首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Breast tumour stem cells have been reported to differentiate in the epithelial lineage but a cross-lineage potential has not been investigated. We aimed to evaluate whether breast tumour stem cells were able to differentiate also into the endothelial lineage. We isolated and cloned a population of breast tumour stem cells, cultured as mammospheres that expressed the stem markers nestin and Oct-4 and not epithelial and endothelial differentiation markers, and formed serially transplantable tumours in SCID mice. When cultured in the presence of serum, mammosphere-derived clones differentiated in the epithelial lineage. When cultured in the presence of VEGF, the same clones were also able to differentiate in the endothelial lineage acquiring endothelial markers and properties, such as the ability to organize in Matrigel into capillary-like structures. In the transplanted tumours, originated from mammospheres, we demonstrate that some of the intratumour vessels were of human origin, suggesting an in vivo endothelial differentiation of mammosphere-derived cells. Finally, endothelial cell clones originated from mammospheres were able, when implanted in Matrigel in SCID mice, to form after 7 days a human vessel network and, after 3–4 weeks, an epithelial tumour suggesting that in the endothelial-differentiated cells a tumourigenic stem cell population is maintained. In conclusion, the results of the present study demonstrate that stem cells of breast cancer have the ability to differentiate not only in epithelial but also in endothelial lineage, further supporting the hypothesis that the tumour-initiating population possesses stem cell characteristics relevant for tumour growth and vascularization.  相似文献   

2.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses were carried out on quinazoline, quinoline, and cyanoquinoline derivatives inhibiting c-Src kinase. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) 3D-QSAR models were developed. The conventional r2 values for CoMFA and CoMSIA are 0.93 and 0.89, respectively. In addition, a homology model of c-Src kinase with the activation loop resembling the active conformation was constructed using the crystal structure of the kinase domain of Lck. The ATP binding pocket of the active form of c-Src is similar to that of the c-Abl kinase in which the activation loop resembles that of an active form. One of the potent c-Src and c-Abl dual kinase inhibitors (77 or SKI-606) was docked inside the active sites of both c-Src and c-Abl. The orientation and hydrogen bonding interactions of 77 are similar in both kinases. The results of 3D-QSAR analyses and structure based studies will be useful for the design of novel c-Src and c-Abl dual kinase inhibitors.  相似文献   

3.
The stem/progenitor cells in the murine mammary gland are a highly dynamic population of cells that are responsible for ductal elongation in puberty, homeostasis maintenance in adult, and lobulo-alveolar genesis during pregnancy. In recent years understanding the epithelial cell hierarchy within the mammary gland is becoming particularly important as these different stem/progenitor cells were perceived to be the cells of origin for various subtypes of breast cancer. Although significant advances have been made in enrichment and isolation of stem/progenitor cells by combinations of antibodies against cell surface proteins together with flow cytometry, and in identification of stem/progenitor cells with multi-lineage differentiation and self-renewal using mammary fat pad reconstitution assay and in vivo genetic labeling technique, a clear understanding of how these different stem/progenitors are orchestrated in the mammary gland is still lacking. Here we discuss the different in vivo and in vitro methods currently available for stem/progenitor identification, their associated caveats, and a possible new hierarchy model to reconcile various putative stem/progenitor cell populations identified by different research groups.  相似文献   

4.
5.
Evidence has accumulated that murine haematopoietic stem/progenitor cells (HSPCs) share several markers with the germline, a connection supported by recent reports that pituitary and gonadal sex hormones (SexHs) regulate development of murine HSPCs. It has also been reported that human HSPCs, like their murine counterparts, respond to certain SexHs (e.g. androgens). However, to better address the effects of SexHs, particularly pituitary SexHs, on human haematopoiesis, we tested for expression of receptors for pituitary SexHs, including follicle‐stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL), as well as the receptors for gonadal SexHs, including progesterone, oestrogens, and androgen, on HSPCs purified from human umbilical cord blood (UCB) and peripheral blood (PB). We then tested the functionality of these receptors in ex vivo signal transduction studies and in vitro clonogenic assays. In parallel, we tested the effect of SexHs on human mesenchymal stromal cells (MSCs). Finally, based on our observation that at least some of the UCB‐derived, CD45 very small embryonic‐like stem cells (VSELs) become specified into CD45+ HSPCs, we also evaluated the expression of pituitary and gonadal SexH receptors on these cells. We report for the first time that human HSPCs and VSELs, like their murine counterparts, express pituitary and gonadal SexH receptors at the mRNA and protein levels. Most importantly, SexH if added to suboptimal doses of haematopoietic cytokines and growth factors enhance clonogenic growth of human HSPCs as well as directly stimulate proliferation of MSCs.  相似文献   

