首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertebrate axis patterning depends on cell and extracellular matrix (ECM) repositioning and proper cell-ECM interactions. However, there are few in vivo data addressing how large-scale tissue deformations are coordinated with the motion of local cell ensembles or the displacement of ECM constituents. Combining the methods of dynamic imaging and experimental biology allows both cell and ECM fate-mapping to be correlated with ongoing tissue deformations. These fate-mapping studies suggest that the axial ECM components "move" both as a composite meshwork and as autonomous particles, depending on the length scale being examined. Cells are also part of this composite, and subject to passive displacements resulting from tissue deformations. However, in contrast to the ECM, cells are self-propelled. The net result of cell and ECM displacements, along with proper ECM-cell adhesion, is the assembly of new tissue architecture. Data herein show that disruption of normal cell-ECM interactions during axis formation results in developmental abnormalities and a disorganization of the ECM. Our goal in characterizing the global displacement patterns of axial cells and ECM is to provide critical information regarding existing strain fields in the segmental plate and paraxial mesoderm. Deducing the mechanical influences on cell behavior is critical, if we are to understand vertebral axis patterning. Supplementary material for this article is available online at http://www.mrw.interscience.wiley.com/suppmat/1542-975X/suppmat/72/v72.266.html.  相似文献   

2.
Endocardial cells play a critical role in cardiac development and function, forming the innermost layer of the early (tubular) heart, separated from the myocardium by extracellular matrix (ECM). However, knowledge is limited regarding the interactions of cardiac progenitors and surrounding ECM during dramatic tissue rearrangements and concomitant cellular repositioning events that underlie endocardial morphogenesis. By analyzing the movements of immunolabeled ECM components (fibronectin, fibrillin-2) and TIE1 positive endocardial progenitors in time-lapse recordings of quail embryonic development, we demonstrate that the transformation of the primary heart field within the anterior lateral plate mesoderm (LPM) into a tubular heart involves the precise co-movement of primordial endocardial cells with the surrounding ECM. Thus, the ECM of the tubular heart contains filaments that were associated with the anterior LPM at earlier developmental stages. Moreover, endocardial cells exhibit surprisingly little directed active motility, that is, sustained directed movements relative to the surrounding ECM microenvironment. These findings point to the importance of large-scale tissue movements that convect cells to the appropriate positions during cardiac organogenesis.  相似文献   

3.
Prior to gastrulation the mouse embryo exists as a symmetrical cylinder consisting of three tissue layers. Positioning of the future anterior-posterior axis of the embryo occurs through coordinated cell movements that rotate a pre-existing proximal-distal (P-D) axis. Overt axis formation becomes evident when a discrete population of proximal epiblast cells become induced to form mesoderm, initiating primitive streak formation and marking the posterior side of the embryo. Over the next 12-24 h the primitive streak gradually elongates along the posterior side of the epiblast to reach the distal tip. The most anterior streak cells comprise the 'organizer' region and include the precursors of the so-called 'axial mesendoderm', namely the anterior definitive endoderm and prechordal plate mesoderm, as well as those cells that give rise to the morphologically patent node. Signalling pathways controlled by the transforming growth factor-beta ligand nodal are involved in orchestrating the process of axis formation. Embryos lacking nodal activity arrest development before gastrulation, reflecting an essential role for nodal in establishing P-D polarity by generating and maintaining the molecular pattern within the epiblast, extraembryonic ectoderm and the visceral endoderm. Using a genetic strategy to manipulate temporal and spatial domains of nodal expression reveals that the nodal pathway is also instrumental in controlling both the morphogenetic movements required for orientation of the final axis and for specification of the axial mesendoderm progenitors.  相似文献   

4.
The body wall of Hydra is organized as an epithelial bilayer (ectoderm and endoderm) with an intervening extracellular matrix (ECM), termed mesoglea by early biologists. Morphological studies have determined that Hydra ECM is composed of two basal lamina layers positioned at the base of each epithelial layer with an intervening interstitial matrix. Molecular and biochemical analyses of Hydra ECM have established that it contains components similar to those seen in more complicated vertebrate species. These components include such macromolecules as laminin, type IV collagen, and various fibrillar collagens. These components are synthesized in a complicated manner involving cross-talk between the epithelial bilayer. Any perturbation to ECM biogenesis leads to a blockage in Hydra morphogenesis. Blockage in ECM/cell interactions in the adult polyp also leads to problems in epithelial transdifferentiation processes. In terms of biophysical parameters, Hydra ECM is highly flexible; a property that facilitates continuous movements along the organism's longitudinal and radial axis. This is in contrast to the more rigid matrices often found in vertebrates. The flexible nature of Hydra ECM can in part now be explained by the unique structure of the organism's type IV collagen and fibrillar collagens. This review will focus on Hydra ECM in regard to: 1) its general structure, 2) its molecular composition, 3) the biophysical basis for the flexible nature of Hydra's ECM, 4) the relationship of the biogenesis of Hydra ECM to regeneration of body form, and 5) the functional role of Hydra ECM during pattern formation and cell differentiation.  相似文献   

