首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional chromosome. To determine if this haptophyte-derived plastid contains additional chromosomal fragments that resemble the mini-circles of the peridin-containing plastids, we have investigated its genome by in-depth sequencing using 454 pyrosequencing technology, PCR and clone library analysis. Sequence analyses show several genes with significantly higher copy numbers than present in the chromosome. These genes are most likely extrachromosomal fragments, and the ones with highest copy numbers include genes encoding the chaperone DnaK(Hsp70), the rubisco large subunit (rbcL), and two tRNAs (trnE and trnM). In addition, some photosystem genes such as psaB, psaA, psbB and psbD are overrepresented. Most of the dnaK and rbcL sequences are found as shortened or fragmented gene sequences, typically missing the 3'-terminal portion. Both dnaK and rbcL are associated with a common sequence element consisting of about 120 bp of highly conserved AT-rich sequence followed by a trnE gene, possibly serving as a control region. Decatenation assays and Southern blot analysis indicate that the extrachromosomal plastid sequences do not have the same organization or lengths as the minicircles of the peridinin dinoflagellates. The fragmentation of the haptophyte-derived plastid genome K. veneficum suggests that it is likely a sign of a host-driven process shaping the plastid genomes of dinoflagellates.  相似文献   

2.
Chlorarachniophytes are amoeboflagellate cercozoans that acquired a plastid by secondary endosymbiosis. Chlorarachniophytes are the last major group of algae for which there is no completely sequenced plastid genome. Here we describe the 69.2-kbp chloroplast genome of the model chlorarachniophyte Bigelowiella natans. The genome is highly reduced in size compared with plastids of other photosynthetic algae and is closer in size to genomes of several nonphotosynthetic plastids. Unlike nonphotosynthetic plastids, however, the B. natans chloroplast genome has not sustained a massive loss of genes, and it retains nearly all of the functional photosynthesis-related genes represented in the genomes of other green algae. Instead, the genome is highly compacted and gene dense. The genes are organized with a strong strand bias, and several unusual rearrangements and inversions also characterize the genome; notably, an inversion in the small-subunit rRNA gene, a translocation of 3 genes in the major ribosomal protein operon, and the fragmentation of the cluster encoding the large photosystem proteins PsaA and PsaB. The chloroplast endosymbiont is known to be a green alga, but its evolutionary origin and relationship to other primary and secondary green plastids has been much debated. A recent hypothesis proposes that the endosymbionts of chlorarachniophytes and euglenids share a common origin (the Cabozoa hypothesis). We inferred phylogenies using individual and concatenated gene sequences for all genes in the genome. Concatenated gene phylogenies show a relationship between the B. natans plastid and the ulvophyte-trebouxiophyte-chlorophyte clade of green algae to the exclusion of Euglena. The B. natans plastid is thus not closely related to that of Euglena, which suggests that plastids originated independently in these 2 groups and the Cabozoa hypothesis is false.  相似文献   

3.
Krause K 《Planta》2011,234(4):647-656
The importance of photosynthesis as a mode of energy production has put plastid genomes of plants under a constant purifying selection. This has shaped the characteristic features of plastid genomes across the entire spectrum of photosynthetic plants and has led to a highly uniform and conserved plastid genome with respect to structure, size, gene order, intron and editing site positions and coding capacity. Parasitic species that have dropped photosynthesis as the main energy provider share striking deviations from the plastid genome norm: multiple rearrangements within the circular chromosome, pseudogenization and gene deletions, promoter losses, intron losses as well as the extensive loss of mRNA editing competence have been reported. The collective loss of larger sets of functionally related genes like those for the plastid NADH–dehydrogenase complex and concomitant losses of RNA polymerase genes together with their target promoters point to “domino effects” where an initial loss might have triggered others. An example, which will be discussed in more detail, is the concomitant loss of the intron maturase gene matK and all introns that are supposedly subject to MatK-dependent splicing in two Cuscuta species.  相似文献   