6.
7.
Parity-induced mammary epithelial cells (PI-MECs) are defined as a pregnancy hormone-responsive cell population that activates the promoter of late milk protein genes during the second half of pregnancy and lactation. However, unlike their terminally differentiated counterparts, these cells do not undergo programmed cell death during post-lactational remodeling of the gland. We previously demonstrated that upon transplantation into an epithelial-free mammary fat pad, PI-MECs exhibited two important features of multipotent mammary epithelial progenitors: a) self-renewal, and b) contribution to ductal and alveolar morphogenesis. In this new report, we introduce a new method to viably label PI-MECs. Using this methodology, we analyzed the requirement of ovarian hormones for the maintenance of this epithelial subtype in the involuted mammary gland. Furthermore, we examined the expression of putative stem cell markers and found that a portion of GFP-labeled PI-MECs were part of the CD24(+)/CD49f(high) mammary epithelial subtype, which has recently been suggested to contain multipotent stem cells. Subsequently, we demonstrated that isolated PI-MECs were able to form mammospheres in culture, and upon transplantation, these purified epithelial cells were capable of establishing a fully functional mammary gland. These observations suggest that PI-MECs contain multipotent progenitors that are able to self renew and generate diverse epithelial lineages present in the murine mammary gland.  相似文献   

8.
Differentiation of resident multipotent vascular stem cells (MVSCs) or de-differentiation of vascular smooth muscle cells (vSMCs) might be responsible for the SMC phenotype that plays a major role in vascular diseases such as arteriosclerosis and restenosis. We examined vSMCs from three different species (rat, murine and bovine) to establish whether they exhibit neural stem cell characteristics typical of MVSCs. We determined their SMC differentiation, neural stem cell marker expression and multipotency following induction in vitro by using immunocytochemistry, confocal microscopy, fluorescence-activated cell sorting analysis and quantitative real-time polymerase chain reaction. MVSCs isolated from rat aortic explants, enzymatically dispersed rat SMCs and rat bone-marrow-derived mesenchymal stem cells served as controls. Murine carotid artery lysates and primary rat aortic vSMCs were both myosin-heavy-chain-positive but weakly expressed the neural crest stem cell marker, Sox10. Each vSMC line examined expressed SMC differentiation markers (smooth muscle α–actin, myosin heavy chain and calponin), neural crest stem cell markers (Sox10+, Sox17+) and a glia marker (S100β+). Serum deprivation significantly increased calponin and myosin heavy chain expression and decreased stem cell marker expression, when compared with serum-rich conditions. vSMCs did not differentiate to adipocytes or osteoblasts following adipogenic or osteogenic inductive stimulation, respectively, or respond to transforming growth factor-β1 or Notch following γ-secretase inhibition. Thus, vascular SMCs in culture express neural stem cell markers typical of MVSCs, concomitant with SMC differentiation markers, but do not retain their multipotency. The ultimate origin of these cells might have important implications for their use in investigations of vascular proliferative disease in vitro.  相似文献   

