首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Atherosclerosis is a complex pathological condition caused by a number of mechanisms including the accelerated proliferation of vascular smooth muscle cells (VSMCs). Diabetes is likely to be an important risk factor for atherosclerosis, as hyperglycemia induces vascular smooth muscle cell (VSMC) proliferation and migration and may thus contribute to the formation of atherosclerotic lesions. This study was performed to investigate whether PGC-1α, a PPARγ coactivator and metabolic master regulator, plays a role in regulating VSMC proliferation and migration induced by high glucose.

Methodology/Principal Findings

PGC-1α mRNA levels are decreased in blood vessel media of STZ-treated diabetic rats. In cultured rat VSMCs, high glucose dose-dependently inhibits PGC-1α mRNA expression. Overexpression of PGC-1α either by infection with adenovirus, or by stimulation with palmitic acid, significantly reduces high glucose-induced VSMC proliferation and migration. In contrast, suppression of PGC-1α by siRNA mimics the effects of glucose on VSMCs. Finally, mechanistic studies suggest that PGC-1α-mediated inhibition of VSMC proliferation and migration is regulated through preventing ERK1/2 phosphorylation.

Conclusions/Significance

These results indicate that PGC-1α is a key regulator of high glucose-induced proliferation and migration in VSMCs, and suggest that elevation of PGC-1α in VSMC could be a useful strategy in preventing the development of diabetic atherosclerosis.  相似文献   

3.

Objective

In diabetes, vascular dysfunction is characterized by impaired endothelial function due to increased oxidative stress. Empagliflozin, as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), offers a novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with empagliflozin improves endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated vascular oxidative stress.

Methods

Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection empagliflozin (10 and 30 mg/kg/d) was administered via drinking water for 7 weeks. Vascular function was assessed by isometric tension recording, oxidative stress parameters by chemiluminescence and fluorescence techniques, protein expression by Western blot, mRNA expression by RT-PCR, and islet function by insulin ELISA in serum and immunohistochemical staining of pancreatic tissue. Advanced glycation end products (AGE) signaling was assessed by dot blot analysis and mRNA expression of the AGE-receptor (RAGE).

Results

Treatment with empagliflozin reduced blood glucose levels, normalized endothelial function (aortic rings) and reduced oxidative stress in aortic vessels (dihydroethidium staining) and in blood (phorbol ester/zymosan A-stimulated chemiluminescence) of diabetic rats. Additionally, the pro-inflammatory phenotype and glucotoxicity (AGE/RAGE signaling) in diabetic animals was reversed by SGLT2i therapy.

Conclusions

Empagliflozin improves hyperglycemia and prevents the development of endothelial dysfunction, reduces oxidative stress and improves the metabolic situation in type 1 diabetic rats. These preclinical observations illustrate the therapeutic potential of this new class of antidiabetic drugs.  相似文献   

4.

Background

Atherosclerosis is understood to be a blood vessel inflammation. High-mobility group box-1 (HMGB-1) plays a key role in the systemic inflammation. Tissue factor (TF) is known to lead to inflammation which promotes thrombus formation. Membrane type1 matrix metalloprotease (MT1-MMP) associates with advanced glycation endproducts (AGE) triggered-TF protein expression and phosphorylation of NF-κB. However, it is still unclear about the correlation of MT1-MMP and HMBG-1-mediated TF expression. In this study, we investigated the molecular mechanisms of TF expression in response to HMGB-1 stimulation and the involvement of MT1-MMP in endothelial cells.

Methods and Results

Pull-down assays and Western blotting revealed that HMGB-1 induced RhoA/Rac1 activation and NF-kB phosphorylation in cultured human aortic endothelial cells. HMGB-1 increased the activity of MT1-MMP, and inhibition of RAGE or MT1-MMP by siRNA suppressed HMGB-1-induced TF upregulation as well as HMGB-1-triggered RhoA/Rac1 activation and NF-kB phosphorylation.

Conclusions

The present study showed that RAGE/MT1-MMP axis modified HMBG-1-mediated TF expression through RhoA and Rac1 activation and NF-κB phosphorylation in endothelial cells. These results suggested that MT1-MMP was involved in vascular inflammation and might be a good target for treating atherosclerosis.  相似文献   

5.

