首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The completion of meiosis requires the spatial and temporal coordination of cytokinesis and karyokinesis. During meiotic maturation, many events, such as formation, location, and rotation of the meiotic spindle as well as chromosomal movement, polar body extrusion, and pronuclear migration, are dependent on regulation of the cytoskeleton system. To study functions of microfilaments in meiosis, we induced metaphase II (MII) mouse oocytes to resume meiosis by in vitro fertilization or parthenogenetic activation, and we treated such oocytes with cytochalasin B (CB). The changes of the meiotic spindle, as visualized in preparations stained for beta-tubulin and chromatin, were observed by fluorescent confocal microscopy. The meiotic spindle of MII oocytes was observed to be parallel to the plasmalemma. After meiosis had resumed, the spindle rotated to the vertical position so that the second polar body could be extruded into the perivitelline space. When meiosis resumed and oocytes were treated with 10 micro g/ml of CB, the spindle rotation was inhibited. Consequently, the oocyte formed an extra pronucleus instead of extruding a second polar body. These results indicate that spindle rotation is essential for polar body extrusion; it is the microfilaments that play a crucial role in regulating rotation of the meiotic spindle.  相似文献   

2.
Trichlorfon (TCF), an organophosphate insecticide and potent inhibitor of choline esterases, was previously shown to induce first meiotic nondisjunction and spindle aberrations in isolated, follicle cell-denuded mouse oocytes maturing in vitro. To explore dose-response and direct and indirect, potentially synergistic effects of TCF on the somatic cells and the oocyte within a follicle, we presently employed preantral follicle culture. 100 microg/ml TCF added at the time of hormonally stimulated resumption of meiosis of follicle cell-enclosed mouse oocytes, 16 h before in vitro ovulation, induced significant rises in first meiotic nondisjunction in oocytes from preantral follicle culture. Lower concentrations (6 microg/ml TCF) disturbed polar body formation. Nuclear maturation to meiosis II in absence of cytokinesis resulted in significant increases in polyploidy. Oocytes maturing in follicles in the presence of TCF had aberrant second meiotic spindles. Influences of TCF on somatic cell function were evident by reduced follicular mucification in vitro and deceased progesterone production. In contrast to TCF, acetylcholine (0.1-100 microM) increased progesterone production. The observations therefore suggest that TCF influences oocyte maturation and folliculogenesis directly and indirectly. High TCF is aneugenic at first meiotic division in oocytes, irrespective of the presence or absence of follicle cells. At lower concentrations TCF interferes with spindle formation, chromosome congression at meiosis II, and coordination of nuclear and cytoplasmic maturation, posing risks for second meiotic errors. The observations suggest that chronic TCF exposure during maturation in the follicle may predispose oocytes to the formation of chromosomally unbalanced preimplantation embryos after fertilization.  相似文献   

3.
Meiotic maturation of mammalian oocytes is a complex process during which microfilaments and microtubules provide the framework for chromosomal reorganisation and cell division. The aim of this study was to use fluorescence and confocal laser scanning microscopy to examine changes in the distribution of these important cytoskeletal elements and their relationship to chromatin configuration during the maturation of horse oocytes in vitro. Oocytes were cultured in M199 supplemented with pFSH and eLH and, at 0, 12, 24, and 36 hr after the onset of culture, they were fixed for immunocytochemistry and stained with markers for microtubules (a monoclonal anti-alpha-tubulin antibody), microfilaments (AlexaFluor 488 Phalloidin) and DNA (TO-PRO(3)). At the germinal vesicle stage, oocyte chromatin was amorphous and poorly condensed and the microfilaments and microtubules were distributed relatively evenly throughout the ooplasm. After germinal vesicle breakdown, the microtubules were aggregated around the now condensed chromosomes and the microfilaments had become concentrated within the oocyte cortex. During metaphase I, microtubules were detected only in the meiotic spindle, as elongated asters encompassing the aligned chromosomes, and, as maturation progressed through anaphase-I and telophase-I, the spindle assumed a more eccentric position and gradually rotated to assist in the separation of the homologous chromosomes and in the subsequent formation of the first polar body. During metaphase II, the meiotic spindle was a symmetrical, barrel-shaped structure with two poles and with the chromosomes aligned along its midline. At this stage, microtubules were found intermingled with chromatin within the polar body and, although, the bulk of the microfilaments remained within the oocyte cortex, a rich domain was found overlying the spindle. Thus, during the in vitro maturation of horse oocytes both the microfilament and microtubular elements of the cytoskeleton were seen to reorganise dramatically in a fashion that appeared to enable chromosomal alignment and segregation.  相似文献   