9.
BACKGROUND: Previous adult stem cells studies have provided evidence that BM mesenchymal stem cells (MSC) exhibit multilineage differentiation capacity. These properties of MSC prompted us to explore the neural potential of MSC with a view to their use for the treatment of demyelinating disorders, such as multiple sclerosis. Indeed, issues such as the identification of a subset of stem cells that is neurally fated, methods of expansion and optimal stage of differentiation for transplantation remain poorly understood. METHODS: In order to isolate mouse (m) MSC from BM, we used and compared the classic plastic-adhesion method and one depleting technique, the magnetic-activated cell sorting technique. RESULTS: We established and optimized culture conditions so that mMSC could be expanded for more than 360 days and 50 passages. We also demonstrated that undifferentiated mMSC express the neural markers nestin, MAP2, A2B5, GFAP, MBP, CNPase, GalC, O1 under standard culture conditions before transplantation. The pluripotent stem cell marker Oct-4 and the embryonic stem cell marker Rex-1 are spontaneously expressed by untreated mMSC. The lineage-negative mMSC (CD5- CD11b- Ly-6G- Ter119- CD45R- c-kit/CD117-) overexpressed Oct-4, O1 and A2B5 in the first days of culture compared with the non-sorted MSC. Finally, we identified a distinct subpopulation of mMSC that is primed towards a neural fate, namely Sca-1+/nestin+ mMSC. DISCUSSION: These results should facilitate the optimal timing of harvesting a neurally fated subpopulation of mMSC for transplantation into animal models of human brain diseases.  相似文献   

10.
Bone marrow (BM) from human and rodent species contains a population of multipotential cells referred to as mesenchymal stem cells (MSCs). Currently, MSCs are isolated indirectly by using a culture step and then the generation of fibroblast colony-forming units (CFU-fs). Unprocessed or native BM MSCs have not yet been fully characterised. We have previously developed a direct enrichment method for the isolation of MSCs from human BM by using the CD49a protein (alpha1-integrin subunit). As the CD49a gene is highly conserved in mammals, we have evaluated whether this direct enrichment can be employed for BM cells from rodent strains (rat and mouse). We have also studied the native phenotype by using both immunodetection and immunomagnetic methods and have compared MSCs from mouse, rat and human BM. As is the case for human BM, we have demonstrated that all rodent multipotential CFU-fs are contained within the CD49a-positive cell population. However, in the mouse, the number of CFU-fs is strain-dependent. Interestingly, all rat and mouse Sca-1-positive cells are concentrated within the CD49a-positive fraction and also contain all CFU-fs. In human, the colonies have been detected in the CD49a/CD133 double-positive population. Thus, the CD49a protein is a conserved marker that permits the direct enrichment of BM MSCs from various mammalian species; these cells have been phenotyped as true BM stem cells.  相似文献   

11.
Corneal epithelial stem cells are believed to reside in the basal layer of the limbal epithelium, but no definitive cell surface markers have been identified. For keratinocytes, stem/progenitor cells are known to be enriched by cell surface markers, integrin α6 and CD71, as a minor subpopulation which shows high integrin α6 and low CD71 expressions (α6bri/CD71dim). In the present study, we investigated the possibility that corneal epithelial stem cells can be enriched by integrin α6 and CD71. The α6bri/CD71dim cells were separated by fluorescence-activated cell sorting, as a minor subpopulation of the limbal epithelial cells. They were enriched for relatively small cells, showing a higher clonogenic capacity and expression of stem cell markers, but a lower expression of differentiation markers, compared to other cell populations. The cells were localized immunohistochemically in the basal region of the limbal epithelium. These results indicate that the α6bri/CD71dim subpopulation enriched corneal epithelial stem cells.  相似文献   

12.
胚胎干细胞向造血干/祖细胞定向诱导分化的研究进展   总被引:1,自引:0,他引:1  
胚胎干细胞(embryonic stem cell,ES细胞)是指由胚胎内细胞团(inner cell mass,ICM)细胞经体外抑制培养而筛选得到的细胞,具有无限增殖潜能,在体外可以向造血细胞分化,有可能为造血干细胞移植和血细胞输注开辟新的来源.此外,ES细胞向造血干/祖细胞的定向诱导分化也为阐明哺乳动物造血发育的细胞和分子机制提供了良好的体外模型.对ES细胞向造血干/祖细胞定向分化的研究进展进行了综述.  相似文献   

