首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An acylation/deacylation cycle is necessary to maintain the steady-state subcellular distribution and biological activity of S-acylated peripheral proteins. Despite the progress that has been made in identifying and characterizing palmitoyltransferases (PATs), much less is known about the thioesterases involved in protein deacylation. In this work, we investigated the deacylation of growth-associated protein-43 (GAP-43), a dually acylated protein at cysteine residues 3 and 4. Using fluorescent fusion constructs, we measured in vivo the rate of deacylation of GAP-43 and its single acylated mutants in Chinese hamster ovary (CHO)-K1 and human HeLa cells. Biochemical and live cell imaging experiments demonstrated that single acylated mutants were completely deacylated with similar kinetic in both cell types. By RT-PCR we observed that acyl-protein thioesterase 1 (APT-1), the only bona fide thioesterase shown to mediate deacylation in vivo, is expressed in HeLa cells, but not in CHO-K1 cells. However, APT-1 overexpression neither increased the deacylation rate of single acylated GAP-43 nor affected the steady-state subcellular distribution of dually acylated GAP-43 both in CHO-K1 and HeLa cells, indicating that GAP-43 deacylation is not mediated by APT-1. Accordingly, we performed a bioinformatic search to identify putative candidates with acyl-protein thioesterase activity. Among several candidates, we found that APT-2 is expressed both in CHO-K1 and HeLa cells and its overexpression increased the deacylation rate of single acylated GAP-43 and affected the steady-state localization of diacylated GAP-43 and H-Ras. Thus, the results demonstrate that APT-2 is the protein thioesterase involved in the acylation/deacylation cycle operating in GAP-43 subcellular distribution.  相似文献   

2.
S-acylation, the covalent attachment of palmitate and other fatty acids on cysteine residues, is a reversible post-translational modification that exerts diverse effects on protein functions. S-acylation is catalyzed by protein acyltransferases (PAT), while deacylation requires acyl-protein thioesterases (APT), with numerous inhibitors for these enzymes having already been developed and characterized. Among these inhibitors, the palmitate analog 2-brompalmitate (2-BP) is the most commonly used to inhibit palmitoylation in cells. Nevertheless, previous results from our laboratory have suggested that 2-BP could affect protein deacylation. Here, we further investigated in vivo and in vitro the effect of 2-BP on the acylation/deacylation protein machinery, with it being observed that 2-BP, in addition to inhibiting PAT activity in vivo, also perturbed the acylation cycle of GAP-43 at the level of depalmitoylation and consequently affected its kinetics of membrane association. Furthermore, 2-BP was able to inhibit in vitro the enzymatic activities of human APT1 and APT2, the only two thioesterases shown to mediate protein deacylation, through an uncompetitive mechanism of action. In fact, APT1 and APT2 hydrolyzed both the monomeric form as well as the micellar state of the substrate palmitoyl-CoA. On the basis of the obtained results, as APTs can mediate deacylation on membrane bound and unbound substrates, this suggests that the access of APTs to the membrane interface is not a necessary requisite for deacylation. Moreover, as the enzymatic activity of APTs was inhibited by 2-BP treatment, then the kinetics analysis of protein acylation using 2-BP should be carefully interpreted, as this drug also inhibits protein deacylation.  相似文献   

3.
The lipid phosphatidylinositol 4,5-bisphosphate (PIP2) is critical for a number of physiological functions, and its presence in membrane microdomains (rafts) appears to be important for several of these spatially localized events. However, lipids like PIP2 that contain polyunsaturated hydrocarbon chains are usually excluded from rafts, which are enriched in phospholipids (such as sphingomyelin) containing saturated or monounsaturated chains. Here we tested a mechanism by which multivalent PIP2 molecules could be transferred into rafts through electrostatic interactions with polybasic cytoplasmic proteins, such as GAP-43, which bind to rafts via their acylated N-termini. We analyzed the interactions between lipid membranes containing raft microdomains and a peptide (GAP-43P) containing the linked N-terminus and the basic effector domain of GAP-43. In the absence or presence of nonacylated GAP-43P, PIP2 was found primarily in detergent-soluble membranes thought to correspond to nonraft microdomains. However, when GAP-43P was acylated by palmitoyl coenzyme A, both the peptide and PIP2 were greatly enriched in detergent-resistant membranes that correspond to rafts; acylation of GAP-43P changed the free energy of transfer of PIP2 from detergent-soluble membranes to detergent-resistant membranes by −1.3 kcal/mol. Confocal microscopy of intact giant unilamellar vesicles verified that in the absence of GAP-43P PIP2 was in nonraft microdomains, whereas acylated GAP-43P laterally sequestered PIP2 into rafts. These data indicate that sequestration of PIP2 to raft microdomains could involve interactions with acylated basic proteins such as GAP-43.  相似文献   

4.
The addition of palmitate to cysteine residues enhances the hydrophobicity of proteins, and consequently their membrane association. Here we have investigated whether this type of fatty acylation also regulates protein-protein interactions. GAP-43 is a neuronal protein that increases guanine nucleotide exchange by heterotrimeric G proteins. Two cysteine residues near the N-terminus of GAP-43 are subject to palmitoylation, and are necessary for membrane binding as well as for G(o) activation. N-terminal peptides, which include these cysteines, stimulate G(o). Monopalmitoylation reduces, and dipalmitoylation abolishes the activity of the peptides. The activity of GAP-43 protein purified from brain also is reversibly blocked by palmitoylation. This suggests that palmitoylation controls a cycle of GAP-43 between an acylated, membrane-bound reservoir of inactive GAP-43, and a depalmitoylated, active pool of protein.  相似文献   

