首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The -adrenergic receptor, transduction processes and catalytic activity of the adenylate cyclase enzyme complex have been investigated in rabbit heart at different stages of biological maturation. The binding of [3H]-dihydroalprenolol to a washed membrane preparation isolated from rabbit ventricular muscle was used to characterize -adrenergic receptors. Significant age-related differences were noted in -receptor affinity (Kd) and density (RD) of neonatal and adult animals; the adult Kd was 3.7-fold greater and the RD 2-fold higher than the neonates. No significant differences in these parameters were detected among the 27-day old fetus and the 1- and 7-day old neonates. Age-dependent differences in agonist isoproterenol affinity for the receptor were not observed in contrast to the significant changes in antagonist (DHA) affinity.Age-related changes in receptor affinity were also quantitated by determining the inhibitory potency of alprenolol on isoproterenol stimulated adenylate cyclase enzyme activity. A decreased affinity of the -adrenergic receptor for alprenolol in the adult heart was indicated by a 3.7-fold greater Ki for the adult than the 1-day old neonate. Ontogenic variations in the coupling efficiency between the receptor and catalytic components of the adenylate cyclase complex were also evaluated. The Kd of the -adrenergic receptor for isoproterenol and the EC50 for adenylate cyclase stimulation were determined under similar conditions. The corresponding coupling index (Kd/EC50) was found to be 2.4-fold greater in the 1-day old neonate than adult, suggesting that for a given percentage increase in adenylate cyclase activity, a lower percentage of -adrenergic receptor sites need be occupied in the neonate. These data extend previous studies (29) and indicate all components of the rabbit heart adenylate cyclase enzyme complex (i.e., the -adrenergic receptor, the GTP-dependent transduction event, and the catalytic subunit) exhibit significant developmental changes.  相似文献   

2.
Conclusion Based on our recent data (37,54,56) and the association that profound alterations in βAR signaling are found in chronic end-stage human heart failure (64), it is possible that defects in this pathway are primary elements that underlie the transition from compensated to decompensated cardiac failure. Decreasing the level of myocardial βARK1 in established heart failure, is a novel approach to improving impaired βAR receptor function and potentially alter the pathogenesis in this disease.  相似文献   

3.
The effects of and -adrenergic stimulation in amphibian superfused hearts and ventricular strips were studied. Superfusion with 3×10–8 M isoproterenol produced a positive inotropic effect, as detected by a 92±24% increase in the maximal rate of contraction and a positive lusitropic effect characterized by a decrease in both the ratio (23±5%) and the half relaxation time (t1/2) (19±4%). The mechanical behavior induced by the -agonist was associated with an increase in the intracellular cAMP levels from control values of 173±19 to 329±28 nmol/mg wet tissue. Hearts superfused with32P in the presence of isoproterenol showed a significant increase in Tn 1 phosphorylation (from 151±13 to 240±44 pmol32P/mg MF protein) without consistent changes in phosphorylation of C-protein. In sarcoplasmic reticulum membrane vesicles, no phospholamban phosphorylation was detected either by -adrenergic stimulation of superfused hearts or when phosphorylation conditions were optimized by direct treatment of the vesicles with cAMP-dependent protein kinase (PKA) and [y 32P] ATP.The effect of -adrenergic stimulation on ventricular strips was studied at 30 and 22°C. At 30°C, the effects of 10–5 to 10–4M phenylephrine on myocardial contraction and relaxation were diminished to non significant levels by addition of propranolol. At 22°C, blockage with propranolol left a remanent positive inotropic effect (10% of the total effect of phenylephrine) and changed the phenylephrine-induced positive lusitropic effect into a negative lusitropic action. These propranolol-resistant effects were abolished by prazosin. Our results suggest that in amphibian heart, both the inotropic and lusitropic responses to catecholamines are mainly due to a -adrenergic stimulation which predominates over the -adrenergic response. Phospholamban phosphorylation seems not to be involved in mediating the positive lusitropic effect of -adrenergic agents whereas phosphorylation of troponin 1 may play a critical role.  相似文献   

