首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Summary Thirty-eight accessions from Zea and 20 accessions from related genera were probed for the presence of Bs1, a retrotransposon originally found in maize. All maize and teosinte plants tested show the presence of Bs1 in one to five densely hybridizing bands. The mean copy numbers of Bs1 elements among the maize and teosinte accessions were similar: 2.92 and 3.25, respectively, with no large differences between any subgroups. Most exotic maize samples exhibited two common bands of 7.8 kb and 4.7 kb. Section Zea teosintes (but not teosintes of section Luxuriantes) also show the presence of a common band of the same size as the smaller common band in maize. At reduced stringency, Tripsacum dactyloides exhibited a single hybridizing band at 6.9 kb. Results argue for the evolution of maize from a mexicana or parviglumis teosinte, and the evolution of the Bs1 element within the tribe Andropogoneae. Additionally, recombinant inbred lines were probed for the presence of Bs1, in order to map the chromosomal locations of Bs1 elements in four different maize lines. Two of the recombinant inbred parental lines had an element (Bs1-F) on chromosome 5, while the other two lines had an element (Bs1-S) on chromosome 8. Restriction site polymorphisms have apparently arisen in the vicinity of Bs1-S since its insertion. Segregation analysis of other lines was also performed; the data indicate that Bs1 has the distribution expected of a transposable element, different locations in different lines, and not that of a fixed gene locus. However, the common bands in the Zea mays lines and the recombinant inbred data imply that Bs1 is not highly mobile.  相似文献   

2.
To study the transferability of rice (Oryza sativa L.) genome data, we used amplified consensus genetic markers to analyze the phylogenetic relationships among several species and genera in Gramineae. Ten accessions representing five grass genera (Oryza, Zea, Setaria, Triticum, and Phyllostachys) were used. According to the genetic distances, a cluster tree was constructed. The relationships among the five genera could be simply described as ((Oryza + (Zea + Setaria)) + Triticum) + Phyllostachys. The results suggest that the genetic distance between rice and maize (Z. mays L.) or rice and millet (Setaria italica L.) is closer than that between rice and wheat (Triticum aestivum L) or rice and bamboo.  相似文献   

3.
Morphological and anatomical factors such as aerenchyma formation in roots and the development of adventitious roots are considered to be amongst the most important developmental characteristics affecting flooding tolerance. In this study we investigated the lengths of adventitious roots and their capacity to form aerenchyma in three- and four-week-old seedlings of two maize (Zea mays ssp. mays, Linn.) inbred accessions, B64 and Na4, and one teosinte, Z. nicaraguensis Iltis & Benz (Poaceae), with and without a flooding treatment. Three weeks after sowing and following a seven day flooding treatment, both maize and teosinte seedlings formed aerenchyma in the cortex of the adventitious roots of the first three nodes. The degree of aerenchyma formation in the three genotypes increased with a second week of flooding treatment. In drained soil, the two maize accessions failed to form aerenchyma. In Z. nicaraguensis, aerenchyma developed in roots located at the first two nodes three weeks after sowing. In the fourth week, aerenchyma developed in roots of the third node, with a subsequent increase in aerenchyma in the second node roots. In a second experiment, we investigated the capacity of aerenchyma to develop in drained soil. An additional three teosinte species and 15 maize inbred lines, among them a set of flooding-tolerant maize lines, were evaluated. Evaluations indicate that accessions of Z. luxurians (Durieu & Asch. Bird) and two maize inbreds, B55 and Mo20W, form aerenchyma when not flooded. These materials may be useful genetic resources for the development of flooding-tolerant maize accessions.  相似文献   

