首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new species of benthic marine dinoflagellate, Pyramidodinium spinulosum Horiguchi, Moriya, Pinto & Terada is described from the deep (36 m) seafloor off Mageshima Island, Kagoshima Prefecture, Japan in the subtropical region of the northwest Pacific. The life cycle of the dinoflagellate consists of a dominant, attached, dome‐shaped, vegetative form and short‐lasting, motile cell. Asexual reproduction takes place by the formation of two motile cells within each non‐motile cell. The released motile cells swim only for a short period and transform directly into the dome‐shaped vegetative form. The duration of the cell cycle varies and can be extremely long, ranging 5–38 days under culture conditions. The non‐motile cell is enclosed by a cell wall and its surface is covered with many (80 – 130) spines of various length. The dinoflagellate is photosynthetic and contains many (more than 50) discoidal chloroplasts. Phylogenetic analysis reveals that the dinoflagellate is closely related to the type species of the genus Pyramidodinium, P. atrofuscum which also possesses a dominant, attached, non‐motile form. However, P. spinulosum can be clearly distinguished from P. atrofuscum by the cell shape (dome‐shaped vs. pyramid‐shaped) and surface ornamentation (spines vs. wart‐like processes) of the non‐motile form. Based on these morphological differences together with molecular evidence, it was concluded that this organism from a deep water sand sample should be described as a second species of the genus Pyramidodinium, P. spinulosum.  相似文献   

2.
A new marine sand‐dwelling coccoid dinoflagellate Pyramidodinium atrofuscum Horiguchi et Sukigara gen. et sp. nov. is described from Jellyfish Lake, Republic of Palau. The dinoflagellate alternates a non‐motile vegetative stage with a motile gymnodinioid stage within its life cycle. The non‐motile stage is dominant in the life cycle and the dinoflagellate reproduces itself by means of the production of two motile cells. The released motile cell swims only for a short period and is directly transformed into the non‐motile cell. The non‐motile cell is sessile, pyramidal in shape, with a single longitudinal ridge and a double transverse ridge. The surface of the cell wall is covered with many processes. The motile cell has a Gymnodinium‐like morphology, but no apical groove is present. An ultrastructural study revealed that the dinoflagellate possesses typical dinoflagellate organelles. Based on the unique morphology of the vegetative non‐motile stage, we propose a new genus Pyramidodinium for this dinoflagellate, with the type species Pyramidodinium atrofuscum Horiguchi et Sukigara, gen. et sp. nov.  相似文献   

3.
A new raphidophyte flagellate is described from the river mouth of the Daintree River, north-east Australia where there are extensive mangrove forests. The organism has two distinct phases: a club-shaped motile form, and a more or less spherical benthic non-motile form. The motile cell is metabolic and possesses 10–20 chloroplasts. The chloroplasts are imbricated, somewhat reminiscent of roofing tiles. A unique structure has been found at the posterior end of the cell. It is a tubular invagination, which consists of a single membrane supported by many small flattened vesicles. In addition, the structure is surrounded by many fibril-containing vesicles. The tubular invagination is different from both the contractile vacuoles and the pusules of dinoflagellates in both behavior and structure. Based on the possession of these unique features, it is concluded that the this mangrove flagellate should be described as a new species in a new genus and the name Haramonas dimorpha Horiguchi gen. et sp. nov. is proposed.  相似文献   

4.
A new species of Amphidinium, A. cupulatisquama Tamura et Horiguchi, from sand samples from Ikei Island, Okinawa Prefecture in subtropical Japan, is described based on light, scanning and transmission electron microscopy and the partial sequencing of the large subunit rDNA gene. The species has a typical morphology for the genus, but is distinguished from previously described species by having a combination of the following characteristics: (i) a relatively large cell (over 30 µm in length); (ii) possessing an eyespot on the dorsal side of the cingulum; (iii) the longitudinal flagellum emerging from a point close to the cingulum; (iv) cell division taking place in the motile phase; and (v) possessing body scales. This is the third species of this genus to possess body scales. The body scales of A. cupulatisquama are uniform and cup‐shaped in side view and elliptical in face view. Their dimensions are 136.4 nm by 91.0 nm by 81.8 nm high. In side view, the scale is seen to have a thick lower half and a thin upper half. This scale type is very different from those of previously reported Amphidinium species (HG114 and HG115). The molecular tree indicated that A. cupulatisquama and the two other strains of body scale‐bearing Amphidinium are distantly related within the Amphidinium clade.  相似文献   