4.
Alterations of receptor-G-protein-regulated adenylyl cyclase activity have been suggested to represent an important alteration leading to contractile dysfunction in the failing human heart. Recent experiments suggest that the 1-adrenoceptor(1AR) density and mRNA levels are reduced, while 2-adrenoceptors and stimulatory G-proteins are unchanged (mRNA and protein level). Functional assays demonstrated that the catalyst of the adenylyl cyclase is not different between failing and nonfailing myocardium. Inhibitory G-proteins are increased (pertussis toxin substrates, protein and mRNA) and correlate to the reduced inotropic effects of -adrenoceptor agonists and of CAMP-PDE inhibitors. Gi-coupled m-cholinoceptors and A1-adrenergic receptors are unchanged in density and affinity. Stimulation of these receptors resulted in an unchanged antiadrenergic effect on force of contraction. In conclusion, a downregulation of 1-AR and an increase of Gi have been observed as signal transduction alteration in failing human myocardium. These alterations are due to alterations of gene expression in the failing heart and are related to a defective regulation of force of contraction in heart failure.  相似文献   

5.
The alterations of cardiac and lymphocyte β-adrenoceptors were observed in the rats with chronic heart failure produced by constriction of both abdominal aorta and renal artery. The results showed that β1-adrenocep-tor density and mRNA levels were increased, whereas these levels remained unchanged for β2 The concentration-contractile response curve for isoproterenol was shifted to the right in cardiac atrium, whereas the concentration-cAMP accumulation response curve for isoproterenol in myocardium was not changed. The number of β-adrenoceptors in blood lymphocyte was markedly reduced. Thus in the heart-failure rats the density of cardiac β-adrenoceptor was increased accompanying reduced β-adrenoceptor-mediated positive inotropic response, suggesting a post adenylate cyclase dys-function or impaired contractile components. In contrast, the alteration of β-adrenoceptor in lymphocyte is consistent with the reduced β-adrenoceptor-mediated inotropic response in heart.  相似文献   

6.
The acute effects of beta-adrenergic stimulation on myocardial stiffness were evaluated. New-Zealand white rabbits were treated with saline (control group) or doxorubicin to induce heart failure (HF) (DOXO-HF group). Effects of isoprenaline (10(-10)-10(-5) M), a non-selective beta-adrenergic agonist, were tested in papillary muscles from both groups. In the control group, the effects of isoprenaline were also evaluated in the presence of a damaged endocardial endothelium, atenolol (beta(1)-adrenoceptor antagonist), ICI-118551 (beta(2)-adrenoceptor antagonist), KT-5720 (PKA inhibitor), L-NNA (NO-synthase inhibitor), or indomethacin (cyclooxygenase inhibitor). Passive length-tension relations were constructed before and after adding isoprenaline (10(-5) M). In the control group, isoprenaline increased resting muscle length up to 1.017+/-0.006 L/L(max). Correction of resting muscle length to its initial value resulted in a 28.5+/-3.1 % decrease of resting tension, indicating decreased muscle stiffness, as confirmed by the isoprenaline-induced right-downward shift of the passive length-tension relation. These effects were modulated by beta(1)- and beta(2)-adrenoceptors and PKA. In DOXO-HF group, the effect on myocardial stiffness was significantly decreased. We conclude that beta-adrenergic stimulation is a relevant mechanism of acute neurohumoral modulation of the diastolic function. Furthermore, this study clarifies the mechanisms by which myocardial stiffness is decreased.  相似文献   

7.
The hyperpolarization-activated current (If) plays an important role in determining the spontaneous rate of cardiac pacemaker cells. The automatic rhythmicity also exists in working cells of embryonic heart,therefore we studied developmental changes in functional expression and β-adrenergic regulation of If in embryonic mouse heart. The expression of If is high in early developmental stage (EDS) (10.5 d after coitus) ventricular myocytes, low in intermediate developmental stage (IDS) (13.5 d) atrial or ventricular myocytes and even lower in late developmental stage (LDS) (16.5 d) atrial or ventricular myocytes, indicating that these cells of the EDS embryonic heart have some properties of pacemaker cells, β-adrenergic agonist isoproterenol (ISO) stimulates If in LDS but not in EDS cardiomyocytes, indicating that the β-adrenergic regulation of If is not mature in EDS embryonic heart. But forskolin (a direct activator of adenylate cyclase) and 8-Br-cAMP (a membrane-permeable analogue of cAMP) increase the amplitude of If in EDS cells,indicating that adenylate cyclase and cAMP function fairly well at early stage of development. Furthermore,the results demonstrate that If is modulated by phosphorylation via cAMP dependent PKA both in EDS and LDS cells.  相似文献   