4.
Two starfish oocytes with a 12 min time difference in the maturation phase were fused together with electric pulses to make a heteroplasmic conjugate. The starfish used were Asterina pectinifera. The emergence of the first meiotic spindle and the extrusion of the polar bodies in the conjugate were timed. Under polarization microscopy two meiotic spindles emerged with a time difference of 10-11 min, which is close to the time difference in the maturation phase between the original oocytes before fusion. In contrast, subsequent formation of the first two polar bodies occurred successively with a short time lag of 1-3 min between them. Times for the formation of both polar bodies were midway between the anticipated times for polar body formation in respective non-fused control oocytes. Thus, in one nucleus the meiotic division was delayed, while in another nucleus it was accelerated, in a single heteroplasmic conjugate. These two sets of observations indicate the presence of a certain control system that regulates progression of the cell cycle at a point during the period from the entry into metaphase through to late anaphase of meiosis I in starfish oocytes. This type of cell cycle control in starfish oocytes is obviously distinct from the currently accepted view of the cell cycle control by the spindle assembly checkpoint that monitors unattached kinetochores of mitotic chromosomes.  相似文献   

5.
Abnormal oocyte spindle is frequently associated with the infertility of aged women. Directly manipulating the metaphase I (MI) spindle may be a feasible method to overcome this kind of problem. Here, we report that the MI meiotic spindle can be removed from MI mouse oocytes and will autonomously divide into two daughter cells with the same size, morphology and an equal number of chromosomes after culture for 5 h in maturation medium. The division rate of the MI spindle reached 56% after 10-15 h of culture. After transferring the MI meiotic spindle into synchronous ooplasm by electrofusion, about 61% of the reconstructed oocytes continued to complete the first meiosis and extruded a normal first polar body. The matured reconstructed oocytes can also be fertilised. Approximately 50% of the 2-cell embryos developed to the morula stage after in vitro culture.  相似文献   

6.
Polar body formation in oocytes is an extreme form of asymmetric cell division, but what regulates the asymmetric spindle positioning and cytokinesis is poorly understood. During mouse oocyte maturation, the metaphase I spindle forms at the center but then moves to the cortex prior to anaphase I and first polar body emission. We show here that treating denuded mouse oocytes with brefeldin A, an inhibitor of Golgi-based membrane fusion, abolished the asymmetric positioning of the metaphase I spindle and resulted in the formation of two half-size metaphase II eggs, instead of a full-sized egg and a polar body. The normal metaphase II spindle is similarly asymmetrically positioned in the mature egg, where the spindle lies with its axis parallel to the cortex but becomes perpendicular before anaphase II and emission of the second polar body. When ovulated eggs were activated with strontium in the presence of brefeldin A, the metaphase II spindle failed to assume perpendicular position, and the chromosomes separated without the extrusion of the second polar body. Remarkably, symmetric cytokinesis began following a 3 h delay, forming two half-size eggs each containing a pronucleus. BFA-sensitive intracellular vesicular transport is therefore required for spindle positioning in both MI and MII.  相似文献   

7.
Asymmetric division in mouse oocytes: with or without Mos   总被引:15,自引:0,他引:15  
In both vertebrates and invertebrates, meiotic divisions in oocytes are typically asymmetric, resulting in the formation of a large oocyte and small polar bodies. The size difference between the daughter cells is usually a consequence of asymmetric positioning of the spindle before cytokinesis. Spindle movements are often related to interactions between the cell cortex and the spindle asters [1,2]. The spindles of mammalian oocytes are, however, typically devoid of astral microtubules, which normally connect the spindle to the cortex, suggesting that another mechanism is responsible for the unequal divisions in these oocytes. We observed the formation of the first polar body in wild-type oocytes and oocytes derived from c-Mos knockout mice [3]. In wild-type oocytes, the meiotic spindle formed in the centre of the cell and migrated to the cortex just before polar-body extrusion. The spindle did not elongate during anaphase. In mos-/- oocytes, the spindle formed centrally but did not migrate, although an asymmetric division still took place. In these oocytes, the spindle elongated during anaphase and the pole closest to the cortex moved while the other remained in place. Thus, a compensation mechanism exists in mouse oocytes and formation of the first polar body can be achieved in two ways: either after migration of the spindle to the cortex in wild-type oocytes, or after elongation, without migration, of the first meiotic spindle in mos-/- oocytes.  相似文献   