5.
A new species of the Raphidophyceae, Haramonas pauciplastida sp. nov. from Canada is described. The genus Haramonas has been described based on the type species Haramonas dimorpha and currently only two species are known. This new alga belongs to the genus because it possesses a tubular invagination at the posterior end of the cell, producing a large amount of mucilage and generating both motile and non-motile phases in its life cycle. The chloroplast color of H. pauciplastida is yellowish green, and is similar to that of Haramonas viridis Horiguchi et Hoppenrath . However, this alga differs from the other species of the genus in that it possesses fewer chloroplasts, which are rarely overlapping. The ultrastructual study shows differences between these two species in the number of thylakoids in the lamella, the presence of a scattered pyrenoid matrix, and the position of the plastoglobuli. The phylogenetic analyses of the small subunit ribosomal RNA gene from the Haramonas species reveal that three species can be distinguished genetically from each other and they form a robust clade in the Raphidophyceae. This result supports the notion that the characteristic features of Haramonas are synapomorphies. This is the first report of molecular data from the Haramonas species.  相似文献   

6.
A new sand‐dwelling dinoflagellate from Palau, Galeidinium rugatum Tamura et Horiguchi gen. et sp. nov., is described. The life cycle of this new alga consists of a dominant nonmotile phase and a brief motile phase. The motile cell transforms itself directly into the nonmotile cell after swimming for a short period, and cell division takes place in the nonmotile phase. The nonmotile cell possesses a dome‐like cell covering, which is wrinkled and equipped with a transverse groove on the surface. The cell has 10–20 chloroplasts and a distinct eyespot. The motile cell is Gymnodinium‐like in shape. The dinoflagellate possesses an endosymbiotic alga to which the chloroplasts belong and which is separated from the host (dinoflagellate) cytoplasm by a unit membrane. The endosymbiont cytoplasm also possesses its own eukaryotic nucleus and mitochondria. The eyespot is surrounded by triple membranes and is located in the host cytoplasm. Photosynthetic pigment analysis, using HPLC, revealed that G. rugatum possesses fucoxanthin as the principal accessory pigment instead of peridinin. The rbcL tree showed that G. rugatum is monophyletic with Durinskia baltica (Levander) Carty et Cox and Kryptoperidinium foliaceum (Stein) Lindemann and that this clade is closely related to the pennate diatom, Cylindrotheca sp. The endosymbiont of G. rugatum is therefore shown to be a diatom. Phylogenetic analysis based on small subunit rDNA sequences demonstrated that G. rugatum, D. baltica, and K. foliaceum, all of which are known to harbor an endosymbiont of diatom origin, are closely related.  相似文献   

7.
Pinguiochrysis pyriformis gen. et sp. nov. is a brown, naked, non‐motile, marine picoplankton. A culture was established from a surface sample collected in 1991 from the tropical Western Pacific Ocean. Typical cells of P. pyriformis are distinctively pear‐shaped and have one ovoid chloroplast; these two features distinguish this species from the other picophytoplankton species. However, the pyriform morphology is not consistent and cells frequently change to a subspherical shape. The chloroplast and mitochondrion ultrastructure confirm that this species belongs to the photosynthetic stramenopiles (chromophytes). Additional distinctive ultrastructural characteristics of P. pyriformis include (i) a chloroplast envelope forming a tubular invagination that penetrates into the pyrenoid; (ii) thylakoid lamellae consisting of more than three layers in some cells; (iii) the lack of basal bodies and centrioles; and (iv) the lack of scales or other extracellular structures. Based on the morphological features, this picoplanktonic species was described as a new species and placed in the Pinguiophyceae on the basis of the molecular phylogenetic analysis and biochemical data published elsewhere.  相似文献   

