首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetically obese (ob/ob) mouse is a useful model for the study of the diabetogenic action of growth hormone (GH), because treatment of these animals with GH results in decreased responsiveness of their adipose tissue to insulin in vitro. Studies of the mechanisms involved in GH-induced insulin resistance using isolated adipocytes of ob/ob mice have not been possible, however, because of their extreme fragility and the lack of an adequate system for the maintenance of these cells. This study describes a new method for the isolation of ob/ob mouse adipocytes. The isolated cells are stable, viable and metabolically responsive to insulin. In addition, these adipocytes have been maintained in primary culture, in serum-free medium, for up to 3 days. During culture, the cells exhibit large increases in 125I-hGH binding (10-20-fold) and porcine 125I-insulin binding (5-10-fold). The induction of insulin resistance by GH has also been demonstrated in these freshly isolated ob/ob mouse adipocytes. The studies to date indicate that the ob/ob mouse adipocyte system should provide a useful model for detailed studies of the cellular and molecular mechanisms of GH induced insulin resistance.  相似文献   

2.
In this study, we investigate the in vitro effect of zinc addition on guanosine diphosphate (GDP) binding to mitochondria in brown adipocytes of genetically obese (ob/ob) mice. Interscapular brown adipocytes of male mice (obese; lean) at 4 and 12 wk of age were incubated with 0, 50, 100, or 200 μM zinc sulfate. Mitochondria were then isolated and their GDP binding capacities were measured. The GDP-binding capacities of ob/ob mice were lower than lean mice, with or without zinc addition, in both age groups (p<0.05). Zinc addition did not have any significant effect on GDP binding in lean mice. GDP binding decreased with increasing zinc addition in ob/ob mice, and this attenuation was more predominant in 12-wk old ob/ob mice. Moreover, we found that high magnesium addition (5 mM) increased GDP binding in lean mice, but this effect was not significant in ob/ob mice. This study reveals that brown adipose tissue thermogenesis in ob/ob mice could be greatly attenuated by zinc addition, suggesting that zinc may play a regulatory role in obesity.  相似文献   

3.
The effects of zinc supplementation (20 mM ZnCl2 from the drinking water for eight weeks) on plasma glucose and insulin levels, as well as its in vitro effect on lipogenesis and lipolysis in adipocytes were studied in genetically obese (ob/ob) mice and their lean controls (+/?). Zinc supplementation reduced the fasting plasma glucose levels in both obese and lean mice by 21 and 25%, respectively (p < 0.05). Fasting plasma insulin levels were significantly decreased by 42% in obese mice after zinc treatment. In obese mice, zinc supplementation also attenuated the glycemic response by 34% after the glucose load. The insulin-like effect of zinc on lipogenesis in adipocytes was significantly increased by 80% in lean mice. However, the increment of 74% on lipogenesis in obese mice was observed only when the zinc plus insulin treatment was given. This study reveals that zinc supplementation alleviated the hyperglycemia of ob/ob mice, which may be related to its effect on the enhancement of insulin activity.  相似文献   

4.
5.
Genetically obese (ob/ob) mice were employed for the study of the effect of metformin on activity and expression of nitric oxide synthase (NOS ) in vitro and in vivo. For in vitro analysis, mouse liver extracts were used. For the in vivo study, (ob/ob) and their control litter mates (ob/c) mice were injected with specified amounts of metformin and the expression of NOS in the adipose tissue and hypothalamus was measured by Western blotting. Results show that metformin exhibited a biphasic effect on NOS activity in vitro. Expression of metformin was differentially altered in the hypothalamus and adipose tissues of the normal and ob/ob animals that were treated with metformin. Further, a significant decrease in food intake occurred in the (ob/ob) mice that received metformin. This decrease in food intake was not accompanied by changes in serum glucose. At inhibitory concentrations, hypothalamic NOS expression changes differentially in normal and ob/ob mice. In normal mice, metformin stimulated NOS expression, while in ob/ob mice there was an inhibition. NOS expression increased in brown adipose tissue of metformin treated control mice, while no such increase was observed in ob/ob mice. No effect of metformin was observed in white adipose tissue of control or obese mice. Thus, metformin may produce anorectic effects through modulation of NOS.  相似文献   

