in vivo or during in vitro culture after exposure to acute and temporary rise in temperature. However, no increase of hsp70 and hsp90 was observed in the heat-stressed porcine embryos, while hsp70 was detected in the nonheat-stressed porcine embryos. The precise mechanism of the thermotolerance was unclear. © 1996 Wiley-Liss, Inc.  相似文献   

12.
5-[76Br]Bromo-3-[[2(S)-azetidinyl]methoxy]pyridine ([76Br]BAP), a novel nicotinic acetylcholine receptor ligand, was synthesized using [76Br]bromide in an oxidative bromodestannylation of the corresponding trimethylstannyl compound. The radiochemical yield was 25%, and the specific radioactivity was on the order of 1 Ci/micromol. The binding properties of [76Br]BAP were characterized in vitro and in vivo in rat brain, and positron emission tomography (PET) experiments were performed in two rhesus monkeys. In association experiments on membranes of the cortex and thalamus, >90% of maximal specific [76Br]BAP binding was obtained after 60 min. The dissociation half-life of [76Br]BAP was 51 +/- 6 min in cortical membranes and 56 +/- 3 min in thalamic membranes. Saturation experiments with [76Br]BAP revealed one population of binding sites with dissociation constant (K(D)) values of 36 +/- 9 and 30 +/- 9 pM in membranes of cortex and thalamus, respectively. The maximal binding site density (Bmax) values were 90 +/- 17 and 207 +/- 33 fmol/mg in membranes of cortex and thalamus, respectively. Scatchard plots were nonlinear, and the Hill coefficients were <1, suggesting the presence of a lower-affinity binding site. In vitro autoradiography studies showed that binding of [76Br]BAP was high in the thalamus and presubiculum, moderate in the cortex and striatum, and low in the cerebellum and hippocampus. A similar pattern of [76Br]BAP accumulation was observed by ex vivo autoradiography. In vivo, binding of [76Br]BAP in whole rat brain was blocked by preinjection of (S)(-)-nicotine (0.3 mg/kg) by 27, 52, 68, and 91% at survival times of 10, 25, 40, 120, and 300 min, respectively. In a preliminary PET study in rhesus monkeys, the highest [76Br]BAP uptake was found in the thalamus, and radioactivity was displaceable by approximately 60% with cytisine and by 50% with (S)(-)-nicotine. The data of this study indicate that [76Br]BAP is a promising radioligand for the characterization of nicotinic acetylcholine receptors in vivo.  相似文献   

13.
胡中庭  王庆平 《生理学报》1992,44(4):355-361
Sokoloff's 2-deoxyglucose (2-DG) autoradiographic technique was used to identify changes of glucose metabolic rate in the rat brain following unilateral stimulation of the head of the caudate nucleus. The results were as follows. The local glucose metabolic rate after noxious stimulation was increased in the somatosensory cortex, cingulate cortex, ventroposterior and parafascicular nucleus of the thalamus, septal area, habenular nucleus, head of caudate nucleus, periaqueductal gray (PAG) and dorsal raphe nucleus (P < 0.05). After stimulating the head of the caudate nucleus, the local glucose metabolic rate of nucleus raphe magnus (rm) and nucleus paragigantocellularis (pgcl) was increased significantly and that of the PAG and dorsal raphe nucleus had a tendency to increase, while stimulation of the head of caudate nucleus could partially abolish the increased glucose metabolic rate in the somatosensory cortex, cingulate cortex, ventroposterior and parafascicular nucleus of the thalamus, septal area and habenular nucleus as induced by noxious stimulation. These results suggest that caudate stimulation is able to depress the activation of some brain structures related to nociception and to activate those related to antinociception. The pgcl, rm, PAG and dorsal raphe nucleus might be the key structures participating in the caudate stimulation produced analgesia.  相似文献   