4.
The phylogenetic relationships of the genus Sorghum and related genera were studied by sequencing the nuclear ribosomal DNA (rDNA) internal transcribed spacer region (ITS). DNA was extracted from 15 Sorghum accessions, including one accession from each of the sections Chaetosorghum and Heterosorghum, four accessions from Parasorghum, two accessions from Stiposorghum, and seven representatives from three species of the section Sorghum (one accession from each of S. propinquum and S. halepense, and five races of S. bicolor). The maize (Zea mays) line, H95, and an accession from Cleistachne sorghoides were also included in the study. Variable nucleotides were used to construct a strict consensus phylogenetic tree. The analyses indicate that S. propinquum, S. halepense and S. bicolor subsp. arundinaceum race aethiopicum may be the closest wild relatives of cultivated sorghum; Sorghum nitidum may be the closest 2n=10 relative to S. bicolor, the sections Chaetosorghum and Heterosorghum appear closely related to each other and more closely related to the section Sorghum than Parasorghum; and the section Parasorghum is not monophyletic. The results also indicate that the genus Sorghum is a very ancient and diverse group.This research was partially supported by a Third Country Scholarship from Pioneer Hi-Bred International Incorporated Contribution 94-182-J from Kansas Agricultural Experiment Station  相似文献   

5.
Waxy maize was first reported in China in 1909 and is mainly used in food production in Asia. The evidence for strong domestication selection in the Waxy locus of rice and a selective sweep around its genomic region make us to wonder whether there has been similar selection in Waxy in glutinous maize. To address this issue, DNA sequences of Waxy, three flanking genes and an unlinked gene (Adh1) of 30 accessions sampled from Chinese waxy maize accessions, including representative landraces and inbred lines, were determined in this study. Sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed in the Waxy locus in Chinese waxy maize but not in nonglutinous maize; comparison with the unlinked gene confirmed that this pattern was different to Waxy. Sequence analysis across a 143 kb genomic segment centered on the Waxy locus revealed patterns consistent with a selective sweep in the upstream region of Waxy. The selective sweep detected based on current limited genomic sequences exceeded over 50 kb, indicating strong selection in this or a bigger region. However, No sweep effect was detected in the repetitive downstream region of Waxy. Phylogenetic analysis indicated that Chinese waxy maize was domesticated from the cultivated flint maize (Zea mays ssp. mays) that was introduced from the new world. At least two independent deletions in exon 7 (30 bp) and 10 (15 bp) were identified in the Chinese accessions respectively. These findings demonstrate a similar pattern of domestication selection in the Waxy genomic region in both glutinous maize and rice, suggesting that this pattern in the rise of glutinous phenotype is likely in other cereal crops.  相似文献   

6.
The species Fusarium verticillioides (= F. moniliforme) is often found in maize seeds, constituting an important source of inoculum in the field. Fusarium spp., associated with symptomatic and asymptomatic plants, may be a primary causal agent of disease, a secondary invader or an endophyte. In the present work, endophytic fungi were isolated from two populations of Zea mays (BR-105 and BR-106) and their respective inbred lines. Within different inbred lines of maize, Fusarium was found at a frequency of 0 to 100% relative to the number of total isolated fungi. The frequency with which the genus occurred was practically the same in the two field sites (around 60%). Twenty-one F. verticillioides strains were analysed using the random amplified polymorphic DNA (RAPD) technique, employing 10 random primers. Variability analysis of endophytic isolates via RAPD showed genome polymorphism taxa of species around 60%. Endophytic isolates were clustered by their sites of origin. RAPD analysis clustered the endophytic isolates by their maize inbred lines hosts (Mil-01 to Mil-06), whereas at site A they clustered into two major groups related to the maize gene pool (BR-105 or BR-106 population). All strains isolated from seeds collected in Site A, except strains L9 and L10, were sub-grouped according to maize inbred lines. The analysis showed a discrete sub-grouping at site B. Results obtained here could be explained by a co-evolution process involving endophytic isolates of F. verticillioides and maize inbred lines.  相似文献   

7.
Transformation technology as a research or breeding tool to improve maize is routinely used in most industrial and some specialized public laboratories. However, transformation of many inbred lines remains a challenging task, especially when using Agrobacterium tumefaciens as the delivery method. Here we report success in generating transgenic plants and progeny from three maize inbred lines using an Agrobacterium-mediated standard binary vector system to target maize immature embryos. Eleven maize inbred lines were pre-screened for transformation frequency using N6 salts. A subset of three maize inbred lines was then systematically evaluated for frequency of post-infection embryogenic callus induction and transformation on four media regimes: N6 or MS salts in each of two distinct media backgrounds. Transgenic plants recovered from inbred lines B104, B114, and Ky21 were analyzed for transgene integration, expression, and transmission. Average transformation frequencies of 6.4% (for B104), 2.8% (for B114), and 8% (for Ky21) were achieved using MS salts. Availability of Agrobacterium-mediated maize inbred line transformation will improve future opportunities for maize genetic and functional genomic studies.  相似文献   

