首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asymmetric localization of Ran regulators (RanGAP1 and RanGEF/RCC1) produces a gradient of RanGTP across the nuclear envelope. In higher eukaryotes, the nuclear envelope breaks down as the cell enters mitosis (designated "open" mitosis). This nuclear envelope breakdown (NEBD) leads to collapse of the RanGTP gradient and the diffusion of nuclear and cytoplasmic macromolecules in the cell, resulting in irreversible progression of the cell cycle. On the other hand, in many fungi, chromosome segregation takes place without NEBD (designated "closed" mitosis). Here we report that in the fission yeast Schizosaccharomyces pombe, despite the nuclear envelope and the nuclear pore complex remaining intact throughout both the meiotic and mitotic cell cycles, nuclear proteins diffuse into the cytoplasm transiently for a few minutes at the onset of anaphase of meiosis II. We also found that nuclear protein diffusion into the cytoplasm occurred coincidently with nuclear localization of Rna1, an S. pombe RanGAP1 homolog that is usually localized in the cytoplasm. These results suggest that nuclear localization of RanGAP1 and depression of RanGTP activity in the nucleus may be mechanistically tied to meiosis-specific diffusion of nuclear proteins into the cytoplasm. This nucleocytoplasmic shuffling of RanGAP1 and nuclear proteins represents virtual breakdown of the nuclear envelope.  相似文献   

2.
The nuclear envelope, muscular dystrophy and gene expression   总被引:16,自引:0,他引:16  
Lamins and other nuclear envelope proteins organize nuclear architecture through structural attachments that vary dynamically during the cell cycle and cell differentiation. Genetic studies have now shown that people with mutations in either lamins A/C or emerin, a nuclear membrane protein, develop Emery-Dreifuss muscular dystrophy. A mouse model for this rare disease has been created by knocking out the gene that encodes lamin A/C. This article discusses these and other recent results in the wider context of nuclear envelope function, as a framework for thinking about the possible ways in which defects in nuclear envelope proteins can lead to disease.  相似文献   

3.
Summary The nuclear envelope functions as a selective barrier between nucleus and cytoplasm. During cycles of cell division the nuclear envelope repeatedly disassembles and re-associates. Presumably, each cycle re-establishes the functional and structural integrity of the nuclear envelope. After repeated rounds of cell division, as occurs during differentiation, the selectivity and configuration of the envelope may change. We compare the ionic conductance and the nuclear pore density in four types of murine nuclei: germinal vesicles in oocytes, pronuclei in zygotes, nuclei from two-cell blastomeres, and somatic cell nuclei from the liver. A large-conductance ion channel is present in all nuclear envelopes. Liver cell nuclei have a greater number of these channels than those from earlier developmental stages, and they also have a higher density of nuclear pores. In this article we hypothesize an association between the ion channels and the nuclear pores.  相似文献   

4.
In animals, the nuclear envelope disassembles in mitosis, while budding and fission yeast form an intranuclear spindle. Ultrastructural data indicate that basidiomycetes, such as the pathogen Ustilago maydis, undergo an 'open mitosis'. Here we describe the mechanism of nuclear envelope break-down in U. maydis. In interphase, the nucleus resides in the mother cell and the spindle pole body is inactive. Prior to mitosis, it becomes activated and nucleates microtubules that reach into the daughter cell. Dynein appears at microtubule tips and exerts force on the spindle pole body, which leads to the formation of a long nuclear extension that reaches into the bud. Chromosomes migrate through this extension and together with the spindle pole bodies leave the old envelope, which remains in the mother cell until late telophase. Inhibition of nuclear migration or deletion of a Tem1p-like GTPase leads to a 'closed' mitosis, indicating that spindle pole bodies have to reach into the bud where MEN signalling participates in envelope removal. Our data indicate that dynein-mediated premitotic nuclear migration is essential for envelope removal in U. maydis.  相似文献   

5.
为理解植物无孢子生殖胚囊未受精条件下的退化,对无孢子生殖植物非洲狼尾草未受精成熟胚囊中央细胞退化做了细胞形态学研究。没有受精的中央细胞退化时最显著的特点是细胞核产生核膜囊泡。核膜囊泡有两种类型:单层膜的囊泡和双层膜的囊泡,单层膜囊泡在细胞质中,双层膜囊泡在细胞核内。核膜囊泡有两种发生方式:1)核膜的外膜向细胞质一侧膨胀产生囊泡,囊泡进入细胞质;2)核膜向核内凹陷形成囊泡,囊泡进入细胞核。核膜囊泡类型与产生方式密切关联。核膜囊泡吞噬并消化包括线粒体在内的细胞质和核质。  相似文献   

