首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Summary Current methods for creating transgenic varieties are labor and time intensive, comprised of the generation of hundreds of plants with random DNA insertions, screening for the few individuals with appropriate transgene expression and simple integration structure, and followed by a lengthy breeding process to introgress the engineered trait into cultivated varieties. Various modifications of existing methods have been proposed to speed up the different steps involved in plant transformation, as well as a few add-on technologies that seek to address issues related to biosafety or intellectual property. The problem with an assortment of independently developed improvements is that they do not integrate seamlessly into a single transformation system. This paper presents an integrated strategy for plant transformation, where the introduced DNA will be inserted precisely into the genome, the transgenic locus will be introgressed rapidly into field varieties, the extraneous transgenic DNA will be removed, the transgenic plants will be molecularly tagged, and the transgenic locus may be excised from pollen and/or seed.  相似文献   

2.
Effects of individual quantitative trait loci (QTLs) can be isolated with the aid of linked genetic markers. Most studies have analyzed each marker or pair of linked markers separately for each trait included in the analysis. Thus, the number of contrasts tested can be quite large. The experimentwise type-I error can be readily derived from the nominal type-I error if all contrasts are statistically independent, but different traits are generally correlated. A new set of uncorrelated traits can be derived by application of a canonical transformation. The total number of effective traits will generally be less than the original set. An example is presented for DNA microsatellite D21S4, which is used as a marker for milk production traits of Israeli dairy cattle. This locus had significant effects on milk and protein production but not on fat. It had a significant effect on only one of the canonical variables that was highly correlated with both milk and protein, and this variable explained 82% of the total variance. Thus, it can be concluded that a single QTL is affecting both traits. The effects on the original traits could be derived by a reverse transformation of the effects on the canonical variable.  相似文献   

3.
Transgene integration mediated by heterologous site-specific recombination (SSR) systems into the dedicated genomic sites has been demonstrated in a few different plant species. This approach of plant transformation generates a precise site-specific integration (SSI) structure consisting of a single copy of the transgene construct. As a result, stable transgene expression correlated with promoter strength and gene copy number is observed among independent transgenic lines and faithfully transmitted through subsequent generations. Site-specific integration approaches use selectable marker genes, removal of which is necessary for the implementation of this approach as a biotechnology application. As SSR systems are also excellent tools for excising marker genes from transgene locus, a molecular strategy involving gene integration followed by marker excision, each mediated by a distinct recombination system, was earlier proposed. Experimental validation of this approach is the focus of this work. Using FLPe-FRT system for site-specific gene integration and heat-inducible Cre-lox for marker gene excision, marker-free SSI lines were developed in the first generation itself. More importantly, progeny derived from these lines inherited the marker-free locus, indicating efficient germinal transmission. Finally, as the transgene expression from SSI locus was not altered upon marker excision, this method is suitable for streamlining the production of marker-free SSI lines.  相似文献   

4.
Assortative mating is an important driver of speciation in populations with gene flow and is predicted to evolve under certain conditions in few‐locus models. However, the evolution of assortment is less understood for mating based on quantitative traits, which are often characterized by high genetic variability and extensive linkage disequilibrium between trait loci. We explore this scenario for a two‐deme model with migration, by considering a single polygenic trait subject to divergent viability selection across demes, as well as assortative mating and sexual selection within demes, and investigate how trait divergence is shaped by various evolutionary forces. Our analysis reveals the existence of sharp thresholds of assortment strength, at which divergence increases dramatically. We also study the evolution of assortment via invasion of modifiers of mate discrimination and show that the ES assortment strength has an intermediate value under a range of migration‐selection parameters, even in diverged populations, due to subtle effects which depend sensitively on the extent of phenotypic variation within these populations. The evolutionary dynamics of the polygenic trait is studied using the hypergeometric and infinitesimal models. We further investigate the sensitivity of our results to the assumptions of the hypergeometric model, using individual‐based simulations.  相似文献   

5.
We developed a site-directed integration (SDI) system for Agrobacterium-mediated transformation to precisely integrate a single copy of a desired gene into a predefined target locus by recombinase-mediated cassette exchange (RMCE). We produced site-specific transgenic tobacco plants from four target lines and examined expression of the transgene in T1 site-specific transgenic tobacco plants, which were obtained by backcrossing. We found that site-specific transgenic plants from the same target lines showed approximately the same level of expression of the transgene. Moreover, we demonstrated that site-specific transgenic plants showed much less variability of transgene expression than random-integration transgenic plants. Interestingly, transgenes in the same direction at the same target locus showed the same level of activity, but transgenes in different directions showed different levels of activity. The expression levels of transgene did not correlate with those of the target gene. Our results showed that the SDI system could benefit the precise comparisons between different gene constructs, the characterization of different chromosomal regions and the cost-effective screening of reliable transgenic plants.  相似文献   