8.
Mitogen-activated protein kinase (MAPK) has been reported to be involved in oocyte maturation in all animals so far examined. In the present study we investigate the expression and localisation of active phosphorylated MAPKs (p44ERK1/p42ERK2) during maturation of pig oocytes. In immunoblot analysis using anti-p44ERK1 antibody which recognised both active and inactive forms of p44ERK1 and p42ERK2, we confirmed that MAPKs were phosphorylated around the time of germinal vesicle breakdown (GVBD) and the active phosphorylated MAPKs (pMAKs) were maintained until metaphase II, as has been reported. On immunofluorescent confocal microscopy using anti-pMAPK antibody which recognised only phosphorylated forms of MAPKs, pMAPK was localised at the spindle poles in pig mitotic cells. On the other hand, in pig oocytes, no signal was detected during GV stage. After GVBD, the area around condensed chromosomes was preferentially stained at metaphase I although whole cytoplasm was faintly stained. At early anaphase I, the polar regions of the meiotic spindle were prominently stained. However, during the progression of anaphase I and telophase I pMAPK was detected at the mid-zone of the elongated spindle, gradually becoming concentrated at the centre. Finally, at the time of emission of the first polar body, pMAPK was detected as a ring-like structure between the condensed chromosomes and the first polar body, and the staining was maintained even after the metaphase II spindle was formed. The inhibition of MAPK activity with the MAPK kinase inhibitor U0126 during the meiosis I/meiosis II transition suppressed chromosome separation, first polar body emission and formation of the metaphase II spindle. From these results, we propose that the spindle-associated pMAPKs play an important role in the events occurring during the meiosis I/meiosis II transition, such as chromosome separation, spindle elongation and cleavage furrow formation in pig oocytes.  相似文献   

9.
Zinc is essential for many biological processes, including proper functioning of gametes. We recently reported that zinc levels rise by over 50% during oocyte maturation and that attenuation of zinc availability during this period could be achieved using the membrane-permeable heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). This zinc insufficiency resulted in formation of large polar bodies, failure to establish metaphase II arrest, and impaired establishment of cortical polarity. As these phenotypes resemble those of MOS null oocytes, we examined the impact of zinc insufficiency on the MOS-MAPK pathway. Reduced levels of both MOS protein and phosphorylation of MAP2K1/2 are observed in zinc-insufficient oocytes; however, these differences appear only after completion of the first meiotic division. In addition, activation of the downstream effector of the MOS pathway, MAPK3/1, is not affected by zinc insufficiency, and reduced MOS levels are observed only with the presence of TPEN after the first polar body extrusion. These data are inconsistent with the hypothesis that reduced MOS mediates the observed phenotype. Finally, MOS overexpression does not rescue the phenotype of zinc-insufficient oocytes, confirming that the observed disruption of asymmetric division and spindle abnormalities cannot be attributed to impaired MOS signaling. Zinc-insufficient oocytes do not increase maturation promoting factor (MPF) activity following the first meiotic division, and increasing MPF activity through expression of nondegradable cyclin B1 partially rescues the ability of zinc-insufficient oocytes to enter metaphase II. Although we have shown that zinc has a novel role in the meiotic cell cycle, it is not mediated through the MOS-MAPK pathway.  相似文献   

10.
The aim of our study was to analyse the cytoskeletal organization of prepubertal goat oocytes. Microtubule and microfilament organization during in vitro maturation of prepubertal and adult goat oocytes and presumptive zygotes of in vitro matured-in vitro fertilized (IVM-IVF) prepubertal goat oocytes were analysed. Oocytes were matured in M-199 with hormones and serum and inseminated with frozen-thawed sermatozoa. Oocytes and presumptive zygotes were treated with anti-alpha-tubulin antibody and fluorescein isothiocyanate (FITC)-labelled goat anti-mouse antibody to stain the microtubules. Microfilaments were localized by means of phalloidin 5 microg/ml conjugated with fluorescein isothiocyanate (FITC-phalloidin). DNA was stained with propidium iodide. Stained oocytes were observed under a confocal laser scanning microscope. At the germinal vesicle nuclear stage, microfilaments were distributed at the cortex of the oocytes. After in vitro maturation, 91.7% of metaphase II (MII) oocytes from adult goats displayed microfilaments in the cortex and within the polar body and were characterized by the presence of a microfilament thickening at the cortical region over the meiotic spindle. In prepubertal goat MII oocytes only 5.7% of oocytes displayed microfilaments at the cortex and within the polar body. After insemination, most of the zygotes displayed microfilaments distributed at the cortex. An undefined microtubular network was observed in adult and prepubertal goat oocytes at the germinal vesicle stage. After in vitro maturation, 100% of MII oocytes from adult goats displayed microtubules on the meiotic spindle and within the polar body. This pattern of distribution was observed in 71.6% of prepubertal goat oocytes. Undefined microtubule networks were present in most of the zygotes analysed. In conclusion, cytoskeletal differences were found between prepubertal and adult goat MII oocytes. Furthermore, most of the zygotes from IVM-IVF prepubertal goat oocytes displayed cytoskeletal anomalies.  相似文献   