14.
本文利用[~3H]-2脱氧葡萄糖定量放射自显影方法,研究了电刺激大鼠尾核头部镇痛时中枢神经系统有关结构的葡萄糖代谢率变化。结果表明,痛刺激后,皮层躯体感觉Ⅰ,Ⅱ区、扣带回皮质、丘脑束旁核、丘脑中央中核、丘脑腹后核、尾核、外侧缰核、外侧隔核、中缝背核及中脑导水管周围灰质等结等的葡萄糖代谢率均明显升高(P<0.05)。电刺激大鼠尾核头部后,中缝大核及延髓旁巨细胞网状外侧核的葡萄糖代谢率显著升高,中脑导水管周围灰质和中缝背核的葡萄糖代谢率亦有升高趋势。电刺激大鼠尾核头部可部份降低痛刺激引起的有关结构葡萄糖代谢率升高(如皮层躯体感觉Ⅰ、Ⅱ区、扣带回皮质、丘脑束旁核、丘脑中央中核、丘脑腹后核、外侧隔核及外侧缰核等)。上述结果提示,电刺激大鼠尾核头部镇痛时抑制了与痛感觉有关的结构,同时激活了与镇痛有关的结构。中缝大核、中缝背核、中脑导水管周围灰质及延髓旁巨细胞网状外侧核等结构是实现尾核镇痛的重要环节。  相似文献   

15.
The effect of adrenaline (0.15 i.p./kg b.w.) and of the synthetic glucocorticoid triamcinolone (40 mg i.p./kg b.w.) on cytochrome oxidase activity, the terminal enzyme of the cytochrome system, was studied in homogenates of the cerebral cortex, subcortical formations (including the basal ganglia, the thalamus and the hypothalamus), the medulla oblongata and the liver of 5-day-old and adult rats. Activity in the above mentioned homogenates was measured polarographically 15 and 30 min after administering adrenaline or 48 h after administering triamcinolone. Fifteen minutes after its injection, adrenaline caused a statistically significant drop in cytochrome oxidase activity in the cerebral cortex, subcortical formations and liver of 5-day-old rats. The decrease still persisted 30 min after administration of the hormone, but was intensified only in the liver. In adult rats, on the other hand, a significant increase in activity was observed in the cerebral cortex and liver after adrenaline. Triamcinolone had no effect on cytochrome oxidase activity in any of the given parts of the brain in either young or adult rats. It significantly stimulated cytochrome oxidase activity in the liver of 5-day-old rats, but severely inhibited it in the liver of adult rats.  相似文献   

16.
1. The aim of this study was to compare the effects of acute amphetamine (AMPH) treatment and restraint stress on plasma level of prolactin (PRL) and PRL mRNA expression in the adenohypophysis in Sprague–Dawley and Lewis male rats, the latter known to have a deficient hypothalamo–pituitary-adrenal (HPA) axis.2. Both restraint stress and AMPH treatment (i.p. in a dose of 8 mg/kg of b.w.) were applied 15 or 30 min before termination of the experiment. Plasma PRL and corticosterone (CORT) were determined by radioimmunoassay. PRL mRNA expression was estimated by a dot-blot hybridization.3. Restraint stress and AMPH treatment induced a significant increase in theCORT plasma level, as an indicator of stress response. Compared to Sprague–Dawley rats, the magnitude of CORT increase after both stimuli was significantly lower in Lewis rats.4. Although restraint stress significantly increased the PRL plasma levels in both rat strains, AMPH treatment reduced the PRL levels in both rat strains. However, the changes of PRL plasma levels had another pattern in Lewis rats than in Sprague–Dawley rats. Control plasma PRL levels were significantly higher in Lewis rats, and in this rat strain AMPH treatment for 30 min increased the PRL levels as compared to the values obtained after AMPH treatment for 15 min.5. Expression of PRL mRNA in adenohypophysis by restraint stress and AMPH treatment had a similar pattern. After a 15-min lasting restraint stress, the expression of PRL mRNA was decreased insignificantly in both rat strains. AMPH treatment induced in Sprague–Dawley rats a significant decrease of PRL mRNA after a 15-min interval while after 30 min there was a significant increase. However, in Lewis rats AMPH failed to significantly change PRL mRNA.6. The results from the present study indicate that the mechanisms mediatingthe effects of acute restraint stress and acute AMPH treatment differ in PRL response in Sprague–Dawley and Lewis male rat strains. Differences in the observed responses in Lewis rats could be related to the deficient activity of HPA axis in this rat strain.  相似文献   