8.
Summary The nuclear DNA amount and the heterochromatin content in species and hybrids of Zea were analyzed in telophase nuclei (2C) of the root apex of germinating seeds. The results revealed significant differences among taxa and also among lines and races of maize. The hybrids between Z. mays ssp. mays x Z. mays ssp. mexicana (2n=20), Z. diploperennis x Z. perennis (2n=30), and Z. diploperennis x Z.perennis (2n=40) showed DNA content intermediate between that of the parents. The number of chromosomal C-bands and the proportion of the genome comprising C-band heterochromatin were positively related to genome size. In the different lines and races of maize studied, there was a positive correlation between genome size and the interval from germination to flowering. Octoploid Z. perennis (2n=40) showed the smallest DNA content per basic genome and the smallest heterochromatic blocks, suggesting that the DNA lost by this species consisted mainly of repetitive sequences. Considering that the extant species of Zea are tetraploid (2n=20) and octoploid (2n=40) and that the ancestral diploids are extinct, any consideration of the direction (increase or decrease) of the DNA change would be entirely speculative. The extant species could be the product of natural and artificial selection acting on different genotypic and nucleotypical constitutions at the diploid and/or tetraploid levels.  相似文献   

9.
Summary The two components of theBg-rbg transposable element system of maize have been cloned. TheBg element, isolated from the mutable allelewx-m32 :: Bg is inserted in the intron of theWaxy (Wx) gene between exons 12 and 13. The length of the element is of 4869 bp.Bg has 5 by terminal inverted repeats, and generates upon insertion an 8 by direct duplication of the target sequence. Both ends of theBg element contain a 76 by direct repeat adjacent to the terminal inverted repeats. The hexamer motif TATCGkC G is here repeated several times in direct or inverse orientation. Therbg element was isolated from the mutable alleleo2m(r) where it is located in the promoter region of theOpaque-2 (O2) gene.rbg is approximately 4.5 kb in length, has terminal inverted repeats identical to those of theBg element, and is also flanked by an 8 by direct duplication at the target site. LikeBg, rbg carries the 76 by direct repeats. Restriction enzyme analysis reveals that, compared toBg, the receptor element is distinguishable by small deletion and insertion events. Sequence data indicate that not more than 75% homology exists at the DNA level between therbg element and the autonomousBg element.  相似文献   

10.
Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection.  相似文献   

11.
Restriction site variation in the zea chloroplast genome   总被引:4,自引:0,他引:4       下载免费PDF全文
Doebley J  Renfroe W  Blanton A 《Genetics》1987,117(1):139-147
Nineteen accessions selected from the four species and three subspecies of the genus Zea and one accession from the related genus Tripsacum were surveyed for variation with 21 restriction endonucleases. In all, 580 restriction sites were assayed in each chloroplast (cp)DNA, this representing 2.2% of the genome. Twenty-four of the 580 sites were variable in one or more of the cpDNAs. The number of nucleotide substitutions per site (p) between Zea and Tripsacum (0.0056) approximates that between other closely related angiosperm genera. The range in values of p among Zea species (0.0003-0.0024) is on the lower end of the range reported for other angiosperm genera. Analysis of the distribution of restriction site mutations throughout the genome indicated that the inverted repeat evolves more slowly than either the small or large unique sequence regions. Parsimony phylogenetic analysis of the restriction site data produced a tree consistent with isoenzymatic and morphological measures of affinity among the species. Chloroplast DNA analysis was not useful in discriminating the subspecies within Zea mays. The lack of any detectable differences between the cpDNA of maize (Z. mays subsp. mays) and some teosintes (Z. mays subsps. mexicana and parviglumis ) is consistent with the hypothesis that maize is a domesticated form of teosinte. Comparison of the degree of sequence divergence for Z. mays cpDNA and the Adh1 locus suggests the latter may be evolving at 10 times the rate of the former. Comparison of rates of sequence evolution for the mitochondrial and chloroplast genomes was inconclusive and could not clarify whether these two genomes have dissimilar rates of sequence evolution.  相似文献   