4.
Aneura mirabilis is a parasitic liverwort that exploits an existing mycorrhizal association between a basidiomycete and a host tree. This unusual liverwort is the only known parasitic seedless land plant with a completely nonphotosynthetic life history. The complete plastid genome of A. mirabilis was sequenced to examine the effect of its nonphotosynthetic life history on plastid genome content. Using a partial genomic fosmid library approach, the genome was sequenced and shown to be 108,007 bp with a structure typical of green plant plastids. Comparisons were made with the plastid genome of Marchantia polymorpha, the only other liverwort plastid sequence available. All ndh genes are either absent or pseudogenes. Five of 15 psb genes are pseudogenes, as are 2 of 6 psa genes and 2 of 6 pet genes. Pseudogenes of cysA, cysT, ccsA, and ycf3 were also detected. The remaining complement of genes present in M. polymorpha is present in the plastid of A. mirabilis with intact open reading frames. All pseudogenes and gene losses co-occur with losses detected in the plastid of the parasitic angiosperm Epifagus virginiana, though the latter has functional gene losses not found in A. mirabilis. The plastid genome sequence of A. mirabilis represents only the second liverwort, and first mycoheterotroph, to have its plastid genome sequenced. We observed a pattern of genome evolution congruent with functional gene losses in parasitic angiosperms but suggest that its plastid genome represents a genome in the early stages of decay following the relaxation of selection pressures.  相似文献   

5.
Stiller  J.W.  Riley  J. L.  & Hall  B.D. 《Journal of phycology》2000,36(S3):64-64
Cryptophytes are photosynthetic protists that have acquired their plastids through the secondary symbiotic uptake of a red alga. A remarkable feature of cryptophytes is that they maintain a reduced form of the red algal nucleus, the nucleomorph, between the second and third plastid membranes (periplastidial compartment, PC). The nucleomorph is thought to be a transition state in the evolution of secondary plastids with this genome ultimately being lost (e.g., as in heterokonts, haptophytes, euglenophytes) when photosynthesis comes under full control of the "host" nucleus. For this to happen, all genes for plastid function must be transferred from the nucleomorph to the nucleus. In this regard, it is generally assumed that nucleomorph genes with functions unrelated to plastid or PC maintenance are lost. Surprisingly, we show here the existence of a novel type of actin gene in the host nucleus of the cryptophyte, Pyrenomonas helgolandii , that has originated from the nucleomorph genome of the symbiont. Our results demonstrate for the first time that secondary symbionts can contribute genes to the host lineage that are unrelated to plastid function. These genes are akin to the products of gene duplication and provide a source of evolutionary novelty that could significantly increase the genetic diversity of the host lineage. We postulate that this may be a common phenomenon in algae containing secondary plastids that has yet to be fully appreciated due to a dearth of evolutionary studies of nuclear genes in these taxa.  相似文献   

6.
Buffalograss (Buchlo? dactyloides (Nutt.) Englem), a C4 turfgrass species, is native to the Great Plains region of North America. The evolutionary implications of buffalograss are unclear. Sequencing of rbcL and matK genes from plastid and the cob gene from mitochondrial genomes was examined to elucidate buffalo grass evolution. This study is the first to report sequencing of these genes from organelle genomes in the genus Buchlo?. Comparisons of sequence data from the mitochondrial and plastid genome revealed that all genotypes contained the same cytoplasmic origin. There were some rearrangements detected in mitochondrial genome. The buffalograss genome appears to have evolved through the rearrangements of convergent subgenomic domains. Combined analyses of plastid genes suggest that the evolutionary process in Buchlo? accessions studied was monophyletic rather than polyphyletic. However, since plastid and mitochondrial genomes are generally uniparentally inherited, the evolutionary history of these genomes may not reflect the evolutionary history of the organism, especially in a species in which out-crossing is common. The sequence information obtained from this study can be used as a genome-specific marker for investigation of the buffalograss polyploidy complex and testing of the mode of plastid and mitochondrial transmission in genus Buchlo?.  相似文献   