17.
Conscious awareness of breathing requires the activation of higher brain centers and is believed to be a neural gated process. The thalamus could be responsible for the gating of respiratory sensory information to the cortex. It was reasoned that if the thalamus is the neural gate, then tracheal obstructions will modulate the gene expression profile of the thalamus. Anesthetized rats were instrumented with an inflatable cuff sutured around the trachea. The cuff was inflated to obstruct 2-4 breaths, then deflated for a minimum of 15 breaths. Obstructions were repeated for 10 min followed by immediate dissection of the medial thalamus. Following the occlusion protocol, 588 genes were found to be altered (P < 0.05; log(2) fold change ≥ 0.4), with 327 genes downregulated and 261 genes upregulated. A significant upregulation of the serotonin HTR2A receptor and significant downregulation of the dopamine DRD1 receptor genes were found. A pathway analysis was performed that targeted serotonin and dopamine receptor pathways. The mitogen-activated protein kinase 1 (MAPK1) gene was significantly downregulated. MAPK1 is an inhibitory regulator of HTR2A and facilitatory regulator for DRD1. Downregulation of MAPK1 may be related to the significant upregulation of HTR2A and downregulation of DRD1, suggesting an interaction in the medial thalamus serotonin-dopamine pathway elicited by airway obstruction. These results demonstrate an immediate change in gene expression in thalamic arousal, fear, anxiety motivation-related serotonin and dopamine receptors in response to airway obstruction. The results support the hypothesis that the thalamus is a component in the respiratory mechanosensory neural pathway.  相似文献   

18.
Aging alters cellular responses to both heat and oxidative stress. Thiol-mediated metabolism of reactive oxygen species (ROS) is believed to be important in aging. To begin to determine the role of thiols in aging and heat stress, we depleted liver glutathione (GSH) by administering l-buthionine sulfoximine (BSO) in young (6 mo) and old (24 mo) Fisher 344 rats before heat stress. Animals were given BSO (4 mmol/kg ip) or saline (1 ml ip) 2 h before heat stress and subsequently heated to a core temperature of 41 degrees C over a 90-min period. Liver tissue was collected before and 0, 30, and 60 min after heat stress. BSO inhibited glutamate cysteine ligase (GCL, the rate-limiting enzyme in GSH synthesis) catalytic activity and resulted in a decline in liver GSH and GSSG that was more pronounced in young compared with old animals. Catalase activity did not change between groups until 60 min after heat stress in young BSO-treated rats. Young animals experienced a substantial and persistent reduction in Cu,Zn-SOD activity with BSO treatment. Mn-SOD activity increased with BSO but declined after heat stress. The differences in thiol depletion observed between young and old animals with BSO treatment may be indicative of age-related differences in GSH compartmentalization that could have an impact on maintenance of redox homeostasis and antioxidant balance immediately after a physiologically relevant stress. The significant changes in antioxidant enzyme activity after GSH depletion suggest that thiol status can influence the regulation of other antioxidant enzymes.  相似文献   

19.
The effect of tail-pinch stress interpolated between the saccharin conditioned stimulus (CS) and the illness-inducing unconditioned stimulus (US) during long-trace taste-aversion conditioning was examined in young- and old adult rats with a two-cylinder (saccharin versus water) test. A 2 x 2 x 4 factorial ANOVA was performed on percent-preference-for-saccharin data, with age (young, old), stress condition (stressed, non-stressed), and CS-US interval (22.5-, 45-, 90-, and 180-min) being the factors under consideration. The ANOVA yielded only significant main effects of stress condition and CS-US interval. These findings indicate that stress weakens the CS-US association as evidenced by a higher percent preference for saccharin in the stressed rats than in non-stressed rats at all CS-US intervals. A comparison of the stressed and non-stressed conditioned rats with pseudo-conditioned controls showed that the non-stressed rats formed strong aversions up to the 45-min CS-US interval whereas the stressed rats showed no conditioning beyond the 22.5 min CS-US interval, indicating that stress decreases the effective CS-US interval. Results were interpreted in terms of time-contraction and an internal biological countdown timer hypothesized to govern processes involved in associative learning over long delays.  相似文献   

20.
In an effort to understand microwave heating better, regional brain and core temperatures of rats exposed to microwave radiation (2450 MHz) or elevated air temperatures were measured in two studies. In general, we have found no substantial evidence for temperature differentials, or "hot spots," in the brain of these animals. In the first study, after a 30-min exposure, no temperature differences between brain regions either after microwave or ambient air exposure were found. However, a highly significant correlation between brain and core temperatures was found and this correlation was the same for both microwave and ambient air heating. In the second study, time-temperature profiles were measured in rats exposed to either 30 mW/cm2 or 36.2 degrees C. In this study, the 30-min exposure period was divided into seven intervals and the change in temperature during each period was analyzed. Only the cortex showed significantly different heating rates between the air heating and microwave heating; however, this difference disappeared after the initial 5 min of exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号