Background

Inflammation plays a key role in the development and progression of diabetic nephropathy (DN). KCa3.1, a calcium activated potassium channel protein, is associated with vascular inflammation, atherogenesis, and proliferation of endothelial cells, macrophages, and fibroblasts. We have previously demonstrated that the KCa3.1 channel is activated by TGF-β1 and blockade of KCa3.1 ameliorates renal fibrotic responses in DN through inhibition of the TGF-β1 pathway. The present study aimed to identify the role of KCa3.1 in the inflammatory responses inherent in DN.

Methods

Human proximal tubular cells (HK2 cells) were exposed to high glucose (HG) in the presence or absence of the KCa3.1 inhibitor TRAM34 for 6 days. The proinflammatory cytokine chemokine (C-C motif) ligand 20 (CCL20) expression was examined by real-time PCR and enzyme-linked immunosorbent assay (ELISA). The activity of nuclear factor-κB (NF-κB) was measured by nuclear extraction and electrophoretic mobility shift assay (EMSA). In vivo, the expression of CCL20, the activity of NF-κB and macrophage infiltration (CD68 positive cells) were examined by real-time PCR and/or immunohistochemistry staining in kidneys from diabetic or KCa3.1-/- mice, and in eNOS-/- diabetic mice treated with the KCa3.1 channel inhibitor TRAM34.

Results

In vitro data showed that TRAM34 inhibited CCL20 expression and NF-κB activation induced by HG in HK2 cells. Both mRNA and protein levels of CCL20 significantly decreased in kidneys of diabetic KCa3.1-/- mice compared to diabetic wild type mice. Similarly, TRAM34 reduced CCL20 expression and NF-κB activation in diabetic eNOS-/- mice compared to diabetic controls. Blocking the KCa3.1 channel in both animal models led to a reduction in phosphorylated NF-κB.

Conclusions

Overexpression of CCL20 in human proximal tubular cells is inhibited by blockade of KCa3.1 under diabetic conditions through inhibition of the NF-κB pathway.  相似文献   

6.

Background

The topoisomerases Top1, Top2α and Top2β are important molecular targets for antitumor drugs, which specifically poison Top1 or Top2 isomers. While it was previously demonstrated that poisoned Top1 and Top2β are subject to proteasomal degradation, this phenomena was not demonstrated for Top2α.

Methodology/Principal Findings

We show here that Top2α is subject to drug induced proteasomal degradation as well, although at a lower rate than Top2β. Using an siRNA screen we identified Bmi1 and Ring1A as subunits of an E3 ubiquitin ligase involved in this process. We show that silencing of Bmi1 inhibits drug-induced Top2α degradation, increases the persistence of Top2α-DNA cleavage complex, and increases Top2 drug efficacy. The Bmi1/Ring1A ligase ubiquitinates Top2α in-vitro and cellular overexpression of Bmi1 increases drug induced Top2α ubiquitination. A small-molecular weight compound, identified in a screen for inhibitors of Bmi1/Ring1A ubiquitination activity, also prevents Top2α ubiquitination and drug-induced Top2α degradation. This ubiquitination inhibitor increases the efficacy of topoisomerase 2 poisons in a synergistic manner.

Conclusions/Significance

The discovery that poisoned Top2α is undergoing proteasomal degradation combined with the involvement of Bmi1/Ring1A, allowed us to identify a small molecule that inhibits the degradation process. The Bmi1/Ring1A inhibitor sensitizes cells to Top2 drugs, suggesting that this type of drug combination will have a beneficial therapeutic outcome. As Bmi1 is also a known oncogene, elevated in numerous types of cancer, the identified Bmi1/Ring1A ubiquitin ligase inhibitors can also be potentially used to directly target the oncogenic properties of Bmi1.  相似文献   

7.
Li Y  Liu S  Zhang Z  Xu Q  Xie F  Wang J  Ping S  Li C  Wang Z  Zhang M  Huang J  Chen D  Hu L  Li C 《PloS one》2012,7(4):e35016

Aims/Hypothesis

Diabetes with hypertension rapidly accelerates vascular disease, but the underlying mechanism remains unclear. We evaluated the hypothesis that the receptor of advanced glycation end products (RAGE) might mediate combined signals initiated by diabetes-related AGEs and hypertension-induced mechanical stress as a common molecular sensor.