8.
The hyperpolarization-activated current (If) plays an important role in determining the spontaneousrate of cardiac pacemaker cells. The automatic rhythmicity also exists in working cells of embryonic heart,therefore we studied developmental changes in functional expression and β-adrenergic regulation of If inembryonic mouse heart. The expression of If is high in early developmental stage (EDS) (10.5 d after coitus)ventricular myocytes, low in intermediate developmental stage (IDS) (13.5 d) atrial or ventricular myocytesand even lower in late developmental stage (LDS) (16.5 d) atrial or ventricular myocytes, indicating thatthese cells of the EDS embryonic heart have some properties of pacemaker cells. β-adrenergic agonistisoproterenol (ISO) stimulates If in LDS but not in EDS cardiomyocytes, indicating that theβ-adrenergicregulation of If is not mature in EDS embryonic heart. But forskolin (a direct activator of adenylate cyclase)and 8-Br-cAMP (a membrane-permeable analogue of cAMP) increase the amplitude of If in EDS cells,indicating that adenylate cyclase and cAMP function fairly well at early stage of development. Furthermore,the results demonstrate that If is modulated by phosphorylation via cAMP dependent PKA both in EDSand LDS cells.  相似文献   

9.
The alterations of cardiac and lymphocyte β-adrenoceptors were observed in the rats with chronic heart failure produced by constriction of both abdominal aorta and renal artery. The results showed that β1-adrenoceptor density and mRNA levels were increased, whereas these levels remained unchanged for β2. The concentrationcontractile response curve for isoproterenol was shifted m the right in cardiac atrium, whereas the concentration-CAMP accumulation response curve for isoproterenol in myocardium was not changed. The number of β-adrenoceptom in blood lymphocyte was markedly reduced. Thus in the heart-failure rats the density of cardiac β-adrenoceptor was increased accompanying reduced β-adrenoceptormediated positive inotropic response, suggesting a post adenylate cyclase dysfunction or impaired contractile components. In contrast, the alteration of β-adrenoceptor in lymphocyte is consistent with the reduced β-adrenoceptor-mediated inotropic response in heart.  相似文献   

10.
Formation of a dense microtubule network that impedes cardiac contraction and intracellular transport occurs in severe pressure overload hypertrophy. This process is highly dynamic, since microtubule depolymerization causes striking improvement in contractile function. A molecular etiology for this cytoskeletal alteration has been defined in terms of type 1 and type 2A phosphatase-dependent site-specific dephosphorylation of the predominant myocardial microtubule-associated protein (MAP)4, which then decorates and stabilizes microtubules. This persistent phosphatase activation is dependent upon ongoing upstream activity of p21-activated kinase-1, or Pak1. Because cardiac β-adrenergic activity is markedly and continuously increased in decompensated hypertrophy, and because β-adrenergic activation of cardiac Pak1 and phosphatases has been demonstrated, we asked here whether the highly maladaptive cardiac microtubule phenotype seen in pathological hypertrophy is based on β-adrenergic overdrive and thus could be reversed by β-adrenergic blockade. The data in this study, which were designed to answer this question, show that such is the case; that is, β(1)- (but not β(2)-) adrenergic input activates this pathway, which consists of Pak1 activation, increased phosphatase activity, MAP4 dephosphorylation, and thus the stabilization of a dense microtubule network. These data were gathered in a feline model of severe right ventricular (RV) pressure overload hypertrophy in response to tight pulmonary artery banding (PAB) in which a stable, twofold increase in RV mass is reached by 2 wk after pressure overloading. After 2 wk of hypertrophy induction, these PAB cats during the following 2 wk either had no further treatment or had β-adrenergic blockade. The pathological microtubule phenotype and the severe RV cellular contractile dysfunction otherwise seen in this model of RV hypertrophy (PAB No Treatment) was reversed in the treated (PAB β-Blockade) cats. Thus these data provide both a specific etiology and a specific remedy for the abnormal microtubule network found in some forms of pathological cardiac hypertrophy.  相似文献   