6.
The number of nuclear pore complexes (NPCs) in individual nuclei of the yeast Saccharomyces cerevisiae was determined by computer-aided reconstruction of entire nuclei from electron micrographs of serially sectioned cells. Nuclei of 32 haploid cells at various points in the cell cycle were modeled and found to contain between 65 and 182 NPCs. Morphological markers, such as cell shape and nuclear shape, were used to determine the cell cycle stage of the cell being examined. NPC number was correlated with cell cycle stage to reveal that the number of NPCs increases steadily, beginning in G1-phase, suggesting that NPC assembly occurs continuously throughout the cell cycle. However, the accumulation of nuclear envelope observed during the cell cycle, indicated by nuclear surface area, is not continuous at the same rate, such that the density of NPCs per unit area of nuclear envelope peaks in apparent S-phase cells. Analysis of the nuclear envelope reconstructions also revealed no preferred NPC-to-NPC distance. However, NPCs were found in large clusters over regions of the nuclear envelope. Interestingly, clusters of NPCs were most pronounced in early mitotic nuclei and were found to be associated with the spindle pole bodies, but the functional significance of this association is unknown.  相似文献   

7.
To understand the degeneration of unfertilized aposporous embryo sac in an aposporous species Pennisetum squamulatum, the central cell in the unfertilized embryo sac was characterized ultrastructurally . The most prominent sign of degeneration is that the central cell nucleus produced nuclear vacuoles . These nuclear vacuoles can be classified into singleanddouble- layered types . Single- layered nuclear vacuoles are found in the cytoplasm, while the double-layered are inside the nucleus . There are two ways to produce nuclear vacuoles . One is that the outer membrane of the nuclear envelope distends towards the cytoplasm to form nuclear vacuoles ; and the other is the double-layered nuclear envelope derives vacuoles by depressing inwards . Nuclear envelope types are in relation to the ways they are produced . All nuclear vacuoles absorb cytoplasm or nuclear matrix , and trap organelles such as mitochondria .  相似文献   

8.
The subnuclear localization of tRNA ligase in yeast   总被引:27,自引:3,他引:24       下载免费PDF全文
Yeast tRNA ligase is an enzyme required for tRNA splicing. A study by indirect immune fluorescence shows that this enzyme is localized in the cell nucleus. At higher resolution, studies using indirect immune electron microscopy show this nuclear location to be primarily at the inner membrane of the nuclear envelope, most likely at the nuclear pore. There is a more diffuse, secondary location of ligase in a region of the nucleoplasm within 300 nm of the nuclear envelope. When the amount of ligase in the cell is increased, nuclear staining increases but staining of the nuclear envelope remains constant. This experiment indicates that there are a limited number of ligase sites at the nuclear envelope. Since the other tRNA splicing component, the endonuclease, has the characteristics of an integral membrane protein, we hypothesize that it constitutes the site for the interaction of ligase with the nuclear envelope.  相似文献   

9.
In eukaryotic cells, the nuclear envelope partitions the nucleus from the cytoplasm. The fission yeast Schizosaccharomyces pombe undergoes closed mitosis in which the nuclear envelope persists rather than being broken down, as in higher eukaryotic cells. It is therefore assumed that nucleocytoplasmic transport continues during the cell cycle. Here we show that nuclear transport is, in fact, abolished specifically during anaphase of the second meiotic nuclear division. During that time, both nucleoplasmic and cytoplasmic proteins disperse throughout the cell, reminiscent of the open mitosis of higher eukaryotes, but the architecture of the S. pombe nuclear envelope itself persists. This functional alteration of the nucleocytoplasmic barrier is likely induced by spore wall formation, because ectopic induction of sporulation signaling leads to premature dispersion of nucleoplasmic proteins. A photobleaching assay demonstrated that nuclear envelope permeability increases abruptly at the onset of anaphase of the second meiotic division. The permeability was not altered when sporulation was inhibited by blocking the trafficking of forespore-membrane vesicles from the endoplasmic reticulum to the Golgi. The evidence indicates that yeast gametogenesis produces vesicle transport-mediated forespore membranes by inducing nuclear envelope permeabilization.  相似文献   

10.
11.
The cell nucleus is separated from the rest of the cell by the nuclear envelope. The nuclear envelope, nuclear envelope proteins and nuclear lamina organise the structure of the entire nucleus and the chromatin via a myriad of interactions. These interactions are dynamic, change with the change (progress) of the cell cycle, with cell differentiation and with changes in cell physiology.  相似文献   