Methods

In vivo surgical vein grafts created by grafting vena cava segments from C57BL/6J mice into the common carotid arteries of streptozotocin (STZ)-treated and untreated isogenic mice for 4 and 8 weeks were analyzed using morphometric and immunohistochemical techniques. In vitro quiescent mouse vascular smooth muscle cells (VSMCs) with either knockdown or overexpression of RAGE were subjected to cyclic stretching with or without AGEs. Extracellular signal-regulated kinase (ERK) phosphorylation and Ki-67 expression were investigated.

Results

Significant increases in neointimal formation, AGE deposition, Ki-67 expression, and RAGE were observed in the vein grafts of STZ-induced diabetic mice. The highest levels of ERK phosphorylation and Ki-67 expression in VSMCs were induced by simultaneous stretch stress and AGE exposure. The synergistic activation of ERKs and Ki-67 in VSMCs was significantly inhibited by siRNA-RAGE treatment and enhanced by over-expression of RAGE.

Conclusion

RAGE may mediate synergistically increased ERK activation and VSMC proliferation induced by mechanical stretching with and without AGEs. It may serve as a common molecular bridge between the two, accelerating vascular remodeling. This study provides potential drug targets and novel therapeutic strategies for the treatment of vascular diseases resulting from diabetes with hypertension.  相似文献   

8.

Objectives

The RhoA/ROCK pathway contributes to diabetic cardiomyopathy in part by promoting the sustained activation of PKCβ2 but the details of their interaction are unclear. The purpose of this study was to investigate if over-activation of ROCK in the diabetic heart leads to direct phosphorylation and activation of PKCβ2, and to determine if their interaction affects PDK-1/Akt signaling.

Methods

Regulation by ROCK of PKCβ2 and related kinases was investigated by Western blotting and co-immunoprecipitation in whole hearts and isolated cardiomyocytes from 12 to 14-week diabetic rats. Direct ROCK2 phosphorylation of PKCβ2 was examined in vitro. siRNA silencing was used to confirm role of ROCK2 in PKCβ2 phosphorylation in vascular smooth muscle cells cultured in high glucose. Furthermore, the effect of ROCK inhibition on GLUT4 translocation was determined in isolated cardiomyocytes by confocal microscopy.

Results

Expression of ROCK2 and expression and phosphorylation of PKCβ2 were increased in diabetic hearts. A physical interaction between the two kinases was demonstrated by reciprocal immunoprecipitation, while ROCK2 directly phosphorylated PKCβ2 at T641 in vitro. ROCK2 siRNA in vascular smooth muscle cells or inhibition of ROCK in diabetic hearts reduced PKCβ2 T641 phosphorylation, and this was associated with attenuation of PKCβ2 activity. PKCβ2 also formed a complex with PDK-1 and its target AKT, and ROCK inhibition resulted in upregulation of the phosphorylation of PDK-1 and AKT, and increased translocation of glucose transporter 4 (GLUT4) to the plasma membrane in diabetic hearts.

Conclusion

This study demonstrates that over-activation of ROCK2 contributes to diabetic cardiomyopathy by multiple mechanisms, including direct phosphorylation and activation of PKCβ2 and interference with the PDK-1-mediated phosphorylation and activation of AKT and translocation of GLUT4. This suggests that ROCK2 is a critical node in the development of diabetic cardiomyopathy and may be an effective target to improve cardiac function in diabetes.  相似文献   

9.

Background

Receptors for advanced glycation end-products (RAGE) are immunoglobulin-like pattern recognition receptors abundantly localized to lung epithelium. Our research demonstrated that primary tobacco smoke exposure increases RAGE expression and that RAGE partly mediates pro-inflammatory signaling during exposure. However, the degree to which RAGE influences developing lungs when gestating mice are exposed to secondhand smoke (SHS) has not been determined to date.