7.
Cryptophytes are photosynthetic protists that have acquired their plastids through the secondary symbiotic uptake of a red alga. A remarkable feature of cryptophytes is that they maintain a reduced form of the red algal nucleus, the nucleomorph, between the second and third plastid membranes (periplastidial compartment, PC). The nucleomorph is thought to be a transition state in the evolution of secondary plastids with this genome ultimately being lost (e.g., as in heterokonts, haptophytes, euglenophytes) when photosynthesis comes under full control of the “host” nucleus. For this to happen, all genes for plastid function must be transferred from the nucleomorph to the nucleus. In this regard, it is generally assumed that nucleomorph genes with functions unrelated to plastid or PC maintenance are lost. Surprisingly, we show here the existence of a novel type of actin gene in the host nucleus of the cryptophyte, Pyrenomonas helgolandii, that has originated from the nucleomorph genome of the symbiont. Our results demonstrate for the first time that secondary symbionts can contribute genes to the host lineage that are unrelated to plastid function. These genes are akin to the products of gene duplication and provide a source of evolutionary novelty that could significantly increase the genetic diversity of the host lineage. We postulate that this may be a common phenomenon in algae containing secondary plastids that has yet to be fully appreciated due to a dearth of evolutionary studies of nuclear genes in these taxa.  相似文献   

8.
Serial transfer of plastids from one eukaryotic host to another is the key process involved in evolution of secondhand plastids. Such transfers drastically change the environment of the plastids and hence the selection regimes, presumably leading to changes over time in the characteristics of plastid gene evolution and to misleading phylogenetic inferences. About half of the dinoflagellate protists species are photosynthetic and unique in harboring a diversity of plastids acquired from a wide range of eukaryotic algae. They are therefore ideal for studying evolutionary processes of plastids gained through secondary and tertiary endosymbioses. In the light of these processes, we have evaluated the origin of 2 types of dinoflagellate plastids, containing the peridinin or 19'-hexanoyloxyfucoxanthin (19'-HNOF) pigments, by inferring the phylogeny using "covarion" evolutionary models allowing the pattern of among-site rate variation to change over time. Our investigations of genes from secondary and tertiary plastids derived from the rhodophyte plastid lineage clearly reveal "heterotachy" processes characterized as stationary covarion substitution patterns and changes in proportion of variable sites across sequences. Failure to accommodate covarion-like substitution patterns can have strong effects on the plastid tree topology. Importantly, multigene analyses performed with probabilistic methods using among-site rate and covarion models of evolution conflict with proposed single origin of the peridinin- and 19'-HNOF-containing plastids, suggesting that analysis of secondhand plastids can be hampered by convergence in the evolutionary signature of the plastid DNA sequences. Another type of sequence convergence was detected at protein level involving the psaA gene. Excluding the psaA sequence from a concatenated protein alignment grouped the peridinin plastid with haptophytes, congruent with all DNA trees. Altogether, taking account of complex processes involved in the evolution of dinoflagellate plastid sequences (both at the DNA and amino acid level), we demonstrate the difficulty of excluding independent, tertiary origin for both the peridinin and 19'-HNOF plastids involving engulfment of haptophyte-like algae. In addition, the refined topologies suggest the red algal order, Porphyridales, as the endosymbiont ancestor of the secondary plastids in cryptophytes, haptophytes, and heterokonts.  相似文献   

