首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Alterations in the genome and the epigenome are common in most cancers. Changes in epigenetic signatures, including aberrant DNA methylation and histone deacetylation, are among the most prevalent modifications in cancer and lead to dramatic changes in gene expression patterns. Because DNA methylation and histone deacetylation are reversible processes, they have become attractive as targets for cancer epigenetic therapy, both as single agents and as 'enhancing' agents for other treatment strategies. In this review we discuss our current view of the mammalian epigenome, this view has changed over the years because of the availability of novel technologies. We further demonstrate how the profound understanding of epigenetic alterations in cancer will help develop novel strategies for epigenetic therapies.  相似文献   

3.
DNA methylation and histone modification are evolutionarily conserved epigenetic modifications that are crucial for the expression regulation of abiotic stress-responsive genes in plants. Dynamic changes in gene expression levels can result from changes in DNA methylation and histone modifications. In the last two decades, how epigenetic machinery regulates abiotic stress responses in plants has been extensively studied. Here, based on recent publications, we review how DNA methylation and histone modifications impact gene expression regulation in response to abiotic stresses such as drought, abscisic acid, high salt, extreme temperature, nutrient deficiency or toxicity, and ultraviolet B exposure. We also review the roles of epigenetic mechanisms in the formation of transgenerational stress memory. We posit that a better understanding of the epigenetic underpinnings of abiotic stress responses in plants may facilitate the design of more stress-resistant or -resilient crops, which is essential for coping with global warming and extreme environments.  相似文献   

4.
De novo DNA methylation: a germ cell perspective   总被引:1,自引:0,他引:1  
  相似文献   

5.
One of the most fundamental questions in the control of gene expression is how epigenetic patterns of DNA methylation and histone modifications are established. Our recent studies demonstrate that histone deacetylase HDA6 integrates DNA methylation and histone modifications in gene silencing by interacting with DNA methyltransferase MET1 and histone demethylase FLD, suggesting that regulatory crosstalk between histone modifications and DNA methylation could be mediated by the interaction of various epigenetic modification proteins.  相似文献   

6.
In bone biology, epigenetics plays a key role in mesenchymal stem cells' (MSCs) commitment towards osteoblasts. It involves gene regulatory mechanisms governed by chromatin modulators. Predominant epigenetic mechanisms for efficient osteogenic differentiation include DNA methylation, histone modifications, and non-coding RNAs. Among these mechanisms, histone modifications critically contribute to altering chromatin configuration. Histone based epigenetic mechanisms are an essential mediator of gene expression during osteoblast differentiation as it directs the bivalency of the genome. Investigating the importance of histone modifications in osteogenesis may lead to the development of epigenetic-based remedies for genetic disorders of bone. Hence, in this review, we have highlighted the importance of epigenetic modifications such as post-translational modifications of histones, including methylation, acetylation, phosphorylation, ubiquitination, and their role in the activation or suppression of gene expression during osteoblast differentiation. Further, we have emphasized the future advancements in the field of epigenetics towards orthopaedical therapeutics.  相似文献   

7.
8.
表观遗传通过DNA甲基化、组蛋白修饰、染色质重塑、以及microRNA等调控方式来实现对基因表达、DNA复制和基因组稳定性的控制。DNA甲基化是目前研究的最为广泛的表观遗传修饰方式之一,可调控真核生物的基因表达。DNA甲基化在哺乳动物发育、肿瘤发生发展及人类其他疾病中均发挥着至关重要的作用。DNA甲基化状态的改变已被视为人类肿瘤细胞的生物标志之一。EMs虽是一种良性妇科疾病,但伴有细胞增殖、侵袭性及远处种植转移等肿瘤的特点。最新研究发现,DNA甲基化可能与子宫内膜异位症(EMs)的发生存在密切的关系并认为EMs从根本上是一种表观遗传学疾病。由于表观遗传修饰都是可逆的过程,这就为EMs的治疗提供了一种新的途径。本文就DNA甲基化在EMs中的发生发展中的作用及其调控的分子机制,以及在诊断治疗中作用的最新研究进展做一综述。  相似文献   

9.
徐安利  张素芹  陈琪  杨瑛  侯建青 《生物磁学》2014,(23):4574-4577
表观遗传通过DNA甲基化、组蛋白修饰、染色质重塑、以及microRNA等调控方式来实现对基因表达、DNA复制和基因组稳定性的控制。DNA甲基化是目前研究的最为广泛的表观遗传修饰方式之一,可调控真核生物的基因表达。DNA甲基化在哺乳动物发育、肿瘤发生发展及人类其他疾病中均发挥着至关重要的作用。DNA甲基化状态的改变已被视为人类肿瘤细胞的生物标志之一。EMs虽是一种良性妇科疾病,但伴有细胞增殖、侵袭性及远处种植转移等肿瘤的特点。最新研究发现,DNA甲基化可能与子宫内膜异位症(EMs)的发生存在密切的关系并认为EMs从根本上是一种表观遗传学疾病。由于表观遗传修饰都是可逆的过程,这就为EMs的治疗提供了一种新的途径。本文就DNA甲基化在EMs中的发生发展中的作用及其调控的分子机制,以及在诊断治疗中作用的最新研究进展做一综述。  相似文献   