Methods

Timed pregnant RAGE null and wild type control mice were exposed to 4 consecutive days of SHS from embryonic day (E) 14.5 through E18.5 using a state of the art nose-only smoke exposure system (Scireq, Montreal, Canada). RAGE expression was assessed using immunofluorescence, immunoblotting, and quantitative RT-PCR. TUNEL immunostaining and blotting for caspase-3 were performed to evaluate effects on cell turnover. Matrix abnormalities were discerned by quantifying collagen IV and MMP-9, a matrix metalloprotease capable of degrading basement membranes. Lastly, TNF-α and IL-1β levels were assessed in order to determine inflammatory status in the developing lung.

Results

Pulmonary RAGE expression was elevated in both dams exposed to SHS and in fetuses gestating within mothers exposed to SHS. Fetal weight, a measure of organismal health, was decreased in SHS-exposed pups, but unchanged in SHS-exposed RAGE null mice. TUNEL assessments suggested a shift toward pulmonary cell apoptosis and matrix in SHS-exposed pups was diminished as revealed by decreased collagen IV and increased MMP-9 expression. Furthermore, SHS-exposed RAGE null mice expressed less TNF-α and IL-1β when compared to SHS-exposed controls.

Conclusions

RAGE augmentation in developing pups exposed to maternal SHS weakens matrix deposition and influences lung inflammation.  相似文献   

10.

Aims

Oxidative stress and apoptosis are among the earliest lesions of diabetic retinopathy. This study sought to examine the anti-oxidative and anti-apoptotic effects of α-melanocyte-stimulating hormone (α-MSH) in early diabetic retinas and to explore the underlying mechanisms in retinal vascular endothelial cells.

Methods

Sprague-Dawley rats were injected intravenously with streptozocin to induce diabetes. The diabetic rats were injected intravitreally with α-MSH or saline. At week 5 after diabetes, the retinas were analyzed for reactive oxygen species (ROS) and gene expression. One week later, the retinas were processed for terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and transmission electron microscopy. Retinal vascular endothelial cells were stimulated by high glucose (HG) with or without α-MSH. The expression of Forkhead box O genes (Foxos) was examined through real-time PCR. The Foxo4 gene was overexpressed in endothelial cells by transient transfection prior to α-MSH or HG treatment, and oxidative stress and apoptosis were analyzed through CM-H2DCFDA and annexin-V assays, respectively.

Results

In diabetic retinas, the levels of H2O2 and ROS and the total anti-oxidant capacity were normalized, the apoptotic cell number was reduced, and the ultrastructural injuries were ameliorated by α-MSH. Treatment with α-MSH also corrected the aberrant changes in eNOS, iNOS, ICAM-1, and TNF-α expression levels in diabetic retinas. Furthermore, α-MSH inhibited Foxo4 up-regulation in diabetic retinas and in endothelial cells exposed to HG, whereas Foxo4 overexpression abrogated the anti-oxidative and anti-apoptotic effects of α-MSH in HG-stimulated retinal vascular endothelial cells.

Conclusions

α-MSH normalized oxidative stress, reduced apoptosis and ultrastructural injuries, and corrected gene expression levels in early diabetic retinas. The protective effects of α-MSH in retinal vascular endothelial cells may be mediated through the inhibition of Foxo4 up-regulation induced by HG. This study suggests an α-MSH-mediated potential intervention approach to early diabetic retinopathy and a novel regulatory mechanism involving Foxo4.  相似文献   

11.

Background

Myocardin is thought to have a key role in smooth muscle cell (SMC) development by acting on CArG-dependent genes. However, it is unclear whether myocardin-induced SMC maturation and increases in agonist-induced calcium signalling are also associated with increases in the expression of non-CArG-dependent SMC-specific genes. Moreover, it is unknown whether myocardin promotes SMC development from human embryonic stem cells.

Methodology/Principal

Findings The effects of adenoviral-mediated myocardin overexpression on SMC development in human ESC-derived embryoid bodies were investigated using immunofluorescence, flow cytometry and real time RT-PCR. Myocardin overexpression from day 10 to day 28 of embryoid body differentiation increased the number of smooth muscle α-actin+ and smooth muscle myosin heavy chain+ SMC-like cells and increased carbachol-induced contractile function. However, myocardin was found to selectively regulate only CArG-dependent SMC-specific genes. Nevertheless, myocardin expression appeared to be sufficient to specify the SMC lineage.