6.
7.
1. Fatty acid synthesis, measured in the perfused liver of genetically obese (ob/ob) mice with 3H2O or [14C]actate, did not show the inhibition by [8-arginine]vasopressin (antidiuretic hormone) that is observed in livers from normal mice. 2. Hepatic glycogen breakdown in obese mice was stimuulated by vasopressin, but not as extensively as in lean mice. 3. If obese mice received a restricted amount of food, then fatty acid synthesis still did not respond to vasopressin, but glycogen breakdown was fully stimulated. 4. Cholesterol synthesis was not inhibited by vasopressin in livers from obese mice. 5. Vasopressin inhibited fatty acid synthesis in intact lean mice, but not in obese animals. 6. These results suggest that genetic obesity could be due to an inborn error within the mechanisms (other than adenylate cyclase) which mediate responses to extracellular effectors.  相似文献   

8.
A quantitative method for circulating islet cell surface antibodies (ICSA), based on the binding of125I-protein A to insulin-producing RINm5F cells, was used to evaluate ICSA in plasma of 4- to 40-week-old Aston obese hyperglycaemic (ob/ob) mice and normal control (+/+) mice. RINm5F cells bound 2502±l196 c.p.m.125I-protein A per l05 cells (mean±S.D.,n=54) after incubation with +/+ plasma. ICSA positive plasma (defined as125I-protein A binding, mean±2 S.D. of +/+ plasma) was detected in 3 out of 54+/+ mice and 3 out of 54 ob/ob mice. ICSA were not observed in ob/ob mice before the onset of diabetes (7 weeks of age), but were detected at 9, 20 and 40 weeks. At 20 weeks125I-protein A binding produced by ob/ob plasma was 35% greater than +/+ plasma (P<0.05). The low occurrence of ICSA in ob/ob mice (6%) suggests that factors other than ICSA are responsible for B-cell dysfunction and eventual islet degeneration observed in Aston ob/ob mice.  相似文献   

9.
Isolated mitochondria from liver or brown adipose tissue of obese ob/ob mice demonstrated increased rates of Ca2+ uptake and release compared with those of lean mice. This enhanced transport activity was not found in mitochondria from kidney or skeletal muscle. Respiration-induced membrane potential was the same in mitochondria from lean and ob/ob mice. It is therefore concluded that the increased Ca2+ uptake rates reflect an activation of the Ca2+ uniporter rather than a change in the electrophoretic driving force. As mitochondria from pre-obese ob/ob mice did not show elevated rates of Ca2+ transport, the activated transport in the obese animals was thus a consequence of the state of obesity rather than being a direct effect of the ob/ob genotype. It is suggested that the enhanced activity of the Ca2+-transport pathways in liver and brown adipose tissue may alter metabolic functions in these tissues by modifying cytoplasmic or intramitochondrial Ca2+ concentrations.  相似文献   

10.
S W Mercer  P Trayhurn 《FEBS letters》1986,195(1-2):12-16
Genetically obese (ob/ob) mice develop a marked insulin resistance in brown adipose tissue soon after weaning, and this is paralleled by a fall in the acute activation of the mitochondrial proton conductance pathway in the tissue on cold exposure. Treatment of ob/ob mice with ciglitazone, a new oral hypoglycaemic, led to a restoration of insulin sensitivity in brown adipose tissue. The amelioration of insulin resistance was accompanied by a normalization of the acute, cold-induced increase in mitochondrial GDP binding. These results support the hypothesis that the development of insulin resistance in brown adipose tissue is an important factor in the impaired thermogenic responsiveness of obese mice.  相似文献   

11.
G Y Ma  C D Gove    D A Hems 《The Biochemical journal》1978,174(3):761-768
1. Rapid effects of hormones on glycogen metabolism and fatty acid synthesis in the perfused liver of the mouse were studied. 2. In perfusions lasting 2h, of livers from normal mice, glucagon in successive doses, each producing concentrations of 10(-10) or 10(-9)M, inhibited fatty acid and cholesterol synthesis. In perfusions lasting 40--50 min, in which medium was not recycled, inhibition of fatty acid synthesis was only observed with glucagon at concentrations greater than 10(-9)M. This concentration was about two orders of magnitude higher than that required for the stimulation of glycogen breakdown. Glucagon did not inhibit the activity of acetyl-CoA carboxylase, assayed 10 or 20 min after addition of glucagon (10(-9) or 10(-10)M). It is proposed that the action of glucagon on hepatic fatty acid biosynthesis could be secondary in time to depletion of glycogen. Insulin prevented the effect of glucagon (10(-10)M) on glycogenolysis, but not that of vasopressin. 3. Livers of genetically obese (ob/ob) mice did not show significant inhibition of lipid biosynthesis in response to glucagon, although there was normal acceleration of glycogen breakdown. This resistance to glucagon action was not reversed by food deprivation. Livers of obese mice exhibited resistance to the counteraction by insulin of glucagon-stimulated glycogenolysis, which was reversible by partial food deprivation.  相似文献   

