首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Progression through the eukaryotic cell cycle is driven by the activity of cyclin-dependent kinases. The cyclin D-dependent kinase Cdk4 promotes progression through the G(1) phase of the cell cycle and is deregulated in many human tumors. The tumor suppressor protein p16(INK4A) (p16) forms a complex with Cdk4 and inhibits kinase activity. Here we report that p16 is phosphorylated, and the phosphorylated form of p16 is preferentially associated with Cdk4 in normal human fibroblasts. We mapped phosphorylation sites on exogenously overexpressed p16 to serines 7, 8, 140, and 152 and found that endogenous p16 associated with Cdk4 is phosphorylated at serine 152. All mapped phosphorylation sites lie outside of the conserved kinase-binding domain of p16 but in regions of the protein affected by mutations in familial and sporadic cancer. Our results suggest a novel regulation of p16 activity.  相似文献   

4.
5.
A discontinuous-pH polyacrylamide gel electrophoresis system is described. An increase in the pH differential between the gel and the running buffer enhances the separation of low molecular weight circular and linear RNA molecules. Highly purified preparations of the circular form of viroids can be obtained with this procedure. Since all the linear RNAs of similar molecular weight migrate with the front, a relatively clean background can be obtained even when crude extracts are used. This facilitates an improved separation and identification of similarly sized viroid-like RNAs. The conditions of electrophoresis in low salt and 8 M urea also permit the effective transfer of RNA molecules directly to nylon-based membranes without any additional denaturation treatment.  相似文献   

6.
7.
8.
Ni MJ  Hu ZH  Liu Q  Liu MF  Lu MH  Zhang JS  Zhang L  Zhang YL 《PloS one》2011,6(10):e26053
A long and ever-expanding roster of small (~20-30 nucleotides) RNAs has emerged during the last decade, and most can be subsumed under the three main headings of microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), and short interfering RNAs (siRNAs). Among the three categories, miRNAs is the most quickly expanded group. The most recent number of identified miRNAs is 16,772 (Sanger miRbase, April 2011). However, there are insufficient publications on their primary forms, and no tissue-specific small RNAs precursors have been reported in the epididymis. Here, we report the identification in rats of an epididymis-specific, chimeric, noncoding RNA that is spliced from two different chromosomes (chromosomes 5 and 19), which we named HongrES2. HongrES2 is a 1.6 kb mRNA-like precursor that gives rise to a new microRNA-like small RNA (mil-HongrES2) in rat epididymis. The generation of mil-HongrES2 is stimulated during epididymitis. An epididymis-specific carboxylesterase named CES7 had 100% cDNA sequence homology at the 3'end with HongrES2 and its protein product could be downregulated by HongrES2 via mil-HongrES2. This was confirmed in vivo by initiating mil-HongrES2 over-expression in rats and observing an effect on sperm capacitation.  相似文献   

9.
Lou  Xiaoqian  Ma  Xiaoyan  Wang  Dawei  Li  Xiangjun  Sun  Bo  Zhang  Tong  Qin  Meng  Ren  Liqun 《Molecular and cellular biochemistry》2019,455(1-2):61-71

Hypertension (HT), a common age-related disorder, is an important risk factor for cardiovascular disease. This study aims to identify the prevalence of HT in Portuguese centenarians and evaluate whether gene polymorphisms encoding key molecules in blood pressure (BP) regulation are associated with longevity. There were recruited 253 centenarians (100.26?±?1.98 years) and 268 control subjects (67.51?±?3.25 years). Hypertension (ESH/ESC2013 and JNC8) and diabetes (WHO) were evaluate. Genetic polymorphisms of renin-angiotensin-aldosterone system (RAAS) and NOS3 were determined. The prevalence of HT among centenarians was 64.4% and the majority (58.9%) were controlled, differing from control group both on frequency (P?<?0.001) and on their control (P?<?0.001). We found that HT is a risk factor for not achieving longevity (OR 2.531, 95% CI 1.688–3.793, P?<?0.001), the same for diabetes (OR 5.669 95% CI 2.966–10.835, P?<?0.001), and male gender (OR 2.196, 95% CI 1.493–3.29, P?<?0.001). Hypertension, adjusted for gender and diabetes, was independent risk factor anti-longevity (OR 2.007, 95% CI 1320–3.052, P?=?0.001). The ACE_D and NOS3_G alleles were more frequent in centenarians compared to controls (P?<?0.001, both cases). ACE_II and NOS3_TT genotypes, adjusted for BP, gender and diabetes, increased risk in 3.748 (95% CI 1.887–7.444) and 2.533 (95% CI 1.483–4.327), respectively, in relation to ACE_DD (P?<?0.001) and NOS3_GG (P?=?0.001), against longevity. Our findings suggest that the prevalence of hypertension was lower in Portuguese centenarians than in the elderly, reinforcing the importance of better cardiovascular risk profiles to achieve longevity even in the presence of genetic condition.