11.

Background

An oocyte undergoes two rounds of asymmetric division to generate a haploid gamete and two small polar bodies designed for apoptosis. Chromosomes play important roles in specifying the asymmetric meiotic divisions in the oocytes but the underlying mechanism is poorly understood.

Results

Chromosomes independently induce spindle formation and cortical actomyosin assembly into special cap and ring structures in the cortex of the oocyte. The spindle and the cortical cap/ring interact to generate mechanical forces, leading to polar body extrusion. Two distinct force-driven membrane changes were observed during 2nd polar body extrusion: a protrusion of the cortical cap and a membrane invagination induced by an anaphase spindle midzone. The cortical cap protrusion and invagination help rotate the spindle perpendicularly so that the spindle midzone can induce bilateral furrows at the shoulder of the protruding cap, leading to an abscission of the polar body. It is interesting to note that while the mitotic spindle midzone induces bilateral furrowing, leading to efficient symmetric division in the zygote, the meiotic spindle midzone induced cytokinetic furrowing only locally.

Conclusions

Distinct forces driving cortical cap protrusion and membrane invagination are involved in spindle rotation and polar body extrusion during meiosis II in mouse oocytes.  相似文献   

12.
Female meiotic divisions in higher organisms are asymmetric and lead to the formation of a large oocyte and small polar bodies. These asymmetric divisions are due to eccentric spindle positioning which, in the mouse, requires actin filaments. Recently Formin-2, a straight actin filaments nucleator, has been proposed to control spindle positioning, chromosome segregation as well as first polar body extrusion in mouse oocytes. We reexamine here the possible role of Formin-2 during mouse meiotic maturation by live videomicroscopy. We show that Formin-2 controls first meiotic spindle migration to the cortex but not chromosome congression or segregation. We also show that the lack of first polar body extrusion in fmn2(-/-) oocytes is not due to a lack of cortical differentiation or central spindle formation but to a defect in the late steps of cytokinesis. Indeed, Survivin, a component of the passenger protein complex, is correctly localized on the central spindle at anaphase in fmn2(-/-) oocytes. We show here that attempts of cytokinesis in these oocytes abort due to phospho-myosin II mislocalization.  相似文献   

13.
NuMA expression and function in mouse oocytes and early embryos   总被引:2,自引:0,他引:2  
Nuclear mitotic apparatus protein (NuMA), originally described as a nuclear protein, is an essential component in the formation and maintenance of mitotic spindle poles. In this study, we analyze the expression pattern and function of NuMA in mouse oocytes and early embryos. In germinal vesicle-stage occytes, NuMA was detected both at the centrosome and in the nucleus. However, after nuclear maturation and extrusion of the first polar body, NuMA was concentrated at the broad meiotic spindle poles and at cytasters (centers of cytoplasmic microtubule asters) of mature metaphase II oocytes. Cold-induced depolymerization of microtubules appeared to disassociate NuMA foci from the cytoplasmic cytasters. During fertilization, NuMA was relocated into the reformed male and female pronuclei. Microinjection of anti-NuMA antibody into 1 of 2 cells of 2-cell-stage embryos inhibited normal cell division. These results suggest that NuMA might play an important role in cell division during early embryonic mitosis.  相似文献   

14.
Cytoskeleton which includes microtubule and actin filaments plays important roles during mammalian oocyte maturation. In the present study, we showed that protein kinase C mu (PKC mu) was one potential key molecule which affected cytoskeleton dynamics in mouse oocytes. Our results showed that PKC mu expressed and localized at the poles of the spindle during oocyte maturation, and PKC mu expression reduced in the oocytes from 6-month-old mice or 24 hr in vitro culture. We knocked down the expression of PKC mu in oocytes using morpholino injection to explore the relationship between PKC mu and subcellular structure defects. The loss of PKC mu reduced oocyte maturation competence, showing with decreased polar body extrusion rate and increased rate of symmetric division. Further analysis indicated that PKC mu decrease caused the spindle organization defects, and this could be confirmed by the decreased tubulin acetylation level. Moreover, we found that PKC mu affected the phosphorylation level of cofilin for actin assembly, which further affected cytoplasmic actin distribution and spindle positioning. In summary, our data indicated that PKC mu is one key factor for oocyte maturation through its roles on the spindle organization and actin filament distribution.  相似文献   