11.
《Cellular signalling》2014,26(10):2259-2265
The β2-adrenergic receptor (β2AR) is the prototypic member of G protein-coupled receptors (GPCRs) involved in the production of physiological responses to adrenaline and noradrenaline. Research done in the past few years vastly demonstrated that β2AR can form homo- and hetero-oligomers. Despite the fact that currently this phenomenon is widely accepted, the spread and relevance of β2AR oligomerization are still a matter of debate. This review considers the progress achieved in the field of β2AR oligomerization with focus on the implications of the receptor–receptor interactions to β2AR trafficking, pharmacology and downstream signal transduction pathways.  相似文献   

12.
Most living organisms exhibit circadian rhythms that are generated by endogenous circadian clocks, the master one being present in the suprachiasmatic nuclei (SCN). Output signals from the SCN are believed to transmit standard circadian time to peripheral tissue through sympathetic nervous system and humoral routes. Therefore, the authors examined the expression of clock genes following treatment with the β-adrenergic receptor agonist, isoprenaline, or the synthetic glucocorticoid, dexamethasone, in cultured human osteoblast SaM-1 cells. Cells were treated with 10(-6) M isoprenaline or 10(-7) M dexamethasone for 2?h and gene expressions were determined using real-time polymerase chain reaction (PCR) analysis. Treatment with isoprenaline or dexamethasone induced the circadian expression of clock genes human period 1 (hPer1), hPer2, hPer3, and human brain and muscle Arnt-like protein 1 (hBMAL1). Isoprenaline or dexamethasone treatment immediately increased hPer1 and hPer2 and caused circadian oscillation of hPer1 and hPer2 with three peaks within 48?h. hPer3 expression had one peak after isoprenaline or dexamethasone treatment. hBMAL expression had two peaks after isoprenaline or dexamethasone treatment, the temporal pattern being in antiphase to that of the other clock genes. Dexamethasone treatment delayed the oscillation of all clock genes for 2-6?h compared with isoprenaline treatment. The authors also examined the expression of osteoblast-related genes hα-1 type I collagen (hCol1a1), halkaline phosphatase (hALP), and hosteocalcin (hOC). Isoprenaline induced oscillation of hCol1a1, but not hALP and hOC. On the other hand, dexamethasone induced oscillation of hCol1a1 and hALP, but not hOC. Isoprenaline up-regulated hCol1a1 expression, but dexamethasone down-regulated hCol1a1 and hALP expression in the first phase.  相似文献   

13.

Background

Infantile hemangioma (IH) is a benign vascular neoplasm that arises from the abnormal proliferation of endothelial cells and enhanced angiogenesis. Recently, propranolol has been found to be effective in the management of IH, suggesting that β-adrenergic receptors (β-ARs) may play an important role in the pathogenesis of IH.

Results

In the present study, we investigated the β-adrenergic signaling that is associated with hemangioma-derived endothelial cell (HemEC) proliferation. The results showed that both β1- and β2-ARs were expressed in HemECs. Stimulation of the β-ARs by isoprenaline induced cell proliferation and elevation of second messenger cAMP levels. The proliferation-promoting action of isoprenaline was abolished by a β1-selective antagonist and was more effectively abolished by a β2-selective antagonist; the mechanism for the action of the antagonists was a G0/G1 phase cell cycle arrest which was associated with decreased cyclin D1, CDK-4, CDK-6 and phospho-Rb expression. Pre-treatment of the cells with VEGFR-2 or ERK inhibitors also prevented the isoprenaline-mediated proliferation of cells. In agreement with the involvement of β-ARs and VEGFR-2 in the HemEC response, β-AR antagonists and the VEGFR-2 inhibitor significantly attenuated isoprenaline-induced ERK phosphorylation. Moreover, treating the cells with isoprenaline markedly increased VEGF-A expression and VEGFR-2 activity in a β2-AR-dependent manner.