  相似文献   

10.
《Biomarkers》2013,18(6):552-556
This study describes identification of p16INK4A sequence variants and their potential association with esophageal squamous cell carcinoma (ESCC) in a high risk population from Kashmir, India. We report a novel 7 base pair exon 2 deletion in 22 out of 106 (~20%) surgically resected tumor samples. The deletion beginning at the second base of codon 103, results in a frame shift causing premature termination of the protein at codon 142, with structural and functional consequences predicted by insilico analysis. The described mutation is a previously unreported variant of p16INK4A, perhaps representing a founder mutation unique to the population.  相似文献   

11.
12.
Mucoepidermoid carcinoma (MEC) of salivary gland is a disease characterized by high rate of diatant metastasis, and associated with poor outcomes. However, the molecular mechanisms underlying the MEC remain poorly understand. Here, we simultaneously detected, for the first time, the expression profiles of mRNAs, lncRNAs, and circRNAs in four pairs of MEC and matched non-carcinoma tissues by microarrays. A total of 3612?mRNA, 3091 lncRNAs, and 284 circRNAs were altered during the pathogenesis of MEC. The functions of these differentially expressed RNAs were predicted by Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Co-expression networks of lncRNA-mRNA and circRNA-miRNA were conducted to uncovered the hidden ceRNA mechanisms. Moreover, NONHSAT154433.1 that associated with ADAM12 and hsa_circ_0012342 were further screened and confirmed using qRT-PCR analysis. In conclusion, this study provides a systematic perspective on the potential function of non-coding RNAs (ncRNAs) in the molecular mechanisms of MEC. Among these, NONHSAT154433.1 and hsa_circ_0012342 might be served as potential prognostic biomarkers and therapeutic target of MEC.  相似文献   

13.
Protein serine/threonine phosphatase 4 (PP4c) is an essential polypeptide involved in critical cellular processes such as microtubule growth and organization, DNA damage checkpoint recovery, apoptosis, and tumor necrosis factor alpha signaling. Like other phosphatases of the PP2A family, PP4c interacts with regulatory proteins, which specify substrate targeting and intracellular localization. The identification of these regulatory proteins is, therefore, key to fully understanding the function of this enzyme class. Here, using a sensitive affinity purification/mass spectrometry approach, we identify a novel, stable cytosolic PP4c interacting partner, KIAA1622, which we have renamed PP4R4. PP4R4 displays weak sequence homology with the A (scaffolding) subunit of the PP2A holoenzyme and specifically associates with PP4c (and not with the related PP2Ac or PP6c phosphatases). The PP4c.PP4R4 interaction is disrupted by mutations analogous to those abrogating the association of PP2Ac with PP2A A subunit. However, unlike the PP2A A subunit, which plays a scaffolding role, PP4R4 does not bridge PP4c with previously characterized PP4 regulatory subunits. PP4c.PP4R4 complexes exhibit phosphatase activity toward a fluorogenic substrate and gammaH2AX, but this activity is lower than that associated with the PP4c.PP4R2.PP4R3 complex, which itself is less active than the free PP4c catalytic subunit. Our data demonstrate that PP4R4 forms a novel cytosolic complex with PP4c, independent from the complexes containing PP4R1, PP4R2.PP4R3, and alpha4, and that the regulatory subunits of PP4c have evolved different modes of interaction with the catalytic subunit.  相似文献   

14.
15.
人类基因组中,用于蛋白质编码的核酸序列约占1.5%,另外98.5%的非蛋白编码基因被视为"噪音"序列,并未引起人们的注意。随着测序技术的发展,人们发现大部分的基因被转录成RNA,其中多数为长度大于200nt且不编码蛋白质的长链非编码RNA(Long non-coding RNA, lncRNA),其作用机制包括支架分子、引导分子等,广泛参与细胞发育、增殖及迁移过程,且其水平的改变又与肿瘤、代谢性疾病等相关。本文主要对lncRNA的分类、作用机制及涉及的疾病等进行综述,为进一步研究lncRNA的功能机制奠定基础。  相似文献   

16.
This study describes identification of p16(INK4A) sequence variants and their potential association with esophageal squamous cell carcinoma (ESCC) in a high risk population from Kashmir, India. We report a novel 7 base pair exon 2 deletion in 22 out of 106 (~20%) surgically resected tumor samples. The deletion beginning at the second base of codon 103, results in a frame shift causing premature termination of the protein at codon 142, with structural and functional consequences predicted by insilico analysis. The described mutation is a previously unreported variant of p16(INK4A), perhaps representing a founder mutation unique to the population.  相似文献   

17.
The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.  相似文献   

18.
19.
20.
p16(INK4a) is a multiple tumor suppressor, playing an important role in proliferation and tumorigenesis. To screen the p16(INK4a)-associated proteins, we performed a yeast two-hybrid assay and identified a novel protein isochorismatase domain containing 2 (ISOC2). ISOC2 conserves in different species, and encodes 205 and 210 amino acids in human and mouse, respectively. The expression of ISOC2 in mouse is universal but predominantly in uterus, stomach, and urinary tract system. Interaction between ISOC2 and p16(INK4a) was verified using in vitro pull-down assays and in vivo co-immunoprecipitation. Confocal microscopy studies using green and cyan fluorescent fusion proteins determined that ISOC2 co-localizes with p16(INK4a). Over-expressed ISOC2 is able to inhibit p16(INK4a) in dose-dependent manner. Our data indicated that ISOC2 is a novel functional protein, which is able to bind and co-localize with a tumor suppressor gene p16(INK4a). Over-expressed ISOC2 inhibits the expression of p16(INK4a), suggesting that this novel gene may play a role during the tumor development by interacting with p16(INK4a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号