8.
A new heterotrophic sand‐dwelling dinoflagellate, Ankistrodinium armigerum K. Watanabe, Miyoshi, Kubo, Murray et Horiguchi sp. nov., is described from Ishikari Beach, Hokkaido, Japan and Port Botany, NSW, Australia. The dinoflagellate is laterally compressed, possessing a short triangular epicone and a large sac‐like hypocone. It possesses a right‐handed cingulum and a deeply‐incised sulcus. The sulcus descends towards the posterior of the cell where it becomes much deeper and wider, resulting in a bilobed ventral side to the hypocone, with a greater excavation of the left lobe than the right. In addition, the right lobe of the hypocone is shorter than the left lobe, which allows a partial view of the left sulcal wall when the cell is viewed from its right side. The sulcus ascends in the epicone to form an apical groove. The apical groove is linear but terminates in an ellipsoid fashion and its extremity approaches, but does not form a closed loop with the apical end of the linear portion. The dinoflagellate possesses two distinct size classes of trichocysts. The large trichocysts are located in the posterior part of the cell, while small trichocysts are distributed throughout the cell. The dinoflagellate shares morphological characteristics with the heterotrophic sand‐dwelling dinoflagellate, Ankistrodinium semilunatum, the type species of the genus. These include a laterally compressed cell, a right‐handed cingulum, a deeply‐incised sulcus and the same basic structure to the apical groove. Molecular phylogenetic analyses based on small and large subunits of rDNA showed that in both trees, A. semilunatum and A. armigerum formed a robust clade, suggesting that these two species are closely related. Because no organism with the characteristics of this species exists and because this species is closely related to A. semilunatum, we concluded that this species should be described as a second species of the genus Ankistrodinium.  相似文献   

9.
A new armored dinoflagellate species, Heterocapsa psammophila Tamura, Iwataki et Horiguchi sp. nov. is described from Kenmin‐no‐hama beach, Hiroshima, Japan using light and electron microscopy. This dinoflagellate possesses the typical thecal plate arrangement of the genus Heterocapsa, Po, cp, 5′, 3a, 7′′, 6c, 5s, 5′′′, 2′′′′; and the 3‐D body scales of Heterocapsa on the plasma membrane. The cell shape is ovoidal. The spherical nucleus and the pyrenoid are situated in the hypotheca and the epitheca, respectively. The ultrastructure of H. psammophila is typical of dinoflagellates and the pyrenoid is invaginated by cytoplasmic tubules. H. psammophila is distinguished from all other hitherto‐described Heterocapsa species by the cell shape, the relative position of the nucleus and pyrenoid and the structure of the body scale. The habitat and behavior of this new species in culture suggest that the organism is truly a sand‐dwelling species.  相似文献   

10.
A new potentially ichthyotoxic dinoflagellate genus, Takayama de Salas, Bolch, Botes et Hallegraeff gen. nov., is described with two new species isolated from Tasmanian (Australia) and South African coastal waters: T. tasmanica de Salas, Bolch et Hallegraeff, sp. nov. and T. helix, de Salas, Bolch, Botes et Hallegraeff, sp. nov. The genus and two species are characterized by LM and EM of field samples and laboratory cultures as well as large subunit rDNA sequences and HPLC pigment analyses of several cultured strains. The new Takayama species have sigmoid apical grooves and contain fucoxanthin and its derivatives as the main accessory pigments. Takayama tasmanica is similar to the previously described species Gymnodinium pulchellum Larsen, Gyrodinium acrotrochum Larsen, and G. cladochroma Larsen in its external morphology but differs from these in having two ventral pores, a large horseshoe‐shaped nucleus, and a central pyrenoid with radiating chloroplasts that pass through the nucleus. It contains gyroxanthin‐diester and a gyroxanthin‐like accessory pigment, both of which are missing in T. helix. Takayama helix has an apical groove that is nearly straight while still being clearly inflected. A ventral pore or slit is present. It has numerous peripheral, strap shaped, and spiraling chloroplasts with individual pyrenoids and a solid ellipsoidal nucleus. The genus Takayama has close affinities to the genera Karenia and Karlodinium.  相似文献   

11.
A new species of the dinoflagellate genus Cachonina, C. illdefina sp. nov., was isolated from a red tide off El Capitan State Park, Santa Barbara County, California, in October 1973. The organism is light yellowgreen in color with deeply incised girdle and sulcal grooves. Electron microscopy of the organism, revealed a typical dinokaryotic nucleus. The chloroplasts of the organism are connected, and often contain microtubule-like elements, 25 nm diam. The pyrenoids are characterized as excluding chloroplast thylakoids and ribosomes, although containing an amorphous matrix and numerous tubular invaginations from the cytoplasm. The pyrenoids become detached from the chloroplasts and degenerate into small vesicles. C. illdefina is not bioluminescent.  相似文献   