9.
The ancestral kareniacean dinoflagellate has undergone tertiary endosymbiosis, in which the original plastid is replaced by a haptophyte endosymbiont. During this plastid replacement, the endosymbiont genes were most likely flowed into the host dinoflagellate genome (endosymbiotic gene transfer or EGT). Such EGT may have generated the redundancy of functionally homologous genes in the host genome—one has resided in the host genome prior to the haptophyte endosymbiosis, while the other transferred from the endosymbiont genome. However, it remains to be well understood how evolutionarily distinct but functionally homologous genes were dealt in the dinoflagellate genomes bearing haptophyte‐derived plastids. To model the gene evolution after EGT in plastid replacement, we here compared the characteristics of the two evolutionally distinct genes encoding plastid‐type glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) in Karenia brevis and K. mikimotoi bearing haptophyte‐derived tertiary plastids: “gapC1h” acquired from the haptophyte endosymbiont and “gapC1p” inherited from the ancestral dinoflagellate. Our experiments consistently and clearly demonstrated that, in the two species examined, the principal plastid‐type GAPDH is encoded by gapC1h rather than gapC1p. We here propose an evolutionary scheme resolving the EGT‐derived redundancy of genes involved in plastid function and maintenance in the nuclear genomes of dinoflagellates that have undergone plastid replacements. Although K. brevis and K. mikimotoi are closely related to each other, the statuses of the two evolutionarily distinct gapC1 genes in the two Karenia species correspond to different steps in the proposed scheme.  相似文献   

10.
Three eukaryotic lineages generally are believed to have plastids that are primary in origin; that is, descended directly from a cyanobacterial endosymbiont. The recovery of these plastids as a monophyletic group in most molecular phylogenetic analyses, along with similarities in genome content and protein targeting mechanisms, have been cited as strong evidence in support of the hypothesis of a single endosymbiotic origin of all plastids. Although these data indeed are consistent with a single plastid origin, they also are consistent with the proposition of multiple endosymbiotic origins. Each hypothesis requires certain evolutionary assumptions in order to be reconciled with all existing data; at present, it is unclear which of these assumptions most likely reflect the historical process that gave rise to plastid diversity. Here we examine similarities in gene content among representatives of the three primary plastid lineages, using as a control the genome of a mitochondrion that almost certainly originated as an independent endosymbiotic association. To minimize metabolic constraints on gene retention we focus on two datasets, ribosomal protein and transfer RNA genes, neither of which is tied directly to specific organellar functions. Analyses of all possible pair‐wise comparisons among the three plastids and mitochondrion indicate that genomic similarities are most consistent with convergent evolution due to constraints on gene loss, rather than with hypothesized shared evolutionary histories. We find no evidence of phylogenetic signal in the pattern of gene loss overlying this convergence. In light of these results, we address other lines of evidence and arguments that have been raised in support of a single plastid origin.  相似文献   

11.
We discuss the suggestion that differences in the nucleotide composition between plastid and nuclear genomes may provide a selective advantage in the transposition of genes from plastid to nucleus. We show that in the adenine, thymine (AT)-rich genome of Borrelia burgdorferi several genes have an AT-content lower than the average for the genome as a whole. However, genes whose plant homologues have moved from plastid to nucleus are no less AT-rich than genes whose plant homologues have remained in the plastid, indicating that both classes of gene are able to support a high AT-content. We describe the anomalous organization of dinoflagellate plastid genes. These are located on small circles of 2-3 kbp, in contrast to the usual plastid genome organization of a single large circle of 100-200 kbp. Most circles contain a single gene. Some circles contain two genes and some contain none. Dinoflagellate plastids have retained far fewer genes than other plastids. We discuss a similarity between the dinoflagellate minicircles and the bacterial integron system.  相似文献   

12.
Since the endosymbiotic origin of chloroplasts from cyanobacteria 2 billion years ago, the evolution of plastids has been characterized by massive loss of genes. Most plants and algae depend on photosynthesis for energy and have retained ~110 genes in their chloroplast genome that encode components of the gene expression machinery and subunits of the photosystems. However, nonphotosynthetic parasitic plants have retained a reduced plastid genome, showing that plastids have other essential functions besides photosynthesis. We sequenced the complete plastid genome of the underground orchid, Rhizanthella gardneri. This remarkable parasitic subterranean orchid possesses the smallest organelle genome yet described in land plants. With only 20 proteins, 4 rRNAs, and 9 tRNAs encoded in 59,190 bp, it is the least gene-rich plastid genome known to date apart from the fragmented plastid genome of some dinoflagellates. Despite numerous differences, striking similarities with plastid genomes from unrelated parasitic plants identify a minimal set of protein-encoding and tRNA genes required to reside in plant plastids. This prime example of convergent evolution implies shared selective constraints on gene loss or transfer.  相似文献   