Conclusions

We have demonstrated that the activation of the β-ARs in the ERK pathway may be important mechanisms in promoting HemEC growth. Furthermore, stimulation of the β-AR may transactivate VEGFR-2 signaling and further increase HemEC proliferation.  相似文献   

14.
AimsCardiac function is modulated by the sympathetic nervous system through β-adrenergic receptor (β-AR) activity and this represents the main regulatory mechanism for cardiac performance. To date, however, the metabolic and molecular responses to β2-agonists are not well characterized. Therefore, we studied the inotropic effect and signaling response to selective β2-AR activation by tulobuterol.Main methodsStrips of rat right ventricle were electrically stimulated (1 Hz) in standard Tyrode solution (95% O2, 5% CO2) in the presence of the β1-antagonist CGP-20712A (1 μM). A cumulative dose–response curve for tulobuterol (0.1–10 μM), in the presence or absence of the phosphodiesterase (PDE) inhibitor IBMX (30 μM), or 10 min incubation (1 μM) with the β2-agonist tulobuterol was performed.Key findingsβ2-AR stimulation induced a positive inotropic effect (maximal effect = 33 ± 3.3%) and a decrease in the time required for half relaxation (from 45 ± 0.6 to 31 ± 1.8 ms, ? 30%, p < 0.001) after the inhibition of PDEs. After 10 min of β2-AR stimulation, p-AMPKαT172 (54%), p-PKBT308 (38%), p-AS160T642 (46%) and p-CREBS133 (63%) increased, without any change in p-PKAT197.SignificanceThese results suggest that the regulation of ventricular contractility is not the primary function of the β2-AR. Rather, β2-AR could function to activate PKB and AMPK signaling, thereby modulating muscle mass and energetic metabolism of rat ventricular muscle.  相似文献   

15.
In recent years, we have come to appreciate the complexity of G protein-coupled receptor signaling in general and β-adrenergic receptor (β-AR) signaling in particular. Starting originally from three β-AR subtypes expressed in cardiomyocytes with relatively simple, linear signaling cascades, it is now clear that there are large receptor-based networks which provide a rich and diverse set of responses depending on their complement of signaling partners and the physiological state. More recently, it has become clear that subcellular localization of these signaling complexes also enriches the diversity of phenotypic outcomes. Here, we review our understanding of the signaling repertoire controlled by nuclear β-AR subtypes as well our understanding of the novel roles for G proteins themselves in the nucleus, with a special focus, where possible, on their effects in cardiomyocytes. Finally, we discuss the potential pathological implications of alterations in nuclear β-AR signaling.  相似文献   

16.
Objective: The aim of this study was to evaluate the association between two haplotype-tag single nucleotide polymorphisms (SNPs) (rs6658835 and rs10495098) of TGF-β2 and conotruncal heart defects (CTDs).

Methods: Two polymorphisms of TGF-β2 gene were genotyped by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) from 259 CTDs patients and 310 control subjects.

Results: The association between SNP rs6658835 in TGF-β2 and CTDs has been found. The frequency of G allele in CTDs patients was significantly higher than that in control subjects (52.7% versus 40.3%, p?<?0.001, OR =1.649).

Conclusion: TGF-β2 gene polymorphisms may serve as a novel genetic marker for the risk of CTDs.  相似文献   