5.
6.
Members of the EGF-CFC family of proteins have recently been implicated as essential cofactors for Nodal signaling. Here we report the isolation of chick CFC and describe its expression pattern, which appears to be similar to Cfc1 in mouse. During early gastrulation, chick CFC was asymmetrically expressed on the left side of Hensen's node as well as in the emerging notochord, prechordal plate, and lateral plate mesoderm. Subsequently, its expression became confined to the heart fields, notochord, and posterior mesoderm. Implantation experiments suggest that chick CFC expression in the lateral plate mesoderm is dependent on BMP signaling, while in the midline its expression depends on an Activin-like signal. The asymmetric expression domain within Hensen's node was not affected by application of FGF8, Noggin, or Shh antibody. Implantation of cells expressing human or mouse CFC2, or chick CFC on the right side of Hensen's node randomized heart looping without affecting expression of genes involved in left-right axis formation, including SnR, Nodal, Car, or Pitx2. Application of antisense oligodeoxynucleotides to the midline of Hamburger-Hamilton stage 4-5 embryos also randomized heart looping, but in contrast to the overexpression experiments, antisense oligodeoxynucleotide treatment resulted in bilateral expression of Nodal, Car, Pitx2, and NKX3.2, whereas Lefty1 expression in the midline was transiently lost. Application of the antisense oligodeoxynucleotides to the lateral plate mesoderm abolished Nodal expression. Thus, chick CFC seems to have a dual function in left-right axis formation by maintaining Nodal expression in the lateral plate mesoderm and controlling expression of Lefty1 expression in the midline territory.  相似文献   

7.
Patterning of the Xenopus gastrula marginal zone in the axis running equatorially from the Spemann organizer-the so--called "dorsal/ventral axis"--has been extensively studied. It is now evident that patterning in the animal/vegetal axis also needs to be taken into consideration. We have shown that an animal/vegetal pattern is apparent in the marginal zone by midgastrulation in the polarized expression domains of Xenopus brachyury (Xbra) and Xenopus nodal-related factor 2 (Xnr2). In this report, we have followed cells expressing Xbra in the presumptive trunk and tail at the gastrula stage, and find that they fate to presumptive somite, but not to ventrolateral mesoderm of the tailbud embryo. From this, we speculate that the boundary between the Xbra- and Xnr2-expressing cells at gastrula corresponds to a future tissue boundary. In further experiments, we show that the level of mitogen-activated protein kinase (MAPK) activation is polarized along the animal/vegetal axis, with the Xnr2-expressing cells in the vegetal marginal zone having no detectable activated MAPK. We show that inhibition of MAPK activation in Xenopus animal caps results in the conversion of Xnr2 from a dorsal mesoderm inducer to a ventral mesoderm inducer, supporting a role for Xnr2 in induction of ventral mesoderm.  相似文献   

8.
We report a novel developmental mechanism. Anterior-posterior positional information for the vertebrate trunk is generated by sequential interactions between a timer in the early non-organiser mesoderm and the organiser. The timer is characterised by temporally colinear activation of a series of Hox genes in the early ventral and lateral mesoderm (i.e., the non-organiser mesoderm) of the Xenopus gastrula. This early Hox gene expression is transient, unless it is stabilised by signals from the Spemann organiser. The non-organiser mesoderm and the Spemann organiser undergo timed interactions during gastrulation which lead to the formation of an anterior-posterior axis and stable Hox gene expression. When separated from each other, neither non-organiser mesoderm nor the Spemann organiser is able to induce anterior-posterior pattern formation of the trunk. We present a model describing that convergence and extension continually bring new cells from the non-organiser mesoderm within the range of organiser signals and thereby create patterned axial structures. In doing so, the age of the non-organiser mesoderm, but not the age of the organiser, defines positional values along the anterior-posterior axis. We postulate that the temporal information from the non-organiser mesoderm is linked to mesodermal Hox expression.  相似文献   