12.
1. Plasma glucose and insulin responses to bombesin were examined in 12-15-week-old 12 hr fasted lean and genetically obese hyperglycaemic (ob/ob) mice. 2. Bombesin (1 mg/kg ip) produced a prompt but transient increase of plasma insulin in lean mice (maximum increase of 50% at 5 min), and a more slowly generated but protracted insulin response in ob/ob mice (maximum increase of 80% at 30 min). Plasma glucose concentrations of both groups of mice were increased by bombesin (maximum increases of 40 and 48% respectively in lean and ob/ob mice at 15 min). 3. When administered with glucose (2 g/kg ip), bombesin (1 mg/kg ip) rapidly increased insulin concentrations of lean and ob/ob mice (maximum increases of 39 and 63% respectively at 5 min). Bombesin did not significantly alter the rise of plasma glucose after exogenous glucose administration to these mice. 4. The results indicate that bombesin exerts an insulin-releasing effect in lean and ob/ob mice. The greater insulin-releasing effect in ob/ob mice renders bombesin a possible component of the overactive entero-insular axis in the ob/ob mutant, especially if it acts within the islets as a neurotransmitter or paracrine agent.  相似文献   

13.
This study evaluates the role of adrenal hormones in the development of hyperinsulinaemia and impaired glucose homeostasis in genetically obese hyperglycaemic C57BL/6J ob/ob mice. Lean (+/?) and obese mice were bilaterally adrenalectomised or sham operated at 5 weeks of age, and glucose tolerance was examined after 7 and 14 days. Adrenalectomy temporarily reduced food intake and body weight gain in lean mice, and improved glucose tolerance without a significant change in plasma insulin concentrations at both intervals studied. In obese mice adrenalectomy permanently reduced body weight gain and food intake to values comparable with lean mice. Glucose tolerance was improved in adrenalectomised obese mice at both intervals studied, resulting in plasma glucose concentrations similar to adrenalectomised lean mice. Plasma insulin concentrations during the tolerance tests were reduced in adrenalectomised obese mice, but remained higher than in lean mice. Adrenalectomy did not improve the poor insulin response to parenteral glucose in obese mice. The results indicate that adrenal hormones play an important role in the development of glucose intolerance and contribute to the hyperinsulinaemia in obese (ob/ob) mice, in part by promoting hyperphagia.  相似文献   

14.
The interactive relationship between Cu deficiency and depressed synthesis of certain neurotransmitters has been recognized. To investigate the effects of dietary Cu supplementation on the catecholamine levels in genetically obese mice, male obese (ob/ob) mice and their lean (+/?) counterparts were administered either a control diet (4.0 mg/kg) or a Cu-supplemented diet (50 mg/kg) for 4 wk. The ob/ob mice that were fed a control diet showed lower liver and higher plasma levels of Cu. Depressed levels of plasma and brain catecholamines were also found in ob/ob mice that were fed the control diet. The ob/ob mice that received a Cu-supplemented diet showed significant increases in the levels of catecholamine in the plasma and brain. This study showed that catecholamine levels in ob/ob mice can be increased by dietary Cu supplementation. However, the interaction between Cu and sympathetic nervous activity in obesity was not elucidated in this study.  相似文献   

15.
To investigate the satiety defect of hyperphagic genetically obese (ob/ob) mice, acute feeding responses to three differently acting anorectic agents were determined in 7-9 weeks old lean (+/+) and ob/ob mice habituated to a restricted (0900-1230 hr) daily feeding routine. Fenfluramine (10 mg/kg), cholecystokinin (100 U/kg) and neurotensin (500 micrograms/kg), administered intraperitoneally 15 min before feeding, each produced a rapid but transient suppression of food consumption in ob/ob mice, similar to lean controls. The results suggest that neural satiety mechanisms triggered via serotoninergic pathways (fenfluramine), vagal afferents (cholecystokinin) and the hypothalamic paraventricular nucleus (neurotensin) are functional in ob/ob mice, supporting the view that the satiety defect of ob/ob mice resides outside of the nervous system.  相似文献   