15.
Degradation of proteins mediated by ubiquitin-proteasome pathway (UPP) plays important roles in the regulation of eukaryotic cell cycle. In this study, the functional roles and regulatory mechanisms of UPP in mouse oocyte meiotic maturation, fertilization, and early embryonic cleavage were studied by drug-treatment, Western blot, antibody microinjection, and confocal microscopy. The meiotic resumption of both cumulus-enclosed oocytes and denuded oocytes was stimulated by two potent, reversible, and cell-permeable proteasome inhibitors, ALLN and MG-132. The metaphase I spindle assembly was prevented, and the distribution of ubiquitin, cyclin B1, and polo-like kinase 1 (Plk1) was also distorted. When UPP was inhibited, mitogen-activated protein kinase (MAPK)/p90rsk phosphorylation was not affected, but the cyclin B1 degradation that occurs during normal metaphase-anaphase transition was not observed. During oocyte activation, the emission of second polar body (PB2) and the pronuclear formation were inhibited by ALLN or MG-132. In oocytes microinjected with ubiquitin antibodies, PB2 emission and pronuclear formation were also inhibited after in vitro fertilization. The expression of cyclin B1 and the phosphorylation of MAPK/p90rsk could still be detected in ALLN or MG-132-treated oocytes even at 8 h after parthenogenetic activation or insemination, which may account for the inhibition of PB2 emission and pronuclear formation. We also for the first time investigated the subcellular localization of ubiquitin protein at different stages of oocyte and early embryo development. Ubiquitin protein was accumulated in the germinal vesicle (GV), the region between the separating homologous chromosomes, the midbody, the pronuclei, and the region between the separating sister chromatids. In conclusion, our results suggest that the UPP plays important roles in oocyte meiosis resumption, spindle assembly, polar body emission, and pronuclear formation, probably by regulating cyclin B1 degradation and MAPK/p90rsk phosphorylation.  相似文献   

16.
E-64-d, a membrane permeant derivative of E-64, the thiol protease inhibitor, was found to prevent meiotic maturation of mouse oocytes in a dose dependent manner. When immature mouse oocytes were incubated with E-64-d for up to 14 hr, first polar body emission was blocked to 36% at 200 μg/ml and 6% at 400 μg/ml, but germinal vesicle breakdown occurred normally. Cytological analysis revealed that meiotic spindles were not formed, while chromosome condensation occurred. Thus, E-64-d prevents oocytes from progressing to the first meiotic metaphase. When exposed to E-64-d after 8 hr of incubation without E-64-d, one-fourth of oocytes completed the first meiotic division but never progressed to the second metaphase. In three-fourth of the oocytes inhibited to emit the first polar body, spindles disappeared after incubation with E-64-d. The results suggest that E-64-d promotes disassembly of meiotic spindles resulting in inhibition of meiotic maturation. We propose that thiol protease is involved in spindle formation in mouse meiotic maturation.  相似文献   