12.
Two types of new anaerobic bacteria were isolated from anoxic freshwater sediments. They grew in mineral medium with oxalate as sole energy source and with acetate as main carbon source. Oxalate as well as oxamate (after deamination) were decarboxylated to formate with growth yields of 1.2–1.4 g dry cell matter per mol oxalate degraded. No other organic or inorganic substrates were used, and no electron acceptors were reduced. Strain WoOx3 was a Gramnegative, non-sporeforming, motile vibrioid rod with a guanine-plus-cytosine content of the DNA of 51.6 mol%. It resembled the previously described genus Oxalobacter, and is described as a new species, O. vibrioformis. Strain AltOx1 was a Gram-positive, spore-forming, motile rod with a DNA base ratio of 36.3 mol% guanine-plus-cytosine. This isolate is described as a new species of the genus Clostridium, C. oxalicum.  相似文献   

13.
Two species of the genus Amphidiniopsis, a marine armoured, sand‐dwelling dinoflagellate, Amphidiniopsis hexagona Yoshimatsu, Toriumi et Dodge sp. nov. and Amphidiniopsis swedmarkii (Balech) Dodge were collected from Japanese sandy beaches, and their morphologic features were observed by light microscopy and scanning electron microscopy. Amphidiniopsis hexagona was hexagonal in ventral view and measured 44–59 urn in length and 40–53 urn in width. The plate formula is Po, 4′, 2a, 7″, 3c, 4s (+ 2 accessory), 5″″, 2″″. This plate arrangement of A. hexagona is essentially the same as those of Amphidiniopsis hirusta and A. swedmarkii, but this new species can be readily distinguished from the latter two species by the following characters: (i) the cell shape; (ii) the presence of an antapical spine; and (iii) the surface ornamentation of thecal plates.  相似文献   

14.
15.
A new species of marine sand‐dwelling dinoflagellate, Plagiodinium ballux N. Yamada, Dawut, R. Terada & T. Horiguchi is described from a deep (36 m) seafloor off Takeshima Island, Kagoshima Prefecture, Japan in the subtropical region of the northwest Pacific. The species is thecate and superficially resembles species of Prorocentrum, but possesses an extremely small epitheca. The cell varies from ovoid to a rounded square, and is small (15.0–22.5 μm in length) and laterally compressed. The thecal plates are smooth and the thecal plate arrangement (Po, 1′, 0a, 5″, 5C, 2S, 5?, 0p, 1″″) is similar to that of Plagiodinium belizeanum, the type species of the genus. Molecular phylogenetic analyses based on SSU rDNA and partial LSU rDNA reveal that the dinoflagellate is closely related to P. belizeanum, but it can be clearly distinguished by its size and cell shape. This suite of morphological and molecular differences leads to the conclusion that this deep benthic dinoflagellate represents a new species of the genus Plagiodinium.  相似文献   

16.
The chlorococcalean genus Hemichloris is characterized by the possession of two chloroplasts per vegetative cell. The occurrence of a second species of the genus is reported (H. polyspora sp. nov.). Just as H. antarctica it grows cryptoendolithically in sandstone in Southern Victoria Land, Antarctica. In H. antarctica propagation by two autospores prevails over four, whilst in the new species H. polyspora in general four or eight (rarely 16 or 32) autospores are produced and Borodinella-stages do occur typically. Sexuality and zoosporulation do not exist in both species. Internal structures of chloroplasts can be observed by light microscopy more regularly in H. polyspora than in H. antarctica and under various conditions. Investigations of both Hemichloris species by transmission electron microscopy show them to go back to more or less extended assemblages of plastoglobuli. In both species the plastoglobuli are arranged around tubular inflations of thylakoids and apparently attached to the thylakoids. Keeping the cultures for three (even up to seven) months without light makes them survive and causes coming forth of the chloroplast structure throughout.  相似文献   