13.
Liver stem/progenitor cells (LPCs) are defined as cells that supply two types of liver epithelial cells, hepatocytes and cholangiocytes, during development, cellular turnover, and regeneration. Hepatoblasts, which are fetal LPCs derived from endoderm stem cells, robustly proliferate and differentiate into hepatocytes and cholangiocytes during fetal life. Between mid-gestation and the neonatal period, some cholangiocytes function as LPCs. Although LPCs in adult livers can be enriched in cells positive for cholangiocyte markers, their tissue localization and functions in cellular turnover remain obscure. On the other hand, it is well known that liver regeneration under conditions suppressing hepatocyte proliferation is supported by LPCs, though their origin has not been clearly identified. Recently many groups took advantage of new techniques including prospective isolation of LPCs by fluorescence-activated cell sorting and genetic lineage tracing to facilitate our understanding of epithelial supply in normal and injured livers. Those works suggest that, in normal livers, the turnover of hepatocytes mostly depends on duplication of hepatocytes. It is also demonstrated that liver epithelial cells as well as LPCs have great plasticity and flexible differentiation capability to respond to various types of injuries by protecting or repairing liver tissues.  相似文献   

14.
Bone-marrow-derived mesenchymal stem cells and endothelial progenitor cells have some interesting biological properties that make them unique for cell therapy of degenerative and cardiovascular disorders. Although both cell populations have been already studied and used for their regenerative potentials, recently their special immunoregulatory features have brought much more attention. Mesenchymal stem cells and endothelial progenitor cells have both proangiogenic functions and have been shown to suppress the immune response, particularly T cell proliferation, activation, and cytokine production. This makes them suitable choices for allogeneic stem cell transplantation. Nevertheless, these two cells do not have equal immunoregulatory activities. Many elements including their extraction sources, age/passage, expression of different markers, secretion of bioactive mediators, and some others could change the efficiency of their immunosuppressive function. However, to our knowledge, no publication has yet compared mesenchymal stem cells and endothelial progenitor cells for their immunological interaction with T cells. This review aims to specifically compare the immunoregulatory effect of these two populations including their Tcell suppression, deactivation, cytokine production, and regulatory T cells induction capacities. Moreover, it evaluates the implications of the tumor necrosis factor alpha-tumor necrosis factor receptor 2 axis as an emerging immune checkpoint signaling pathway controlling most of their immunological properties.  相似文献   

15.
Zhao X  Malhotra GK  Band H  Band V 《PloS one》2012,7(4):e35338
There is increasing evidence that breast and other cancers originate from and are maintained by a small fraction of stem/progenitor cells with self-renewal properties. Recent molecular profiling has identified six major subtypes of breast cancer: basal-like, ErbB2-overexpressing, normal breast epithelial-like, luminal A and B, and claudin-low subtypes. To help understand the relationship among mammary stem/progenitor cells and breast cancer subtypes, we have recently derived distinct hTERT-immortalized human mammary stem/progenitor cell lines: a K5(+)/K19(-) type, and a K5(+)/K19(+) type. Under specific culture conditions, bipotent K5(+)/K19(-) stem/progenitor cells differentiated into stable clonal populations that were K5(-)/K19(-) and exhibit self-renewal and unipotent myoepithelial differentiation potential in contrast to the parental K5(+)/K19(-) cells which are bipotent. These K5(-)/K19(-) cells function as myoepithelial progenitor cells and constitutively express markers of an epithelial to mesenchymal transition (EMT) and show high invasive and migratory abilities. In addition, these cells express a microarray signature of claudin-low breast cancers. The EMT characteristics of an un-transformed unipotent mammary myoepithelial progenitor cells together with claudin-low signature suggests that the claudin-low breast cancer subtype may arise from myoepithelial lineage committed progenitors. Availability of immortal MPCs should allow a more definitive analysis of their potential to give rise to claudin-low breast cancer subtype and facilitate biological and molecular/biochemical studies of this disease.  相似文献   

16.
《Organogenesis》2013,9(2):208-215
Liver stem/progenitor cells (LPCs) are defined as cells that supply two types of liver epithelial cells, hepatocytes and cholangiocytes, during development, cellular turnover, and regeneration. Hepatoblasts, which are fetal LPCs derived from endoderm stem cells, robustly proliferate and differentiate into hepatocytes and cholangiocytes during fetal life. Between mid-gestation and the neonatal period, some cholangiocytes function as LPCs. Although LPCs in adult livers can be enriched in cells positive for cholangiocyte markers, their tissue localization and functions in cellular turnover remain obscure. On the other hand, it is well known that liver regeneration under conditions suppressing hepatocyte proliferation is supported by LPCs, though their origin has not been clearly identified. Recently many groups took advantage of new techniques including prospective isolation of LPCs by fluorescence-activated cell sorting and genetic lineage tracing to facilitate our understanding of epithelial supply in normal and injured livers. Those works suggest that, in normal livers, the turnover of hepatocytes mostly depends on duplication of hepatocytes. It is also demonstrated that liver epithelial cells as well as LPCs have great plasticity and flexible differentiation capability to respond to various types of injuries by protecting or repairing liver tissues.  相似文献   