9.
Gradients of homeoproteins in developing feather buds   总被引:7,自引:0,他引:7  
Homeoproteins are functionally involved in pattern formation. Recently, homeoproteins have been shown to be distributed in a graded fashion in developing limb buds. Here we examine the expression of homeoproteins in chicken feather development by immunocytochemical localization. We find that XlHbox 1 antigen is present in cell nuclei and is distributed in a gradient in the mesoderm of developing feather buds, with strongest expression in the anterior-proximal region. The gradient is most obvious in feather buds from the mid-trunk level. Feather buds from the scapular level express very high levels of XlHbox 1 and feather buds from the caudal region express no XlHbox 1, suggesting that a broad gradient along the body axis is superimposed on a smaller gradient within each individual feather bud. Feather ectoderm also expresses XlHbox 1 antigen but without an obvious graded pattern. Another homeoprotein, Hox 5.2, is also expressed in developing feather buds in a graded way, and its distribution pattern is partially complementary to that of XlHbox 1. These observations suggest that homeoproteins may be involved in setting up the anteroposterior polarity of cell fields at different levels, first for the body axis, then for the limb axis and finally for the feather axis.  相似文献   

10.
Here, we review a recently discovered developmental mechanism. Anterior–posterior positional information for the vertebrate trunk is generated by sequential interactions between a timer in the early non-organiser mesoderm and the Spemann organiser. The timer is characterised by temporally colinear activation of a series of Hox genes in the early ventral and lateral mesoderm (i.e., the non-organiser mesoderm) of the Xenopus gastrula. This early Hox gene expression is transient, unless it is stabilised by signals from the Spemann organiser. The non-organiser mesoderm (NOM) and the Spemann organiser undergo timed interactions during gastrulation which lead to the formation of an anterior–posterior axis and stable Hox gene expression. When separated from each other, neither non-organiser mesoderm nor the Spemann organiser is able to induce anterior–posterior pattern formation of the trunk. We present a model describing that NOM acquires transiently stable hox codes and spatial colinearity after involution into the gastrula and that convergence and extension then continually bring new cells from the NOM within the range of organiser signals that cause transfer of the mesodermal pattern to a stable pattern in neurectoderm and thereby create patterned axial structures. In doing so, the age of the non-organiser mesoderm, but not the age of the organiser, defines positional values along the anterior–posterior axis. We postulate that the temporal information from the non-organiser mesoderm is linked to mesodermal Hox expression. The role of the organiser was investigated further and this turns out to be only the induction of neural tissue. Apparently, development of a stable axial hox pattern requires neural hox patterning.  相似文献   

11.
12.
During vertebrate gastrulation, both concurrent inductive events and cell movements are required for axis formation. Convergence and extension (CE) movements contribute to narrowing and lengthening the forming embryonic axis. MicroRNAs (miRNAs) play a critical role in regulating fundamental cellular functions and developmental processes, but their functions in CE movements are not well known. Zebrafish mir206 is maternally expressed and present throughout blastulation and gastrulation periods. Either gain or loss of function of mir206 leads to severe defects of convergent extension movements both cell autonomously and non-cell autonomously. Mosaic lineage tracing studies reveal that the formation of membrane protrusions and actin filaments is disturbed in mir206-overexpressing embryos or mir206 morphants. Mechanistically, mir206 targets prickle1a (pk1a) mRNA and as a result regulates c-Jun N-terminal protein kinase 2 (JNK2) phosphorylation. pk1a overexpression or knockdown can rescue convergent extension defects induced by mir206 overexpression or knockdown, respectively. Therefore, mir206 is an essential, novel regulator for normal convergent and extension movements by regulating mitogen-activated protein kinase (MAPK) JNK signaling.  相似文献   

13.
Cytoplasmic actin cables are the most prominent actin structures in plant cells, but the molecular mechanism underlying their formation is unknown. The function of these actin cables, which are proposed to modulate cytoplasmic streaming and intracellular movement of many organelles in plants, has not been studied by genetic means. Here, we show that Arabidopsis thaliana formin3 (AFH3) is an actin nucleation factor responsible for the formation of longitudinal actin cables in pollen tubes. The Arabidopsis AFH3 gene encodes a 785–amino acid polypeptide, which contains a formin homology 1 (FH1) and a FH2 domain. In vitro analysis revealed that the AFH3 FH1FH2 domains interact with the barbed end of actin filaments and have actin nucleation activity in the presence of G-actin or G actin-profilin. Overexpression of AFH3 in tobacco (Nicotiana tabacum) pollen tubes induced excessive actin cables, which extended into the tubes'' apices. Specific downregulation of AFH3 eliminated actin cables in Arabidopsis pollen tubes and reduced the level of actin polymers in pollen grains. This led to the disruption of the reverse fountain streaming pattern in pollen tubes, confirming a role for actin cables in the regulation of cytoplasmic streaming. Furthermore, these tubes became wide and short and swelled at their tips, suggesting that actin cables may regulate growth polarity in pollen tubes. Thus, AFH3 regulates the formation of actin cables, which are important for cytoplasmic streaming and polarized growth in pollen tubes.  相似文献   