10.
11.
Epigenetic modifications of stem cell genome including DNA methylation and histone modifications are critical for the regulation of stem cell gene expression and maintenance of stem cell pool and their differentiation. Although the importance of epigenetic modifications specifically DNA methylation to adult hematopoietic stem cells (HSC) has been established, the identity of specific modulators and precise mechanism of integration of methylation events remain to be uncovered. In this issue, Shuai and colleagues identify the SUMO E3 ligase PIAS1 (protein inhibitor of activated STAT1) as a key regulator of DNA methylation of HSC required for their maintenance and lineage commitment (Liu et al, 2014 ).  相似文献   

12.
Sequences proximal to transgene integration sites are able to regulate transgene expression, resulting in complex position effect variegation. Position effect variegation can cause differences in epigenetic modifications, such as DNA methylation and histone acetylation. However, it is not known which factor, position effect or epigenetic modification, plays a more important role in the regulation of transgene expression. We analyzed transgene expression patterns and epigenetic modifications of transgenic pigs expressing green fluorescent protein, driven by the cytomegalovirus (CMV) promoter. DNA hypermethylation and loss of acetylation of specific histone H3 and H4 lysines, except H4K16 acetylation in the CMV promoter, were consistent with a low level of transgene expression. Moreover, the degree of DNA methylation and histone H3/H4 acetylation in the promoter region depended on the integration site; consequently, position effect variegation caused variations in epigenetic modifications. The transgenic pig fibroblast cell lines were treated with DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine and/or histone deacetylase inhibitor trichostatin A. Transgene expression was promoted by reversing the DNA hypermethylation and histone hypoacetylation status. The differences in DNA methylation and histone acetylation in the CMV promoter region in these cell lines were not significant; however, significant differences in transgene expression were detected, demonstrating that variegation of transgene expression is affected by the integration site. We conclude that in this pig model, position effect variegation affects transgene expression.  相似文献   

13.
The term epigenetics is defined as inheritable changes that influence the outcome of a phenotype without changes in the genome. Epigenetics is based upon DNA methylation and posttranslational histone modifications. While there is much known about reversible acetylation as a posttranslational modification, research on reversible histone methylation is still emerging, especially with regard to drug discovery. As aberrant epigenetic modifications have been linked to many diseases, inhibitors of histone modifying enzymes are very much in demand. This article will summarize the progress on small molecule epigenetic inhibitors identified by structure- and computer-based approaches.  相似文献   

14.
JN Treas  T Tyagi  KP Singh 《PloS one》2012,7(8):e43880
Chronic exposures to arsenic and estrogen are known risk factors for prostate cancer. Though the evidence suggests that exposure to arsenic or estrogens can disrupt normal DNA methylation patterns and histone modifications, the mechanisms by which these chemicals induce epigenetic changes are not fully understood. Moreover, the epigenetic effects of co-exposure to these two chemicals are not known. Therefore, the objective of this study was to evaluate the effects of chronic exposure to arsenic and estrogen, both alone and in combination, on the expression of epigenetic regulatory genes, their consequences on DNA methylation, and histone modifications. Human prostate epithelial cells, RWPE-1, chronically exposed to arsenic and estrogen alone and in combination were used for analysis of epigenetic regulatory genes expression, global DNA methylation changes, and histone modifications at protein level. The result of this study revealed that exposure to arsenic, estrogen, and their combination alters the expression of epigenetic regulatory genes and changes global DNA methylation and histone modification patterns in RWPE-1 cells. These changes were significantly greater in arsenic and estrogen combination treated group than individually treated group. The findings of this study will help explain the epigenetic mechanism of arsenic- and/or estrogen-induced prostate carcinogenesis.  相似文献   

15.
16.
Epigenetic regulation by histone methylation and histone variants   总被引:10,自引:0,他引:10  
Epigenetics is the study of heritable changes in gene expression that are not mediated at the DNA sequence level. Molecular mechanisms that mediate epigenetic regulation include DNA methylation and chromatin/histone modifications. With the identification of key histone-modifying enzymes, the biological functions of many histone posttranslational modifications are now beginning to be elucidated. Histone methylation, in particular, plays critical roles in many epigenetic phenomena. In this review, we provide an overview of recent findings that shape the current paradigms regarding the roles of histone methylation and histone variants in heterochromatin assembly and the maintenance of the boundaries between heterochromatin and euchromatin. We also highlight some of the enzymes that mediate histone methylation and discuss the stability and inheritance of this modification.  相似文献   

17.
Our knowledge base involving the biochemical participants of epigenetic control has expanded greatly over the last decade. The role of epigenetic marks to DNA and histones controlled by non-coding RNAs is one of the most intensely studied areas of biology today. This review covers many of the mechanisms that non-coding RNAs and other molecules use to control gene expression and eventually affect responses to the environment. In the first part of the review, we discuss the array of covalent modifications to the genome that constitute the epigenome, which consists of the histone variants, covalent modifications, and post-translational modifications that result in gene expression changes. How the histone variants and post-translational modifications including, acetylation, methylation, phosphorylation, ubiquitination and sumoylation help form the epigenome is also summarized. Our eventual understanding of how the environment controls these modifications will open incredible opportunities in agriculture, medicine and the development of practical tools for biology. In the second part of this review we discuss the growing list of environmentally-mediated epigenetic modifications, and examples of transgenerational epigenetic inheritance events, that may begin to change our views of adaptive responses to the environment and evolution.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号