6.
In an analysis of 339 independent T 0 transgenic rice lines generated by Agrobacterium-mediated transformation, albino plants appeared in the T 1 generation in two single-copy transgenic lines, O54 and O36 and in one double-copy transgenic line, C18. While the T 0 plants of these three lines were green, albino and green plants emerged in a 1:3 ratio in the T 1 generation. The albino phenotype segregated as a monogenic recessive trait. Southern blot analysis of the green and albino plants in the T 1 generation confirmed that the albino trait and the T-DNA insertion events were unlinked. Segregation of the albino trait from the transgenic trait in the lines O54 and O36 was confirmed in T 2 and T 3 generations, respectively. Homozygous transgenic plants free from the albino trait were also identified. In the double-copy transgenic line C18, we genetically separated the two transgenic loci, out-segregated the albino locus from both transgene loci, and identified homozygous plants for each of the transgenic events by Southern blot analysis in the T 1 generation itself. Thus, we demonstrate that when an albino trait appears in the T 1 generation and is unlinked to a transgene locus, the albino locus can be segregated from the transgene locus and homozygous transgenic lines free from albinos can be established.  相似文献   

7.
Recent developments of tools for targeted genome modification have led to new concepts in how multiple traits can be combined. Targeted genome modification is based on the use of nucleases with tailor‐made specificities to introduce a DNA double‐strand break (DSB) at specific target loci. A re‐engineered meganuclease was designed for specific cleavage of an endogenous target sequence adjacent to a transgenic insect control locus in cotton. The combination of targeted DNA cleavage and homologous recombination–mediated repair made precise targeted insertion of additional trait genes (hppd, epsps) feasible in cotton. Targeted insertion events were recovered at a frequency of about 2% of the independently transformed embryogenic callus lines. We further demonstrated that all trait genes were inherited as a single genetic unit, which will simplify future multiple‐trait introgression.  相似文献   

8.
In this article, we study the influence of dominance on the evolution of assortative mating. We perform a population-genetic analysis of a two-locus two-allele model. We consider a quantitative trait that is under a mixture of frequency-independent stabilizing selection and density- and frequency-dependent selection caused by intraspecific competition for a continuum of resources. The trait is determined by a single (ecological) locus and expresses intermediate dominance. The second (modifier) locus determines the degree of assortative mating, which is expressed in females only. Assortative mating is based on similarities in the quantitative trait ('magic trait' model). Analytical conditions for the invasion of assortment modifiers are derived in the limit of weak selection and weak assortment. For the full model, extensive numerical iterations are performed to study the global dynamics. This allows us to gain a better understanding of the interaction of the different selective forces. Remarkably, depending on the size of modifier effects, dominance can have different effects on the evolution of assortment. We show that dominance hinders the evolution of assortment if modifier effects are small, but promotes it if modifier effects are large. These findings differ from those in previous work based on adaptive dynamics.  相似文献   

9.
Abstract: Many animals and plants show a correlation between the traits of the individuals in the mating pair, implying assortative mating. Given the ubiquity of assortative mating in nature, why and how it has evolved remain open questions. Here we attempt to answer these questions in those cases where the trait under assortment is the same in males and females. We consider the most favorable scenario for assortment to evolve, where the same trait is under assortment and viability selection. We find conditions for assortment to evolve using a multilocus formalism in a haploid population. Our results show how epistasis in fitness between the loci that control the focal trait is crucial for assortment to evolve. We then assume specific forms of assortment in haploids and diploids and study the limiting cases of selective and nonselective mating. We find that selection for increased assortment is weak and that where increased assortment is costly, it does not invade.  相似文献   

10.
We present a recoding scheme that allows for a parametric multipoint X-chromosomal linkage analysis of dichotomous traits in the context of a computer program for autosomes that can use trait models with imprinting. Furthermore, with this scheme, it is possible to perform a joint multipoint analysis of X-linked and pseudoautosomal loci. It is required that (1) the marker genotypes of all female nonfounders are available and that (2) there are no male nonfounders who have daughters in the pedigree. The second requirement does not apply if the trait locus is pseudoautosomal. The X-linked marker loci are recorded by adding a dummy allele to the males' hemizygous genotypes. For modelling an X-linked trait locus, five different liability classes are defined, in conjunction with a paternal imprinting model for male nonfounders. The formulation aims at the mapping of a diallelic trait locus relative to an arbitrary number of codominant markers with known genetic distances, in cases where a program for a genuine X-chromosomal analysis is not available.  相似文献   