17.
The -adrenoceptor (-AR) mediated signal transduction pathway in cardiomyocytes is known to involve 1- and 2-ARs, stimulatory (Gs) and inhibitory (Gi) guanine nucleotide binding proteins, adenylyl cyclase (AC) and cAMP-dependent protein kinase (PKA). The activation of 1- and 2-ARs has been shown to increase heart function by increasing Ca2+-movements across the sarcolemmal membrane and sarcoplasmic reticulum through the stimulation of Gs-proteins, activation of AC and PKA enzymes and phosphorylation of the target sites. The activation of PKA has also been reported to increase phosphorylation of some myofibrillar proteins (for promoting cardiac relaxation) and nuclear proteins (for cardiac hypertrophy). The activation of 2-AR has also been shown to affect Gi-proteins, stimulate mitogen activated protein kinase and increase protein synthesis by enhancing gene expression. 1- and 2-ARs as well as AC are considered to be regulated by PKA- and protein kinase C (PKC)-mediated phosphorylations directly; both PKA and PKC also regulate -AR indirectly through the involvement of -AR kinase (ARK), -arrestins and G-protein subunits. Genetic manipulation of different components and regulators of -AR signal transduction pathway by employing transgenic and knockout mouse models has provided insight into their functional and regulatory characteristics in cardiomyocytes. The genetic studies have also helped in understanding the pathophysiological role of ARK in heart dysfunction and therapeutic role of ARK inhibitors in the treatment of heart failure. Varying degrees of defects in the -AR signal transduction system have been identified in different types of heart failure to explain the attenuated response of the failing heart to sympathetic stimulation or catecholamine infusion. A decrease in 1-AR density, an increase in the level of Gi-proteins and overexpression of ARK are usually associated with heart failure; however, these attenuations have been shown to be dependent upon the type and stage of heart failure as well as region of the heart. Both local and circulating renin-angiotensin systems, sympathetic nervous system and endothelial cell function appears to regulate the status of -AR signal transduction pathway in the failing heart. Thus different components and regulators of the -AR signal transduction pathway appears to represent important targets for the development of therapeutic interventions for the treatment of heart failure.  相似文献   

18.
19.
Summary A complementary DNA (cDNA) clone - cA2-47 - corresponding to a new 2-adrenergic receptor subtype has been isolated from a rat brain cDNA library and used as a hybridization probe to scrutinize the 2-receptor poly(A+) RNAs in rat brain, heart and adrenal gland. Hybridization of the 5 half of the coding region of this cDNA at 37°C to rat brain poly(A+) RNA revealed a single band at 5.8 kb as the size of its corresponding mRNA. Under identical hybridization conditions, a human platelet 2-receptor genomic probe failed to hybridize to any rat brain mRNAs.Under lower stringency conditions, hybridization of the full-length cDNA, cA2-47, to selected rat tissue poly(A+) RNA showed the presence of four different sized mRNAs in brain and three in both heart and adrenal gland. Messages of 1.3 kb and 2.1 kb were common in all three tissues (although the band at 2.1 kb was slightly higher in the heart and adrenal gland). A 5.8 kb mRNA was unique to the brain and a slightly higher band at 6.0 kb was consistently present in heart and adrenal gland but was absent in the brain. A fourth message at 3.4 kb was found predominantly in the brain and was either absent or present at very low levels in the other tissues examined. Under the same conditions, a human platelet 2-receptor probe hybridized to similar sized messages of 2.1 and 5.8 kb in rat brain and 2.2 and 6.0 kb in rat heart and adrenal gland. This probe, however, failed to detect the abundant 1.3 kb mRNA common to all tissues or the 3.4 kb message in rat brain. The extent of homology of these messages with cA2-47 is not confined to limited regions of the cDNA since similar hybridization patterns were observed using either 5-noncoding or 5-coding regions of the probe.These results provide the first direct evidence of a surprisingly large range of mRNA sizes for members of the 2-receptor family in brain, heart, and adrenal gland. The unique nature of certain members of the family in each of the tissues examined raises the curious possibility that these members might contribute to some of the individualized functions of the brain, cardiovasculature and adrenal gland.  相似文献   

20.
Bilateral injection of 6-hydroxydopamine into the medial forebrain bundle (MFB) significantly decreased monoamine concentrations in the hypothalamus. The noradrenaline and serotonin content of the paraventricular nucleus (PVN) was also significantly reduced. These drastic decreases in neurotransmitter concentration did not alter basal secretion of corticosterone. Isoproterenol. a -adrenoceptor agonist (1 mg/kg, i.p.), significantly stimulated corticosterone release in saline and MFB lesioned rats. This stimulation did not differ significantly between the two groups. Clonidine, an 2-adreceptor agonist, injected either intraperitoneally or intracerebrally just dorsal to the PVN, caused a dose-dependent increase in corticosterone secretion. The stimulation of corticosterone release by clonidine (250 g/kg, i.p.) was antagonised by the selective 2-adreceptors antagonist, yohimbine (1 mg/kg, i.p.) and significantly reduced by the MFB lesion. These results suggest that corticosterone secretion is stimulated by activation of 2-adreceptors which occur on noradrenergic nerve terminals in the PVN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号