Conclusions/Significance

Myocardin increases the development and maturation of SMC-like cells from human embryonic stem cells despite not activating the full repertoire of SMC genes. These findings have implications for vascular tissue engineering and other applications requiring large numbers of functional SMCs.  相似文献   

12.

Background

The cross talk between RAGE and angiotensin II (AngII) activation may be important in the development of atherosclerosis. Soluble RAGE (sRAGE), a truncated soluble form of the receptor, acts as a decoy and prevents the inflammatory response mediated by RAGE activation. In this study, we sought to determine the effect of sRAGE in inhibiting AngII-induced atherosclerosis in apolipoprotein E knockout mice (Apo E KO).

Methods and Results

9 week old Apo E KO mice were infused subcutaneously with AngII (1 µg/min/kg) and saline for 4 weeks using osmotic mini-pumps. The mice were divided into 4 groups 1. saline infusion and saline injection; 2. saline infusion and sRAGE injection; 3. AngII infusion and saline injection; 4. AngII infusion and sRAGE injection. Saline or 0.5 µg, 1 µg, to 2 µg/day/mouse of sRAGE were injected intraperitoneally daily for 28 days. We showed that atherosclerotic plaque areas in the AngII-infused Apo E KO mice and markers of inflammation such as RAGE, ICAM-1, VCAM-1, and MCP-1 were increased in aorta compared to that of the Apo E KO mice. However, the treatment of 0.5 µg, 1 µg, and 2 µg of sRAGE in AngII group resulted in the dose-dependent decrease in atherosclerotic plaque area. We also demonstrated that sRAGE decreased RAGE expression level as well as inflammatory cytokines and cell adhesion molecules in AngII or HMGB1 treated-rat aorta vascular smooth muscle cells.

Conclusion

The results demonstrated that partical blockade of RAGE activation by sRAGE prevent AngII -induced atherosclerosis. Therefore these results suggested that first, RAGE activation may be important in mediating AngII-induced atherogenesis, and second, AngII activation is a major pathway in the development of atherosclerosis. Taken together, results from this study may provide the basis for future anti- atherosclerotic drug development mediated through RAGE activation.  相似文献   

13.

Background

Diabetic nephropathy (DN) has been recognized as the leading cause of end-stage renal disease. Resveratrol (RSV), a polyphenolic compound, has been indicated to possess an insulin-like property in diabetes. In the present study, we aimed to investigate the renoprotective effects of RSV and delineate its underlying mechanism in early-stage DN.

Methods

The protective effects of RSV on DN were evaluated in streptozotocin (STZ)-induced diabetic rats.

Results

The plasma glucose, creatinine, and blood urea nitrogen were significantly elevated in STZ-induced diabetic rats. RSV treatment markedly ameliorated hyperglycemia and renal dysfunction in STZ-induced diabetic rats. The diabetes-induced superoxide anion and protein carbonyl levels were also significantly attenuated in RSV-treated diabetic kidney. The AMPK protein phosphorylation and expression levels were remarkably reduced in diabetic renal tissues. In contrast, RSV treatment significantly rescued the AMPK protein expression and phosphorylation compared to non-treated diabetic group. Additionally, hyperglycemia markedly enhanced renal production of proinflammatory cytokine IL-1β. RSV reduced IL-1β but increased TNF-α and IL-6 levels in the diabetic kidneys.

Conclusions

Our findings suggest that RSV protects against oxidative stress, exhibits concurrent proinflammation and anti-inflammation, and up-regulates AMPK expression and activation, which may contribute to its beneficial effects on the early stage of DN.  相似文献   

14.

Background

Hepatitis B virus (HBV) is a major cause of chronic liver diseases, and frequently results in hepatitis, cirrhosis, and ultimately hepatocellular carcinoma. The role of HCV in associations with insulin signaling has been elucidated. However, the pathogenesis of HBV-associated insulin signaling remains to be clearly characterized. Therefore, we have attempted to determine the mechanisms underlying the HBV-associated impairment of insulin signaling.