17.
18.
We have developed and characterized several murine cell lines that constitutively express either the full-length, membrane-bound form of influenza virus hemagglutinin (HA) or a truncated version of the protein (HAsec) that lacks the carboxyterminal anchoring sequences and is secreted from cells. cDNAs encoding HA or HAsec were linked to the murine metallothionein-I promoter or the SV40 early promoter, and inserted into plasmids containing the transforming DNA fragment of bovine papilloma virus (BPV). The resulting vectors were introduced into three cultured lines of murine cells--C127, NIH3T3 and MME--either alone or in the presence of a plasmid that carries the aminoglycoside transferase gene of Tn5. The resulting lines of MME cells contained 1-5 copies of the vector in an integrated state and expressed low levels of HA (approximately 10(4) molecules/cell). In contrast, lines of C127 and NIH3T3 cells were obtained that express up to 5 X 10(6) molecules of HA per cell or secrete approximately 10(7) molecules of HAsec per cell per 24 h. Some of these cell lines carry multiple (30-200) copies of the vector in an integrated state; in others, the vector is propagated as unit-length episomes or as oligomers. Both the membrane-bound and secreted forms of HA expressed in these cell lines display a more extensive pattern of glycosylation than HA or HAsec synthesized in simian cells and they are transported to the cell surface more slowly. Pulse-chase experiments suggest that the step which limits the rate at which HA and HAsec travel down the secretory pathway occurs in the rough endoplasmic reticulum before the molecules are transferred to the Golgi apparatus. Using indirect immunofluorescence in combination with a cell sorter, we have shown that the level of expression of HA within cloned populations of producing cells can be variable. However, greater than 90% of the cells in certain cell lines display considerable quantities of HA on their surface, as judged by their ability to bind red blood cells in large numbers. We have taken advantage of the membrane fusion activity of HA to effect the fusion of erythrocytes to these cells and to deliver the contents of red cell ghosts into the cells' cytoplasm.  相似文献   

19.
This communication summarizes the procedures that enabled isolation of adult murine thymic stromal cell lines that naturally express Notch ligands Jagged-1 or Delta-1. Histochemical characterization of these cell lines, in terms of ligand and cell type, revealed epithelial cells that bear an antigen characteristic of the thymic medulla and express either Jagged-1 or Delta-1. FACS sorting of stromal cells that naturally express these and other ligands is thus feasible, and such cells can be used to investigate the activity of each ligand in Notch-mediated commitment to the T-lymphocyte pathway.  相似文献   

20.
Cell therapy, i.e., the use of cells to repair an affected tissue or organ, is at the forefront of regenerative and personalized medicine. Among the multiple cell types that have been used for this purpose [including adult stem cells such as mesenchymal stem cells or pluripotent stem cells], urine-derived stem cells (USCs) have aroused interest in the past years. USCs display classical features of mesenchymal stem cells such as differentiation capacity and immunomodulation. Importantly, they have the main advantage of being isolable from one sample of voided urine with a cheap and unpainful procedure, which is broadly applicable, whereas most adult stem cell types require invasive procedure. Moreover, USCs can be differentiated into renal cell types. This is of high interest for renal cell therapy-based regenerative approaches. This review will firstly describe the isolation and characterization of USCs. We will specifically present USC phenotype, which is not an object of consensus in the literature, as well as detail their differentiation capacity. In the second part of this review, we will present and discuss the main applications of USCs. These include use as a substrate to generate human induced pluripotent stem cells, but we will deeply focus on the use of USCs for cell therapy approaches with a detailed analysis depending on the targeted organ or system. Importantly, we will also focus on the applications that rely on the use of USC-derived products such as microvesicles including exosomes, which is a strategy being increasingly employed. In the last section, we will discuss the remaining barriers and challenges in the field of USC-based regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号