11.
Sample-size guidelines for linkage studies of quantitative traits partially determined by a dominant major locus are needed to provide a rough estimate of the amount of pedigree material that should be sampled to map the loci that influence such traits. After pedigrees are sampled, a specific power calculation can be carried out to evaluate the linkage information provided by the sampled pedigrees. Using computer simulation, I provide sample-size guidelines for linkage studies by the method of lod scores of quantitative traits partially determined by a dominant major locus. I consider the effects of a trait model, marker characteristics, and sampling strategy, with particular attention to sampling strategy because it is the one factor which the investigator can fully control. My results suggest that linkage studies of quantitative traits are practical, particularly if the investigator chooses an efficient sampling design and an efficient strategy to select pedigrees for linkage analysis.  相似文献   

12.
Most models of sympatric speciation have assumed that assortative mating has no costs. A few studies, however, have shown that the costs for being choosy can prevent such speciation. Here, we investigate the role of the strength of assortment and of the costs for being choosy for a simple genetic model of a single ('magic') trait that mediates both intraspecific competition for a continuum of resources and assortative mating, which is induced by choosy females who preferentially mate with males of similar phenotype. Choosiness may be costly if it is difficult to find a mating partner. Such magic trait models are considered to be most conducive of sympatric speciation. We consider a sexually reproducing population of haploid individuals that is density regulated. The trait is determined by a single locus with multiple alleles. The strength of stabilizing selection (caused by a unimodal resource distribution), the strength of competition, the degree of assortment and the costs for being choosy are independent parameters. We investigate analytically and numerically how these parameters determine the equilibrium and stability structure. In particular, we identify conditions under which no polymorphism at all is maintained as well as conditions under which strong competitive divergence occurs, or the population even splits into two reproductively isolated classes of highly diverse phenotypes. If costs are absent or moderate, genetic variability tends to be minimized at intermediate strengths of assortment, and reproductively isolated classes of phenotypes are a likely result of evolution only for intermediate or strong competition and for very strong assortment. The likelihood of divergence depends relatively weakly on the costs as long as they are not high. With high costs, however, increasingly strong assortment rapidly depletes all genetic variation, and strong competitive divergence is prevented.  相似文献   

13.
This white paper by eighty members of the Complex Trait Consortium presents a community's view on the approaches and statistical analyses that are needed for the identification of genetic loci that determine quantitative traits. Quantitative trait loci (QTLs) can be identified in several ways, but is there a definitive test of whether a candidate locus actually corresponds to a specific QTL?  相似文献   

14.
A recombinant inbred line population derived from a cross between Zhenshan 97 and Delong 208 was used to analyze the genetic basis of the cooking and eating quality of rice as reflected by 17 traits (or parameters). These traits include amylose content (AC), gel consistency (GC), alkali spreading value (ASV), cooked rice elongation (CRE), and 13 parameters from the viscosity profile. All the traits, except peak paste viscosity (PKV), time needed from gelatinization to peak (BAtime), and CRE, can be divided into two classes according to their interrelationship. The first class consists of AC, GC, and most of the paste viscosity parameters that form a major determinant of eating quality. The second class includes ASV, pasting temperature (Atemp) and pasting time (Atime), which characterize cooking process. We identified 26 QTL (quantitative trait locus or loci) in 2 years; nine QTL clusters emerged. The two major clusters, which correspond to the Wx and Alk loci, control the traits in the first and second classes, respectively. Some QTL are co-located for the traits belonging to the same class and also for the traits to a different class. The Wx locus also affects on ASV while the Alk locus also makes minor contributions to GC and some paste viscosity parameters. The QTL clusters on other chromosomes are similar to the Wx locus or Alk locus, although the variations they explained are relatively minor. QTL for CRE and PKV are dispersed and independent of the Wx locus. Low paste viscosity corresponds to low AC and soft gel, which represents good eating quality for most Chinese consumers; high ASV and low Atemp, together with reduced time to gelatinization and PKV, indicate preferred cooking quality. The genetic basis of Atemp, Atime, BAtime, peak temperature, peak time, paste viscosity at 95 degrees C, and final paste viscosity is newly examined to reveal a complete and dynamic viscosity profile.  相似文献   