14.
Fibrillin microfibrils endow mammalian connective tissues with elasticity and are fundamental for the deposition of elastin. The microfibrils are 57nm periodic supramolecular protein polymers with a mass of 2.4MDa per repeat. The detailed structure and organisation of most matrix assemblies is poorly understood due to their large size and complexity and it has proved a major challenge to define their structural organisation. Therefore, we have used low dose electron microscopy and single particle image analysis to study the structure of fibrillin microfibrils. Three novel features were detected: a globular feature that bridges the "arm" region, a double band of density crossing the microfibril and stain penetrating holes present in the interbead region, possibly produced by the removal of microfibril associated proteins in the purification procedure. Fine filaments of approximately 2.4nm diameter are resolved in the interbead region, which correspond to the reported diameter of the fibrillin molecule. Comparison of the stain exclusion pattern of microfibrils with the theoretical stain exclusion pattern of fibrillin packing models indicates that the intramolecular pleating model, where each fibrillin molecule is pleated within one microfibril period allowing extensibility by unpleating, has the best fit to the data.  相似文献   

15.
During vertebrate development, signaling by the TGFbeta ligand Nodal is critical for mesoderm formation, correct positioning of the anterior-posterior axis, normal anterior and midline patterning, and left-right asymmetric development of the heart and viscera. Stimulation of Alk4/EGF-CFC receptor complexes by Nodal activates Smad2/3, leading to left-sided expression of target genes that promote asymmetric placement of certain internal organs. We identified Ttrap as a novel Alk4- and Smad3-interacting protein that controls gastrulation movements and left-right axis determination in zebrafish. Morpholino-mediated Ttrap knockdown increases Smad3 activity, leading to ectopic expression of snail1a and apparent repression of e-cadherin, thereby perturbing cell movements during convergent extension, epiboly and node formation. Thus, although the role of Smad proteins in mediating Nodal signaling is well-documented, the functional characterization of Ttrap provides insight into a novel Smad partner that plays an essential role in the fine-tuning of this signal transduction cascade.  相似文献   

16.
Extracellular matrix (ECM) movements and rearrangements were studied in avian embryos during early stages of development. We show that the ECM moves as a composite material, whereby distinct molecular components as well as spatially separated layers exhibit similar displacements. Using scanning wide field and confocal microscopy we show that the velocity field of ECM displacement is smooth in space and that ECM movements are correlated even at locations separated by several hundred micrometers. Velocity vectors, however, strongly fluctuate in time. The autocorrelation time of the velocity fluctuations is less than a minute. Suppression of the fluctuations yields a persistent movement pattern that is shared among embryos at equivalent stages of development. The high resolution of the velocity fields allows a detailed spatio-temporal characterization of important morphogenetic processes, especially tissue dynamics surrounding the embryonic organizer (Hensen's node).  相似文献   

17.
Mesodermal tissues produce various inductive signals essential for morphogenesis of endodermal organs. However, little is known about how the spatial relationship between the mesodermal signal-producing cells and their target endodermal organs is established during morphogenesis. Here, we report that a mutation in the zebrafish myosin phosphatase targeting subunit 1 (mypt1) gene causes abnormal bundling of actin filaments and disorganization of lateral plate mesoderm (LPM) and endoderm cells. As a result, the coordination between mesoderm and endoderm cell movements is disrupted. Consequently, the two stripes of Bmp2a-expressing cells in the LPM fail to align in a V-shaped pocket sandwiching the liver primordium. Mispositioning Bmp2a-producing cells with respect to the liver primordium leads to a reduction in hepatoblast proliferation and final abortion of hepatoblasts by apoptosis, causing the liverless phenotype. Our results demonstrate that Mypt1 mediates coordination between mesoderm and endoderm cell movements in order to carefully position the liver primordium such that it receives a Bmp signal that is essential for liver formation in zebrafish.  相似文献   