12.
In order to enhance the resistance to pests, transgenic maize (Zea mays L.) plants from elite inbred lines containing the gene encoding snowdrop lectin (Galanthus nivalis L. agglutinin; GNA) under control of a phloem-specific promoter were generated through theAgrobacterium tumefaciens- mediated method. The toxicity of GNA-expressing plants to aphids has also been studied. The independently derived plants were subjected to molecular analyses. Polymerase chain reaction (PCR) and Southern blot analyses confirmed that thegna gene was integrated into maize genome and inherited to the following generations. The typical Mendelian patterns of inheritance occurred in most cases. The level of GNA expression at 0.13%-0.28% of total soluble protein was observed in different transgenic plants. The progeny of nine GNA-expressing independent transformants that were derived separately from the elite inbred lines DH4866, DH9942, and 8902, were selected for examination of resistance to aphids. These plants synthesized GNA at levels above 0.22% total soluble protein, and enhanced resistance to aphids was demonstrated by exposing the plants to corn leaf aphid (Rhopalosiphum maidis Fitch) under greenhouse conditions. The nymph production was significantly reduced by 46.9% on GNA-expressing plants. Field evaluation of the transgenic plants supported the results from the inoculation trial. After a series of artificial self-crosses, some homozygous transgenic maize lines expressing GNA were obtained. In the present study, we have obtained new insect-resistant maize material for further breeding work.  相似文献   

13.
Summary Strain identification in Zea mays by restriction fragment length polymorphism should be feasible due to the high degree of polymorphism found at many loci. The polymorphism in maize is apparently higher than that currently known for any other organism. Five randomly selected maize inbred lines were examined by Southern filter hybridization with probes of cloned low copy sequences. Typically, several alleles could be distinguished among the inbred lines with any one probe and an appropriately selected restriction enzyme. Despite considerable polymorphism at the DNA level, 16 RFLP markers in three inbred lines of maize were examined for six to 11 generations and found be stable. Mapping of RFLP markers in maize can be accelerated by the use of B-A translocation stocks, which enable localization of a marker to chromosome arm in one generation. The use of recombinant inbred lines in further refinement of the map is discussed.  相似文献   

14.
To evaluate the performance of microsatellites or simple sequence repeats (SSRs) for evolutionary studies in Zea, 46 microsatellite loci originally derived from maize were applied to diverse arrays of populations that represent all the diploid species of Zea and 101 maize inbreds. Although null phenotypes and amplification of more than two alleles per plant were observed at modest rates, no practical obstacle was encountered for applying maize microsatellites to other Zea species. Sequencing of microsatellite alleles revealed complex patterns of mutation including frequent indels in the regions flanking microsatellite repeats. In one case, all variation at a microsatellite locus came from indels in the flanking region rather than in the repeat motif. Maize microsatellites show great variability within populations and provide a reliable means to measure intraspecific variation. Phylogeographic relationships of Zea populations were successfully reconstructed with good resolution using a genetic distance based on the infinite allele model, indicating that microsatellite loci are useful in evolutionary studies in Zea. Microsatellite loci show a principal division between tropical and temperate inbred lines, and group inbreds within these two broad germplasm groups in a manner that is largely consistent with their known pedigrees. Received: 10 February 2001 / Accepted: 21 May 2001  相似文献   