15.
16.
The demand for crops requiring increasingly complex combinations of transgenes poses unique challenges for transgenic trait deployment. Future value‐adding traits such as those associated with crop performance are expected to involve multiple transgenes. Random integration of transgenes not only results in unpredictable expression and potential unwanted side effects but stacking multiple, randomly integrated, independently segregating transgenes creates breeding challenges during introgression and product development. Designed nucleases enable the creation of targeted DNA double‐strand breaks at specified genomic locations whereby repair can result in targeted transgene integration leading to precise alterations in DNA sequences for plant genome editing, including the targeting of a transgene to a genomic locus that supports high‐level and stable transgene expression without interfering with resident gene function. In addition, targeted DNA integration via designed nucleases allows for the addition of transgenes into previously integrated transgenic loci to create stacked products. The currently reported frequencies of independently generated transgenic events obtained with site‐specific transgene integration without the aid of selection for targeting are very low. A modular, positive selection‐based gene targeting strategy has been developed involving cassette exchange of selectable marker genes which allows for targeted events to be preferentially selected, over multiple cycles of sequential transformation. This, combined with the demonstration of intragenomic recombination following crossing of transgenic events that contain stably integrated donor and target DNA constructs with nuclease‐expressing plants, points towards the future of trait stacking that is less dependent on high‐efficiency transformation.  相似文献   

17.
A major limitation of crop biotechnology and breeding is the lack of efficient molecular technologies for precise engineering of target genomic loci. While transformation procedures have become routine for a growing number of plant species, the random introduction of complex transgenenic DNA into the plant genome by current methods generates unpredictable effects on both transgene and homologous native gene expression. The risk of transgene transfer into related plant species and consumers is another concern associated with the conventional transformation technologies. Various approaches to avoid or eliminate undesirable transgenes, most notably selectable marker genes used in plant transformation, have recently been developed. These approaches include cotransformation with two independent T-DNAs or plasmid DNAs followed by their subsequent segregation, transposon-mediated DNA elimination, and most recently, attempts to replace bacterial T-DNA borders and selectable marker genes with functional equivalents of plant origin. The use of site-specific recombination to remove undesired DNA from the plant genome and concomitantly, via excision-mediated DNA rearrangement, switch-activate by choice transgenes of agronomical, food or feed quality traits provides a versatile “transgene maintenance and control” strategy that can significantly contribute to the transfer of transgenic laboratory developments into farming practice. This review focuses on recent reports demonstrating the elimination of undesirable transgenes (essentially selectable marker and recombinase genes) from the plant genome and concomitant activation of a silent transgene (e.g., a reporter gene) mediated by different site-specific recombinases driven by constitutive or chemically, environmentally or developmentally regulated promoters. These reports indicate major progress in excision strategies which extends application of the technology from annual, sexually propagated plants towards perennial, woody and vegetatively propagated plants. Current trends and future prospects for optimization of excision-activation machinery and its practical implementation for the generation of transgenic plants and plant products free of undesired genes are discussed.  相似文献   

18.
周银  王跃驹  王瑛 《遗传》2008,30(2):149-154
定点重组转基因技术是调节外源基因表达, 提高转基因效率的重要手段之一。核苷酸的重组反应介导基因之间的易位、倒位、删除和整合, 从而影响基因在不同组织器官和不同发育阶段的表达。将位点特异性重组系统应用在转基因技术中, 不仅可以用来在短时间内获得大量结构正常, 表达稳定的转化植株, 提供育种新资源, 还可用于高效鉴定新基因的功能。基于定点重组的基因叠加技术使转基因作物向复合型性状聚合体的方向发展, 加快了新品系的研发进程, 将为我国转基因作物的研发提供新的技术思路。  相似文献   

19.
20.
The genetic mapping of complex traits has been challenging and has required new statistical methods that are robust to misspecified models. Liang et al. proposed a robust multipoint method that can be used to simultaneously estimate, on the basis of sib-pair linkage data, both the position of a trait locus on a chromosome and its effect on disease status. The advantage of their method is that it does not require specification of an underlying genetic model, so estimation of the position of a trait locus on a specified chromosome and of its standard error is robust to a wide variety of genetic mechanisms. If multiple loci influence the trait, the method models the marginal effect of a locus on a specified chromosome. The main critical assumption is that there is only one trait locus on the chromosome of interest. We extend this method to different types of affected relative pairs (ARPs) by two approaches. One approach is to estimate the position of a trait locus yet allow unconstrained trait-locus effects across different types of ARPs. This robust approach allows for differences in sharing alleles identical-by-descent across different types of ARPs. Some examples for which an unconstrained model would apply are differences due to secular changes in diagnostic methods that can change the frequency of phenocopies among different types of relative pairs, environmental factors that modify the genetic effect, epistasis, and variation in marker-information content. However, this unconstrained model requires a parameter for each type of relative pair. To reduce the number of parameters, we propose a second approach that models the marginal effect of a susceptibility locus. This constrained model is robust for a trait caused by either a single locus or by multiple loci without epistasis. To evaluate the adequacy of the constrained model, we developed a robust score statistic. These methods are applied to a prostate cancer-linkage study, which emphasizes their potential advantages and limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号