18.
Motions of tropomyosin. Crystal as metaphor.   总被引:5,自引:2,他引:3       下载免费PDF全文
Movements of tropomyosin play an essential role in muscle regulation. This fibrous protein is a two-chain alpha-helical coiled coil that bonds head to tail to form cables wound in the two long grooves of the actin helix. The regulatory switch consists of tropomyosin and a "globular" Ca2+-sensitive protein complex called troponin. The structure of the tropomyosin filaments has now been determined by x-ray crystallography to approximately 15 A resolution. The complete sequence of alpha-tropomyosin is known; by using mercury markers on the cysteine residues the ends of the molecules in the filaments have been identified. Details of the coiled-coil structure have also been visualized by refinement of models against the diffraction data. The average pitch of the coiled coil is approximately 137 A, so that each tropomyosin molecule can make similar contacts with seven actin monomers. The electron density map also indicates that departures from the alpha-helical coiled coil occur in a few localized regions of the molecule, especially at the overlapping ends. Motions of tropomyosin in the crystal lattice are displaced by the character of the Bragg reflections and the strong diffuse scatter. These effects depend markedly on temperature. It appears that the molecular filaments fluctuate freely in a direction perpendicular to their axes. Moreover, the C-terminal half of the molecule "unfolds" to some degree at less than physiological temperatures. Crystallographic results on co-crystals of tropomyosin and a component of troponin (TnT) suggest that this subunit consists of structurally distinct domains, so that the troponin complex is not in fact simply "globular". The interactions of the extended alpha-helical region of TnT may "stiffen" tropomyosin and influence its motions. We picture the tropomyosin/troponin switch in muscle as a restless cable, perpetually making and breaking bonds as it vibrates on the thin filament. These movements of tropomyosin probably depend on two aspects of its design: the regular pattern of coiled-coil linkages with actin; and the aperiodic features that allow flexibility and motion.  相似文献   

19.
Martin SG  Chang F 《Current biology : CB》2006,16(12):1161-1170
BACKGROUND: Formins are a conserved family of actin nucleators responsible for the assembly of diverse actin structures such as cytokinetic rings and filopodia. In the fission yeast Schizosaccharomyces pombe, the formin for3p is necessary for the formation of actin cables, which are bundles of short parallel actin filaments that regulate cell polarity. These filaments are largely organized with their barbed ends facing the cell tip, where for3p is thought to function in their assembly. RESULTS: Here, using a functional for3p-3GFP fusion expressed at endogenous levels, we find that for3p localizes to small dots that appear transiently at cell tips and then move away on actin cables at a rate of 0.3 microm/s. These movements were dependent on the continuous assembly of actin in cables, on the ability of for3p to bind actin within its FH2 domain, and on profilin and bud6p, two formin binding proteins that promote formin activity. Bud6p transiently colocalizes with for3p at the cell tip and stays behind at the cell tip when for3p detaches. CONCLUSIONS: These findings suggest a new model for actin cable assembly: a for3p particle is activated and promotes the assembly of a short actin filament at the cell tip for only seconds. For3p and the actin filament may then be released from the cell tip and carried passively into the cell interior by retrograde flow of actin filaments in the cable. These studies reveal a complex and dynamic cycle of formin regulation and actin cable assembly in vivo.  相似文献   

20.
The non-canonical Wnt/Ca2+ signaling pathway has been implicated in the regulation of axis formation and gastrulation movements during early Xenopus laevis embryo development, by antagonizing the canonical Wnt/beta-catenin dorsalizing pathway and specifying ventral cell fate. However, the molecular mechanisms involved in this antagonist crosstalk are not known. Since Galphaq is the main regulator of Ca2+ signaling in vertebrates and from this perspective probably involved in the events elicited by the non-canonical Wnt/Ca2+ pathway, we decided to study the effect of wild-type Xenopus Gq (xGalphaq) in dorso-ventral axis embryo patterning. Overexpression of xGalphaq or its endogenous activation at the dorsal animal region of Xenopus embryo both induced a strong ventralized phenotype and inhibited the expression of dorsal-specific mesoderm markers goosecoid and chordin. Dorsal expression of an xGalphaq dominant-negative mutant reverted the xGalphaq-induced ventralized phenotype. Finally, we observed that the Wnt8-induced secondary axis formation is reverted by endogenous xGalphaq activation, indicating that it is negatively regulating the Wnt/beta-catenin pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号