15.
Summary The sequences of the genes coding for a hydroxyproline-rich glycoprotein from two varieties of maize (Zea mays, Ac1503 and W22), a teosinte (Zea diploperennis) and sorghum (Sorghum vulgare) have been obtained and compared. Distinct patterns of variability have been observed along their sequences. The 500 by region immediately upstream of the TATA box is highly conserved in theZea species and contains stretches of sequences also found in the sorghum gene. Further upstream, significant rearrangements are observed, even between the two maize varieties. These observations allow definition of a 5 region, which is common to the four genes and is probably essential for their expression. The 3 end shows variability, mostly due to small duplications and single nucleotide substitutions. There is an intron present in this region showing a high degree of sequence conservation among the four genes analyzed. The coding region is the most divergent, but variability arises from duplications of fragments coding for similar protein blocks and from single nucleotide substitutions. These results indicate that a number of distinct mechanisms (probably point mutation, transposon insertion and excision, homologous recombination and unequal crossing-over) are active in the production of sequence variability in maize and related species. They are revealed in different parts of the gene, probably as the result of the different types of functional constraints acting on them, and of the specific nature of the sequence in each region.The sequences reported in this paper have been deposited in the EMBL/GenBank Database (Bolt, Beranek, and Newman Laboratories, Cambridge, Mass., and EMBL, Heidelberg), accession nos. M36635 (maize Ac1503), X63134 (maize W22), X64173 (teosinte) and X56010 (sorghum)  相似文献   

16.
Phosphoglucomutase (PGM; EC 2.7.5.1) isozyme variants were studied in a large number of inbred lines, crosses, and races of maize (Zea mays L.). Patterns of Mendelian inheritance demonstrated for PGM isozyme variants indicated that they are encoded by nuclear genes. Two unlinked loci, Pgm1 and Pgm2, located on the long arm of chromosome 1 and the short arm of chromosome 5, respectively, specify the observed electrophoretic variation on starch gels. No intra- or interlocus hybrid bands were found, suggesting that each isozyme band consists of a single polypeptide. PGM isozymes were present in all plant parts studied and the activity specified by both loci appears to reside in the cytoplasm. In studies of 520 racial collections of maize from Latin America, a single allele at each locus predominated in most collections. Likewise, the same alleles predominated in a set of 406 inbred lines of maize from the United States and Canada.This work was supported in part by NIH Research Grant GM 11546.Paper No. 8496 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina.  相似文献   

17.
Genome structure exhibits remarkable plasticity within Zea mays. To examine how haplotype structure has evolved within the Andropogoneae tribe, we have analyzed the bz gene‐rich region of maize (Zea mays), the Zea teosintes mays ssp. mexicana, luxurians and diploperennis, Tripsacum dactyloides, Coix lacryma‐jobi and Sorghum propinquum. We sequenced and annotated BAC clones from these species and re‐annotated the orthologous Sorghum bicolor region. Gene colinearity in the region is well conserved within the genus Zea. However, the orthologous regions of Coix and Sorghum exhibited several micro‐rearrangements relative to Zea, including addition, truncation and deletion of genes. The stc1 gene, involved in the production of a terpenoid insect defense signal, is evolving particularly fast, and its progressive disappearance from some species is occurring by microhomology‐mediated recombination. LTR retrotransposons are the main contributors to the dynamic evolution of the bz region. Common transposon insertion sites occur among haplotypes from different Zea mays sub‐species, but not outside the species. As in Zea, different patterns of interspersion between genes and retrotransposons are observed in Sorghum. We estimate that the mean divergence times between maize and Tripsacum, Coix and Sorghum are 8.5, 12.1 and 12.4 million years ago, respectively, and that between Coix and Sorghum is 9.3 million years ago. A comparison of the bz orthologous regions of Zea, Sorghum and Coix with those of Brachypodium, Setaria and Oryza allows us to infer how the region has evolved by addition and deletion of genes in the approximately 50 million years since these genera diverged from a common progenitor.  相似文献   