Methodology

The expressions of insulin signaling components were investigated in HBx-transgenic mice, HBx-constitutive expressing cells, and transiently HBx-transfected cells. Protein and gene expression was examined by Western blot, immunohistochemistry, RT-PCR, and promoter assay. Protein-protein interaction was detected by coimmunoprecipitation.

Principal Findings

HBx induced a reduction in the expression of IRS1, and a potent proteasomal inhibitor blocked the downregulation of IRS1. Additionally, HBx enhanced the expression of SOCS3 and induced IRS1 ubiquitination. Also, C/EBPα and STAT3 were involved in the HBx-induced expression of SOCS3. HBx interfered with insulin signaling activation and recovered the insulin-mediated downregulation of gluconeogenic genes.

Conclusions/Significance

These results provide direct experimental evidences for the contribution of HBx in the impairment of insulin signaling.  相似文献   

15.

Background

During vascular injury, vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts (FBs/MFBs) are exposed to altered luminal blood flow or transmural interstitial flow. We investigate the effects of these two types of fluid flows on the phenotypes of SMCs and MFBs and the underlying mechanotransduction mechanisms.

Methodology/Principal Findings

Exposure to 8 dyn/cm2 laminar flow shear stress (2-dimensional, 2-D) for 15 h significantly reduced expression of α-smooth muscle actin (α-SMA), smooth muscle protein 22 (SM22), SM myosin heavy chain (SM-MHC), smoothelin, and calponin. Cells suspended in collagen gels were exposed to interstitial flow (1 cmH2O, ∼0.05 dyn/cm2, 3-D), and after 6 h of exposure, expression of SM-MHC, smoothelin, and calponin were significantly reduced, while expression of α-SMA and SM22 were markedly enhanced. PD98059 (an ERK1/2 inhibitor) and heparinase III (an enzyme to cleave heparan sulfate) significantly blocked the effects of laminar flow on gene expression, and also reversed the effects of interstitial flow on SM-MHC, smoothelin, and calponin, but enhanced interstitial flow-induced expression of α-SMA and SM22. SMCs and MFBs have similar responses to fluid flow. Silencing ERK1/2 completely blocked the effects of both laminar flow and interstitial flow on SMC marker gene expression. Western blotting showed that both types of flows induced ERK1/2 activation that was inhibited by disruption of heparan sulfate proteoglycans (HSPGs).

Conclusions/Significance

The results suggest that HSPG-mediated ERK1/2 activation is an important mechanotransduction pathway modulating SMC marker gene expression when SMCs and MFBs are exposed to flow. Fluid flow may be involved in vascular remodeling and lesion formation by affecting phenotypes of vascular wall cells. This study has implications in understanding the flow-related mechanobiology in vascular lesion formation, tumor cell invasion, and stem cell differentiation.  相似文献   

16.
17.

Background

Low density lipoprotein receptor-related protein 1 (LRP1) protects against atherosclerosis by regulating the activation of platelet-derived growth factor receptor β (PDGFRβ) in vascular smooth muscle cells (SMCs). Activated PDGFRβ undergoes tyrosine phosphorylation and subsequently interacts with various signaling molecules, including phosphatidylinositol 3-kinase (PI3K), which binds to the phosphorylated tyrosine 739/750 residues in mice, and thus regulates actin polymerization and cell movement.

Methods and Principal Findings

In this study, we found disorganized actin in the form of membrane ruffling and enhanced cell migration in LRP1-deficient (LRP1−/−) SMCs. Marfan syndrome-like phenotypes such as tortuous aortas, disrupted elastic layers and abnormally activated transforming growth factor β (TGFβ) signaling are present in smooth muscle-specific LRP1 knockout (smLRP1−/−) mice. To investigate the role of LRP1-regulated PI3K activation by PDGFRβ in atherogenesis, we generated a strain of smLRP1−/− mice in which tyrosine 739/750 of the PDGFRβ had been mutated to phenylalanines (PDGFRβ F2/F2). Spontaneous atherosclerosis was significantly reduced in the absence of hypercholesterolemia in these mice compared to smLRP1−/− animals that express wild type PDGFR. Normal actin organization was restored and spontaneous SMC migration as well as PDGF-BB-induced chemotaxis was dramatically reduced, despite continued overactivation of TGFβ signaling, as indicated by high levels of nuclear phospho-Smad2.