12.
A stable cell line expressing EB1-green fluorescent protein was used to image growing microtubule plus ends at the G(2)/M transition. By late prophase growing ends no longer extend to the cell periphery and were not uniformly distributed around each centrosome. Growing ends were much more abundant in the area surrounding the nuclear envelope, and microtubules growing around the nucleus were 1.5 fold longer than those growing in the opposite direction. The growth of longer ends toward the nucleus did not result from a localized faster growth rate, because this rate was approximately 11 microm/min in all directions from the centrosome. Rather, microtubule ends growing toward the nucleus seemed stabilized by dynein/dynactin associated with the nuclear envelope. Injection of p50 into late prophase cells removed dynein from the nuclear envelope, reduced the density of growing ends near the nuclear envelope and resulted in a uniform distribution of growing ends from each centrosome. We suggest that the cell cycle-dependent binding of dynein/dynactin to the nuclear envelope locally stabilizes growing microtubules. Both dynein and microtubules would then be in a position to participate in nuclear envelope breakdown, as described in recent studies.  相似文献   

13.
Dystrophin and dystrophin-associated proteins (DAPs) form a complex around the sarcolemma, which gives stability to the sarcolemma and leads signal transduction. Recently, the nuclear presence of dystrophin Dp71 and DAPs has been revealed in different non-muscle cell types, opening the possibility that these proteins could also be present in the nucleus of muscle cells. In this study, we analyzed by Immunofluorescence assays and Immunoblotting analysis of cell fractions the subcellular localization of Dp71 and DAPs in the C(2)C(12) muscle cell line. We demonstrated the presence of Dp71, alpha-sarcoglycan, alpha-dystrobrevin, beta-dystroglycan and alpha-syntrophin not only in plasma membrane but also in the nucleus of muscle cells. In addition, we found by Immunoprecipitation assays that these proteins form a nuclear complex. Interestingly, myogenesis modulates the presence and/or relative abundance of DAPs in the plasma membrane and nucleus as well as the composition of the nuclear complex. Finally, we demonstrated the presence of Dp71, alpha-sarcoglycan, beta-dystroglycan, alpha-dystrobrevin and alpha-syntrophin in the C(2)C(12) nuclear envelope fraction. Interestingly, alpha-sarcoglycan and beta-dystroglycan proteins showed enrichment in the nuclear envelope, compared with the nuclear fraction, suggesting that they could function as inner nuclear membrane proteins underlying the secondary association of Dp71 and the remaining DAPs to the nuclear envelope. Nuclear envelope localization of Dp71 and DAPs might be involved in the nuclear envelope-associated functions, such as nuclear structure and modulation of nuclear processes.  相似文献   

14.
Kathleen Church 《Chromosoma》1977,64(2):143-154
During premeiotic interphase in the male grasshopper Brachystola magna the nucleus is divided into two nuclear envelope bound compartments, one containing the X chromosome and one the autosomes. — The autosomal compartment is characterized by an invaginated nuclear envelope with nuclear pores distributed throughout the envelope. In a polarized region of the cell the pericentric heterochromatic chromocenters are associated with the inner membrane of the envelope invaginations. In this species the chromosomes are telocentric (acrocentric?) and the pericentric heterochromatin marks the proximal chromosome ends. It is concluded that the chromosome ends are attached to the nuclear envelope at premeiotic interphase. — Comparisons are made between the present observations on chromosome arrangements and the nuclear envelope at premeiotic interphase to earlier observations at early meiotic prophase in the same species (Church, 1976). It is concluded that a rearrangement of both the proximal chromosome ends and the nuclear envelope occurs as cells enter meiotic prophase.  相似文献   

15.
Annexin 11 is a widely expressed calcium- and phospholipid-binding protein that resides in the nucleoplasm in many cultured cell lines. This is in contrast to its most extensively characterized in vitro ligand, the small calcium-binding protein S100A6 (calcyclin), which is concentrated in the nuclear envelope. Here we have examined the significance of the association of annexin 11 and S100A6 by asking whether circumstances exist in which the two proteins occupy the same subcellular localization. First, we show that in both A431 and vascular smooth muscle cells, elevation of intracellular Ca2+ leads to translocation of annexin 11 from the nucleus to the nuclear envelope where it co-localizes with S100A6. We also demonstrate, using fusions of annexin 11 with green fluorescent protein, that whereas the C-terminal core domain of annexin 11 is essential for Ca2+ sensitivity, the N-terminal domain is required for targeting to the nuclear envelope. Second, we show that annexin 11 relocalizes to the nuclear envelope as A431 cells transit from early to mid-prophase. In late prophase, at the time of nuclear envelope breakdown, annexin 11 and S100A6 become intensely localized with lamina-associated polypeptide 2 to folds in the nuclear envelope. From metaphase to telophase S100A6 is degraded, but in late telophase annexin 11 associates with the reforming nuclear envelope before resuming a nucleoplasmic location in interphase. These results show that co-localization of annexin 11 and S100A6 at the nuclear envelope may be regulated either by elevation of intracellular Ca2+ or by cell cycle progression and provide the first evidence that these proteins may associate in vivo.  相似文献   