18.
Summary Thirty inbred lines representing a wide range of early-maturing European elite germ plasm of maize (Zea mays L.) were assayed for RFLPs using 203 clone-enzyme combinations (106 DNA clones with restriction enzymes EcoR1 and HindIII). The genetic materials comprised 14 flint, 12 dent, and 4 lines of miscellaneous origin. Objectives were to (1) characterize the genetic diversity for RFLPs in these materials, (2) compare the level of genetic diversity found within and between the flint and the dent heterotic groups, and (3) examine the usefulness of RFLPs for assigning inbreds to heterotic groups. All but two DNA clones yielded polymorphism with at least one restriction enzyme. A total of 82 and 121 clone-enzyme combinations gave single-banded and multiple-banded RFLP patterns, respectively, with an average of 3.9 and 7.7 RFLP patterns per clone-enzyme combination across all 30 inbreds, respectively. Genetic similarity (GS) between lines, estimated from RFLP data as Dice's similarity coefficient, showed considerable variation (0.32 to 0.58) among unrelated inbreds. The mean GS for line combinations of type flint x dent (0.41) was significantly smaller than for unrelated flint lines (0.46) and dent lines (0.46), but there was considerable variation in GS estimates of individual line combinations within each group. Cluster and principal coordinate analyses based on GS values resulted in separate groupings of flint and dent lines in accordance with phylogenetic information. Positioning of lines of miscellaneous origin was generally consistent with expectations based on known breeding behavior and pedigrees. Results from this study corroborated that RFLP data can be used for assigning inbreds to heterotic groups and revealing pedigree relationships among inbreds.  相似文献   

19.
An efficient transformation system was developed for maize (Zea mays L.) elite inbred lines using Agrobacterium-mediated gene transfer by identifying important factors that affected transformation efficiency. The hypervirulent Agrobacterium tumefaciens strain EHA105 proved to be better than octopine LBA4404 and nopaline GV3101. Improved transformation efficiencies were obtained when immature embryos were inocubated with Agrobacterium suspension cells (A600 = 0.8) for 20 min in the presence of 0.1% (v/v) of a surfactant (Tween20) in the infection medium. Optimized cocultivation was performed in the acidic medium (pH5.4) at 22 °C in the dark for 3 days. Using the optimized system, we obtained 42 morphologically normal, independent transgenic plants in four maize elite inbred lines representing different genetic backgrounds. Most of them (about 85%) are fertile. The transformation frequency (the number of independent, PCR-positive transgenic plants per 100 embryos infected) ranged from 2.35 to 5.26%. Stable integration, expression, and inheritance of the transgenes were confirmed by molecular and genetic analysis. One to three copies of the transgene were integrated into the maize nuclear genome. About 70% of the transgenic plants received a single insertion of the transgenes based on Southern analysis of 10 transformed events. T1 plants were analyzed and transmission of transgenes to the T1 generation in a Mendelian fashion was verified. This system should facilitate the introduction of agronomically important genes into commercial genotypes.  相似文献   

20.
Uptake and distribution of cadmium in maize inbred lines   总被引:39,自引:0,他引:39  
Genotypic variation in uptake and distribution of cadmium (Cd) was studied in 19 inbred lines of maize (Zea mays L.). The inbred lines were grown for 27 days on an in situ Cd-contaminated sandy soil or for 20 days on nutrient solution culture with 10 µg Cd L-1. The Cd concentrations in the shoots showed large genotypic variation, ranging from 0.9 to 9.9 µg g-1 dry wt. for the Cd-contaminated soil and from 2.5 to 56.9 µg g-1 dry wt. for the nutrient solution culture. The inbred lines showed a similar ranking for the Cd concentrations in the shoots for both growth media (r2=0.89). Two main groups of inbreds were distinguished: a group with low shoot, but high root Cd concentrations (shoot: 7.4±5.3 µg g-1 dry wt.; root: 206.0±71.2 µg g-1 dry wt.; shoot Cd excluder) and a group with similar shoot and root Cd concentrations (shoot: 54.2±3.4 µg g-1 dry wt.; root: 75.6±11.2 µg g-1 dry wt.; non-shoot Cd excluder). The classification of the maize inbred lines and the near equal whole-plant Cd uptake between the two groups demonstrates that internal distribution rather than uptake is causing the genotypic differences in shoot Cd concentration of maize inbred lines. Zinc (Zn), a micronutrient chemically related to Cd, showed an almost similar distribution pattern for all maize inbred lines. The discrepancy in the internal distribution between Cd and Zn emphasizes the specificity of the Cd distribution in maize inbred lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号