Conclusions and Significance

Our data suggest that LRP1 regulates actin organization and cell migration by controlling PDGFRβ-dependent activation of PI3K. TGFβ activation alone is not sufficient for the expression of the Marfan-like vascular phenotype. Thus, regulation of PI3 Kinase by PDGFRβ is essential for maintaining vascular integrity, and for the prevention of atherosclerosis as well as Marfan syndrome.  相似文献   

18.

Aims

This study was designed to demonstrate simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) leading to accelerated vein graft remodeling and to explore the underlying mechanisms.

Methods

Vein grafts were performed in non-diabetic and diabetic mice. The cultured quiescent VSMCs were subjected to mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs). Harvested vein grafts and treated VSMCs were used to detect cell proliferation, apoptosis, mitogen-activated protein kinases (MAPKs) activation and SM-α-actin expression.

Results

Significantly thicker vessel walls and greater increases in proliferation and apoptosis were observed in diabetic vein grafts than those in non-diabetic. Both SS and AGEs were found to induce different activation of three members of MAPKs and simultaneous increases in proliferation and apoptosis of VSMCs, and combined treatment with both had a synergistic effect. VSMCs with strong SM-α-actin expression represented more activated JNKs or p38MAPK, and cell apoptosis, while the cells with weak SM-α-actin expression demonstrated preferential activation of ERKs and cell proliferation. In contrast, inhibition of MAPKs signals triggered significant decreases in VSMC proliferation, and apoptosis. Treatment of the cells with RNA interference of receptor of AGEs (RAGE) also resulted in significant decreases in both proliferation and apoptosis.

Conclusions

Increased pressure-induced SS triggers simultaneous increases in proliferation and apoptosis of VSMCs in the vein grafts leading to vein arterializations, which can be synergistically accelerated by high glucose-induced AGEs resulting in vein graft atherosclerosis. Either SS or AGEs and their combination induce simultaneous increases in proliferation and apoptosis of VSMCs via different activation of three members of MAPKs resulting from different VSMC subtypes classified by SM-α-actin expression levels.  相似文献   

19.

Aim/Hypothesis

Low-density lipoprotein (LDL) is subjected to glycoxidation in diabetes, and a novel signalling mechanism by which glycoxidised LDL functions in glomerular mesangial cells remains to be ascertained.

Methods

We performed gene expression analysis in mouse glomerular mesangial cells treated with LDL modified by glycation and oxidation (GO-LDL, 100 µg/ml) for 48 h by using DNA microarray analysis and quantitative real-time PCR. We examined the GO-LDL-specific changes in gene and protein expression in mesangial cells and glomeruli of type 2 diabetic Zucker diabetic fatty (ZDF) rats.

Results

By microarray profiling, we noted that GO-LDL treatment increased Axl receptor tyrosine kinase (Axl) mRNA expression (∼2.5-fold, p<0.05) compared with normal LDL (N-LDL) treatment in mesangial cells. Treatment with GO-LDL also increased the protein levels of Axl and its ligand Gas6 as measured by Western blotting. These increases were inhibited by neutralising Axl receptor-specific antibody. Silencing Gas6 by siRNA inhibited GO-LDL-induced Axl expression in mesangial cells. Axl and Gas6 protein were also increased in cells cultured in high glucose (30 mM) or methylglyoxal (200 µM). Gas6 treatment increased the expression and secretion of TGF-β1 protein, a key regulator of extracellular matrix expression in the glomeruli of diabetic kidneys. Immunohistochemical analyses of glomeruli from 20-week-old ZDF rats exhibited increased Axl protein expression. Rottlerin, a selective PKC-δ inhibitor, completely blocked Gas6-induced TGF-β1 expression.

Conclusions/Interpretation

These data suggest that LDL modified by glycoxidation may mediate Axl/Gas6 pathway activation, and this mechanism may play a significant role in the pathogenesis of diabetic nephropathy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号