17.
This study was conducted to assess the role of AMPK in regulating meiosis in mouse oocytes from the germinal vesicle stage to metaphase II. Exposure of mouse cumulus cell‐enclosed oocytes (CEO) and denuded oocytes (DO) during spontaneous maturation in vitro to AMPK‐activating agents resulted in augmentation of the rate and frequency of polar body formation. Inhibitors of AMPK had an opposite, inhibitory effect. In addition, the AMPK inhibitor, compound C (Cmpd C) increased the frequency of oocyte activation. The stimulatory action of the AMPK‐activating agent, AICAR, and the inhibitory action of Cmpd C were diminished if exposure was delayed, indicating an early action of AMPK on polar body formation. The frequency of spontaneous and Cmpd C‐induced activation in CEO was reduced as the period of hormonal priming was increased, and AMPK stimulation eliminated the activation response. Immunostaining of oocytes with antibody to active AMPK revealed an association of active kinase with chromatin, spindle poles, and midbody during maturation. Immunolocalization of the α1 catalytic subunit of AMPK showed an association with condensed chromatin and the meiotic spindle but not in the spindle poles or midbody; α2 stained only diffusely throughout the oocyte. These data suggest that AMPK is involved in a regulatory capacity throughout maturation and helps promote the completion of meiosis while suppressing premature activation. Mol. Reprod. Dev. 77:888–899, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Ultrastructural changes in the maturing oocyte of the sea urchin Hemicentrotus pulcherrimus were observed, with special reference to the behavior of centrioles and chromosomes, using oocytes that had spontaneously started the maturation division process in vitro after dissection from ovaries. The proportion of oocytes entering the maturation process differed from batch to batch. In those eggs that accomplished the maturation division, it took ~4.5-5 h from the beginning of germinal vesicle breakdown to the formation of a second polar body. Serial sections revealed that a young oocyte before germinal vesicle breakdown had a pair of centrioles with procentrioles, located between the presumed animal pole and the germinal vesicle and accompanied by amorphous aggregates of moderately dense material and dense granules (granular aggregate). Just before germinal vesicle breakdown, a pair of fully grown centrioles located in the granular aggregate, which is present until this stage and then disappears, had already separated from another pair of centrioles. In meiosis I, each division pole had two centrioles, whereas in meiosis II each had only one. The two centrioles in the secondary oocyte separated into single units and formed the mitotic figure of meiosis II. The first polar body had two centrioles and the second had only one. The two centrioles in the first polar body did not form the mitotic figure nor did they separate at the time of meiosis II. These results indicate that, in sea urchins, duplication of the centrioles does not occur during the two successive meiotic divisions and the egg inherits only one centriole from the primary oocyte, confirming the results previously reported for starfish oocytes.  相似文献   

19.
In vitro studies of meiotic maturation of mouse oocytes have been carried out in the presence of several drugs. The individual steps of nuclear progression, including dissolution of the nuclear (germinal vesicle) membrane, condensation of dictyate chromatin into compact bivalents, formation of the first metaphase spindle, and extrusion of the first polar body, are each susceptible to one or more of these drugs. Germinal vesicle breakdown, the initial morphological feature characteristic of meiotic maturation, is inhibited by dibutyryl cyclic AMP. However, even in the presence of dibutyryl cyclic AMP, the nuclear membrane becomes extremely convoluted and condensation of chromatin is initiated but aborts at a stage short of compact bivalents. Germinal vesicle breakdown and chromatin condensation take place in an apparently normal manner in the presence of puromycin, Colcemid, or cytochalasin B. Nuclear progression is blocked at the circular bivalent stage when oocytes are cultured continuously in the presence of puromycin or Colcemid, whereas oocytes cultured in the presence of cytochalasin B proceed to the first meiotic metaphase, form an apparently normal spindle, and arrest. Emission of a polar body is inhibited by all of these drugs. The inhibitory effects of these drugs on meiotic maturation are reversible to varying degrees dependent upon the duration of exposure to the drug and upon the nature of the drug. These studies suggest that dissolution of the mouse oocyte's germinal vesicle and condensation of chromatin are not dependent upon concomitant protein synthesis or upon microtubules. On the other hand, the complete condensation of chromatin into compact bivalents apparently requires breakdown of the germinal vesicle. Failure of homologous chromosomes to separate after normal alignment on the meiotic spindle in the presence of cytochalasin B suggest that microfilaments may be involved in nuclear progression at this stage of maturation. Cytokinesis, in the form of polar body formation, is blocked when any one of the earlier events of maturation fails to take place.  相似文献   

20.
The cellular functions of the trans-Golgi network protein TGN38 remain unknown. In this research, we studied the expression, localization and functions of TGN38 in the meiotic maturation of mouse oocytes. TGN38 was expressed at every stage of oocyte meiotic maturation and colocalized with γ-tubulin at metaphase I and metaphase II. The spindle microtubule disturbing agents nocodazole and taxol did not affect the colocalization of TGN38 and γ-tubulin. Depletion of TGN38 with specific siRNAs resulted in increased metaphase I arrest, accompanied with spindle assembly checkpoint activation and decreased first polar extrusion (PB1). In the oocytes that had extruded the PB1 after the depletion of TGN38, symmetric division occurred, leading to the production of 2 similarly sized cells. Moreover, the peripheral migration of metaphase I spindle and actin cap formation were impaired in TGN38-depleted oocytes. Our data suggest that TGN38 may regulate the metaphase I/anaphase I transition and asymmetric cell division in mouse oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号