16.
The genetically, seasonally, and diet-induced obese, glucose-intolerant states in rodents, including ob/ob mice, have each been associated with elevated hypothalamic levels of norepinephrine (NE). With the use of quantitative autoradiography on brain slices of 6-wk-old obese (ob/ob) and lean mice, the adrenergic receptor populations in several hypothalamic nuclei were examined. The binding of [(125)I]iodocyanopindolol to beta(1)- and beta(2)-adrenergic receptors in ob/ob mice was significantly increased in the paraventricular hypothalamic nucleus (PVN) by 30 and 38%, in the ventromedial hypothalamus (VMH) by 23 and 72%, and in the lateral hypothalamus (LH) by 10 and 15%, respectively, relative to lean controls. The binding of [(125)I]iodo-4-hydroxyphenyl-ethyl-aminomethyl-tetralone to alpha(1)-adrenergic receptors was also significantly increased in the PVN (26%), VMH (67%), and LH (21%) of ob/ob mice. In contrast, the binding of [(125)I]paraiodoclonidine to alpha(2)-adrenergic receptors in ob/ob mice was significantly decreased in the VMH (38%) and the dorsomedial hypothalamus (17%) relative to lean controls. This decrease was evident in the alpha(2A)- but not the alpha(2BC)-receptor subtype. Scatchard analysis confirmed this decreased density of alpha(2)-receptors in ob/ob mice. Together with earlier studies, these changes in hypothalamic adrenergic receptors support a role for increased hypothalamic NE activity in the development of the metabolic syndrome of ob/ob mice.  相似文献   

17.
18.
Hepatic delta 6-desaturase activity is primarily located in the mitochondrial fraction in mice. Both delta 6- and delta 5-desaturase activities are increased in the liver of young (6-week-old) obese mice. The increase in hepatic delta 6-desaturase activity in obese mice does not occur until weaning. Neither restriction of food intake nor hyperinsulinaemia normalize hepatic delta 6-desaturase activity of obese mice. Both cold acclimation and tri-iodothyronine (30 micrograms/day per kg) decreased hepatic delta 6-desaturase activity of obese mice to levels observed in lean mice, whereas the increase in activity in obese mice was still maintained after the induction of hypothyroidism.  相似文献   

19.
We have examined the protein content and gene expression of three superoxide dismutase (SOD) isoenzymes in eight tissues from obese ob/ob mice, particularly placing the focus on extracellular-SOD (EC-SOD) in the white adipose tissue (WAT). Obesity significantly increased EC-SOD level in liver, kidney, testis, gastrocnemius muscle, WAT, brown adipose tissue (BAT), and plasma, but significantly decreased the isoenzyme level in lung. Tumor necrosis factor-α and interleukin-1β contents in WAT were significantly higher in obese mice than in lean control mice. Immunohistochemically, both WAT and BAT from obese mice could be stained deeply with anti-mouse EC-SOD antibody compared with those from lean mice. Each primary culture per se almost time-dependently enhanced EC-SOD production, and overtly expressed its mRNA. The loss of heparin-binding affinity of EC-SOD type C with high affinity for heparin occurred in kidney of obese mice. These results suggest that the physiological importance of this SOD isoenzyme in WAT may be a compensatory adaptation to oxidative stress.  相似文献   

20.
We have examined the protein content and gene expression of three superoxide dismutase (SOD) isoenzymes in eight tissues from obese ob/ob mice, particularly placing the focus on extracellular-SOD (EC-SOD) in the white adipose tissue (WAT). Obesity significantly increased EC-SOD level in liver, kidney, testis, gastrocnemius muscle, WAT, brown adipose tissue (BAT), and plasma, but significantly decreased the isoenzyme level in lung. Tumor necrosis factor-alpha and interleukin-1beta contents in WAT were significantly higher in obese mice than in lean control mice. Immunohistochemically, both WAT and BAT from obese mice could be stained deeply with anti-mouse EC-SOD antibody compared with those from lean mice. Each primary culture per se almost time-dependently enhanced EC-SOD production, and overtly expressed its mRNA. The loss of heparin-binding affinity of EC-SOD type C with high affinity for heparin occurred in kidney of obese mice. These results suggest that the physiological importance of this SOD isoenzyme in WAT may be a compensatory adaptation to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号