16.
CTL and NK cells induce nuclear disintegration in their target cells. This phenomenon, which is seen as extensive fragmentation and solubilization of target cell DNA, is not seen with most other means of inducing cytolysis, including antibody- and complement-mediated cytolysis. We have previously shown that the degree of DNA solubilization is dependent upon the nature of the target cell. We here investigate the possibility that CTL induce, in all targets, damage to the nuclear envelope, which in turn leads to nuclear disintegration in only some of them. We reasoned that damage to the nuclear envelope would render nuclear DNA more accessible to exogenous DNase. Therefore, we determined the susceptibility of target DNA to exogenous DNase I after cytolysis by various means. We found no difference in DNA susceptibility for cells lysed by CTL vs methods (such as complement-mediated lysis or nonionic detergent) incapable of inducing nuclear disintegration. As a positive control, freezing and thawing dramatically enhanced susceptibility of the DNA. In conclusion, we found no evidence that the nuclear envelope is damaged by CTL in target cell types (or in the subpopulation of nuclei) that do not undergo nuclear disintegration.  相似文献   

17.
The nuclear envelope: form and reformation   总被引:6,自引:0,他引:6  
The membrane system that encloses genomic DNA is referred to as the nuclear envelope. However, with emerging roles in signaling and gene expression, these membranes clearly serve as more than just a physical barrier separating the nucleus and cytoplasm. Recent progress in our understanding of nuclear envelope architecture and composition has also revealed an intriguing connection between constituents of the nuclear envelope and human disease, providing further impetus to decipher this cellular structure and the dramatic remodeling process it undergoes with each cell division.  相似文献   

18.
The nuclear envelope (NE) consists of two membrane layers that segregate the nuclear from the cytoplasmic contents. Recent progress in our understanding of nuclear-lamina associated diseases has revealed intriguing connections between the envelope components and nuclear processes. Here, we review the functions of the nuclear envelope in chromosome organization, gene expression, DNA repair and cell cycle progression, and correlate deficiencies in envelope function with human pathologies.  相似文献   

19.
The fission yeast spindle pole body (SPB) comprises a cytoplasmic structure that is separated from an ill-defined nuclear component by the nuclear envelope. Upon mitotic commitment, the nuclear envelope separating these domains disperses as the two SPBs integrate into a hole that forms in the nuclear envelope. The SPB component Cut12 is linked to cell cycle control, as dominant cut12.s11 mutations suppress the mitotic commitment defect of cdc25.22 cells and elevated Cdc25 levels suppress the monopolar spindle phenotype of cut12.1 loss of function mutations. We show that the cut12.1 monopolar phenotype arises from a failure to activate and integrate the new SPB into the nuclear envelope. The activation of the old SPB was frequently delayed, and its integration into the nuclear envelope was defective, resulting in leakage of the nucleoplasm into the cytoplasm through large gaps in the nuclear envelope. We propose that these activation/integration defects arise from a local deficiency in mitosis-promoting factor activation at the new SPB.  相似文献   

20.
The nuclear envelope separates the nucleoplasm from the rest of the cell. Throughout the cell cycle, its structural integrity is controlled by reversible protein phosphorylation. Whereas its phosphorylation-dependent disassembly during mitosis is well characterized, little is known about phosphorylation events at this structure during interphase. The few characterized examples cover protein phosphorylation at serine and threonine residues, but not tyrosine phosphorylation at the nuclear envelope. Here, we demonstrate that tyrosine phosphorylation and dephosphorylation occur at the nuclear envelope of intact Neuro2a mouse neuroblastoma cells. Tyrosine kinase and phosphatase activities remain associated with purified nuclear envelopes. A similar pattern of tyrosine-phosphorylated nuclear envelope proteins suggests that the same tyrosine kinases act at the nuclear envelope of intact cells and at the purified nuclear envelope. We have also identified eight tyrosine-phosphorylated nuclear envelope proteins by 2D BAC/SDS/PAGE, immunoblotting with phosphotyrosine-specific antibodies, tryptic in-gel digestion, and MS analysis of tryptic peptides. These proteins are the lamina proteins lamin A, lamin B1, and lamin B2, the inner nuclear membrane protein LAP2beta, the heat shock protein hsc70, and the DNA/RNA-binding proteins PSF, hypothetical 16-kDa protein, and NonO, which copurify with the nuclear envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号