17.
A naked dinoflagellate with a unique arrangement of chloroplasts in the center of the cell was isolated from the northern Baltic proper during a spring dinoflagellate bloom (March 2005). Morphological, ultrastructural, and molecular analyses revealed this dinoflagellate to be undescribed and belonging to the genus Gymnodinium F. Stein. Gymnodinium corollarium A. M. Sundström, Kremp et Daugbjerg sp. nov. possesses features typical of Gymnodinium sensu stricto, such as nuclear chambers and an apical groove running in a counterclockwise direction around the apex. Phylogenetic analyses based on partial nuclear‐encoded LSU rDNA sequences place the species in close proximity to G. aureolum, but significant genetic distance, together with distinct morphological features, such as the position of chloroplasts, clearly justifies separation from this species. Temperature and salinity experiments revealed a preference of G. corollarium for low salinities and temperatures, confirming it to be a cold‐water species well adapted to the brackish water conditions in the Baltic Sea. At nitrogen‐deplete conditions, G. corollarium cultures produced small, slightly oval cysts resembling a previously unidentified cyst type commonly found in sediment trap samples collected from the northern and central open Baltic Sea. Based on LSU rDNA comparison, these cysts were assigned to G. corollarium. The cysts have been observed in many parts of the Baltic Sea, indicating the ecologic versatility of the species and its importance for the Baltic ecosystem.  相似文献   

18.
The pollen morphology of 28 species of Parnassia L. was investigated with light microscopy and scanning electron microscopy (SEM). The shape of pollen grains in this genus varies from subspheroidal to prolate in equatorial view and is three-lobed circular in the polar view. Pollen grains are usually radially symmetrical, isopolar, tricolporate or syntricolporate, with reticulate sculpture. The pollen characteristics among species are fairly similar to each other. Morphological information regarding the pollen grains shows that Parnassia is a natural genus. Based on exine ornamentation observed under SEM, three types of pollen grains were recognized: (i) type I, with foveolate-reticulate sculpture; (ii) type II, with a finely reticulate sculpture; and (iii) type III, with a coarsely reticulate sculpture. Most sections of this genus have one type of sculpture of pollen morphology, but Sect. Nectarotrilobos has three types of sculpture and Sect.Saxifragastrum has two types of sculpture. All three types of sculpture can be found in Southwest China,with species with the longest (Parnassia delavayi Franch.) and shortest (Parnassiafaberi Oliv.) colpi,implying that Southwest China is the center of diversification of the genus.  相似文献   

19.
Cover     
ON THE COVER: [Benthic unicells plus abandoned cell walls following zoospore release of the new marine, sand‐dwelling genus Chrysoparadoxa australica gen. et sp. nov. (Chrysoparadoxophyceae) photographed with differential interference contrast optics. Two chloroplasts are U‐shaped at the ends of the cells and then split into 2 lobes. Ultrastructure shows the chloroplasts to be surrounded by only 2 membranes, a novel feature within the heterokonts. Photo credit: R Wetherbee. Vol. 55, No. 2, pp. 257–278 ]  相似文献   

20.
The genus Esoptrodinium Javornický consists of freshwater, athecate dinoflagellates with an incomplete cingulum. Strains isolated thus far feed on microalgae and most possess obvious pigmented chloroplasts, suggesting mixotrophy. However, some geographic isolates lack obvious pigmented chloroplasts. The purpose of this study was to comparatively examine this difference and the associated potential for mixotrophy among different isolates of Esoptrodinium. All isolates phagocytized prey cells through an unusual hatch‐like peduncle located on the ventral episome, and were capable of ingesting various protist taxa. All Esoptrodinium isolates required both food and light to grow. However, only the tested strain with visible pigmented chloroplasts benefited from light in terms of increased biomass (phototrophy). Isolates lacking obvious chloroplasts received no biomass benefit from light, but nevertheless required light for sustained growth (i.e., photoobligate, but not phototrophic). Isolates with visible chloroplasts exhibited chlorophyll autofluorescence and formed a monophyletic psbA gene clade that suggested Esoptrodinium possesses inherited, peridinoid‐type plastids. One isolate with cryptic, barely visible plastids lacked detectable chlorophyll and exhibited an apparent loss‐of‐function mutation in psbA, indicating the presence of nonphotosynthetic plastids. The other isolate that lacked visible chloroplasts lacked both detectable chlorophyll and an amplifiable psbA sequence. The results demonstrate mixotrophy quantitatively for the first time in a freshwater dinoflagellate, as well as apparent within‐clade loss of phototrophy along with a correlated mutation sufficient to explain that phenotype. Phototrophy is a variable trait in Esoptrodinium; further study is required to determine if this represents an inter‐ or intraspecific (allelic) characteristic in this taxon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号