13.
Cryptophytes are photosynthetic protists that have acquired their plastids through the secondary symbiotic uptake of a red alga. A remarkable feature of cryptophytes is that they maintain a reduced form of the red algal nucleus, the nucleomorph, between the second and third plastid membranes (periplastidial compartment; PC). The nucleomorph is thought to be a transition state in the evolution of secondary plastids, with this genome ultimately being lost when photosynthesis comes under full control of the "host" nucleus (e.g., as in heterokonts, haptophytes, and euglenophytes). Genes presently found in the nucleomorph seem to be restricted to those involved in its own maintenance and to that of the plastid; other genes were lost as the endosymbiont was progressively reduced to its present state. Surprisingly, we found that the cryptophyte Pyrenomonas helgolandii possesses a novel type of actin gene that originated from the nucleomorph genome of the symbiont. Our results demonstrate for the first time that secondary symbionts can contribute genes to the host lineage which are unrelated to plastid function. These genes are akin to the products of gene duplication or lateral transfer and provide a source of evolutionary novelty that can significantly increase the genetic diversity of the host lineage. We postulate that this may be a common phenomenon in algae containing secondary plastids that has yet to be fully appreciated due to a dearth of evolutionary studies of nuclear genes in these taxa.  相似文献   

14.
It is generally accepted that peridinin-containing dinoflagellate plastids are derived from red alga, but whether they are secondary plastids equivalent to plastids of stramenopiles, haptophytes, or cryptophytes, or are tertiary plastids derived from one of the other secondary plastids, has not yet been completely resolved. As secondary plastids, plastid gene phylogeny should mirror that of nuclear genes, while incongruence in the two phylogenies should be anticipated if their origin was as tertiary plastids. We have analyzed the phylogeny of plastid-encoded genes from Lingulodinium as well as that of nuclear-encoded dinoflagellate homologues of plastid-encoded genes conserved in all other plastid genome sequences. Our analyses place the dinoflagellate, stramenopile, haptophyte, and cryptophyte plastids firmly in the red algal lineage, and in particular, the close relationship between stramenopile plastid genes and their dinoflagellate nuclear-encoded homologues is consistent with the hypothesis that red algal-type plastids have arisen only once in evolution.  相似文献   

15.
16.
Dinoflagellate algae are important primary producers and of significant ecological and economic impact because of their ability to form "red tides". They are also models for evolutionary research because of an unparalleled ability to capture photosynthetic organelles (plastids) through endosymbiosis. The nature and extent of the plastid genome in the dominant perdinin-containing dinoflagellates remain, however, two of the most intriguing issues in plastid evolution. The plastid genome in these taxa is reduced to single-gene minicircles encoding an incomplete (until now 15) set of plastid proteins. The location of the remaining photosynthetic genes is unknown. We generated a data set of 6,480 unique expressed sequence tags (ESTs) from the toxic dinoflagellate Alexandrium tamarense (for details, see the Experimental Procedures in the Supplemental Data) to find the missing plastid genes and to understand the impact of endosymbiosis on genome evolution. Here we identify 48 of the non-minicircle-encoded photosynthetic genes in the nuclear genome of A. tamarense, accounting for the majority of the photosystem. Fifteen genes that are always found on the plastid genome of other algae and plants have been transferred to the nucleus in A. tamarense. The plastid-targeted genes have red and green algal origins. These results highlight the unique position of dinoflagellates as the champions of plastid gene transfer to the nucleus among photosynthetic eukaryotes.  相似文献   

17.
18.
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable.  相似文献   

19.
20.
The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date. The various hypotheses put forward to explain the retention of the plastid genome have tended to focus on the need for photosynthetic organisms to retain a genetic system in the chloroplast, and they fail to explain why heterotrophic plants and algae, and the apicomplexan parasites all retain a genome in their non-photosynthetic plastids. Here we consider two additional explanations: the 'essential tRNAs' hypothesis and the 'transfer-window' hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号