5.
GAP-43 (neuromodulin) is a protein kinase C substrate that is abundant in developing and regenerating neurons. Thioester-linked palmitoylation at two cysteines near the GAP-43 N terminus has been implicated in directing membrane binding. Here, we use mass spectrometry to examine the stoichiometry of palmitoylation and the molecular identity of the fatty acid(s) attached to GAP-43 in vivo. GAP-43 expressed in either PC12 or COS-1 cells was acetylated at the N-terminal methionine. Approximately 35% of the N-terminal GAP-43 peptides were also modified by palmitate and/or stearate on Cys residues. Interestingly, a variety of acylated species was detected, in which one of the Cys residues was acylated by either palmitate or stearate, or both Cys residues were acylated by palmitates or stearates or a combination of palmitate and stearate. Depalmitoylation of membrane-bound GAP-43 did not release the protein from the membrane, implying that additional forces function to maintain membrane binding. Indeed, mutation of four basic residues within the N-terminal domain of GAP-43 dramatically reduced membrane localization of GAP-43 without affecting palmitoylation. These data reveal the heterogeneous nature of S-acylation in vivo and illustrate the power of mass spectrometry for identification of key regulatory protein modifications.  相似文献   

6.
Thioacylation is a reversible lipid modification of proteins that plays a role in the regulation of signal transduction. Acyl-protein thioesterase 1 (APT1) was identified as an enzyme capable of deacylating some thioacylated proteins in vitro. Saccharomyces cerevisiae open reading frame YLR118c encodes an enzyme homologous to Rattus norvegicus APT1. We demonstrate that the catalytic activity of the protein encoded by the yeast open reading frame is similar to that of rat APT1, and we designate the protein S. cerevisiae Apt1p. Yeasts bearing a disruption of the APT1 gene lack significant biochemically detectable acyl-protein thioesterase activity. They also fail to deacylate Gpa1p, the yeast G alpha subunit, in metabolic radiolabeling studies. We conclude that native APT1 is the enzyme responsible for G alpha subunit deacylation in S. cerevisiae and presumably other eukaryotes as well.  相似文献   

7.
To establish a strategy to identify dually fatty acylated proteins from cDNA resources, seven N-myristoylated proteins with cysteine (Cys) residues within the 10 N-terminal residues were selected as potential candidates among 27 N-myristoylated proteins identified from a model human cDNA resource. Seven proteins C-terminally tagged with FLAG tag or EGFP were generated and their susceptibility to protein N-myristoylation and S-palmitoylation were evaluated by metabolic labeling with [3H]myristic acid or [3H]palmitic acid either in an insect cell-free protein synthesis system or in transfected mammalian cells. As a result, EEPD1, one of five proteins (RFTN1, EEPD1, GNAI1, PDE2A, RNF11) found to be dually acylated, was shown to be a novel dually fatty acylated protein. Metabolic labeling experiments using G2A and C7S mutants of EEPD1-EGFP revealed that the palmitoylation site of EEPD1 is Cys at position 7. Analysis of the intracellular localization of EEPD1 C-terminally tagged with FLAG tag or EGFP and its G2A and C7S mutants revealed that the dual acylation directs EEPD1 to localize to the plasma membrane. Thus, dually fatty acylated proteins can be identified from cDNA resources by cell-free and cellular metabolic labeling of N-myristoylated proteins with Cys residue(s) close to the N-myristoylated N-terminus.  相似文献   

8.
Lysophospholipases play essential roles in keeping their multi-functional substrates, the lysophospholipids, at safe levels. Recently, a 25 kDa human lysophospholipase A (hLysoPLA I) that is highly conserved among rat, mouse, human and rabbit has been cloned, expressed and characterized and appears to hydrolyze only lysophospholipids among the various lipid substrates. Interestingly, this enzyme also displays acyl-protein thioesterase activity towards a G protein alpha subunit. To target the subcellular location of this hLysoPLA I, we have carried out immunocytochemical studies and report here that hLysoPLA I appears to be associated with the endoplasmic reticulum (ER) and nuclear envelope in human amnionic WISH cells and not the plasma membrane. In addition, we found that the hLysoPLA I can be up-regulated by phorbol 12-myristate 13-acetate (PMA) stimulation, a process in which phospholipase A(2) is activated and lysophospholipids are generated in WISH cells. Furthermore, the PMA-induced hLysoPLA I expression can be blocked by the protein kinase C (PKC) inhibitor G?6976. The regulated expression of the LysoPLA/acyl-protein thioesterase by PKC may have important implications for signal transduction processes.  相似文献   

9.
Autoacylation of myelin proteolipid protein with acyl coenzyme A   总被引:7,自引:0,他引:7  
Rat brain myelin proteolipid protein (PLP) is known to contain long chain, covalently bound fatty acids. In the course of characterizing the mechanism of acylation, we found that the isolated PLP, in the absence of any membrane fraction, was esterified after incubation with [3H]palmitoyl coenzyme A (CoA). This observation demonstrated that the protein acts as both an acylating enzyme and an acceptor. Thus, acylation occurs by an autocatalytic process. The possibility of a separate acyltransferase that copurifies with PLP was essentially excluded by adding brain subcellular fractions to the reaction mixtures and by changing the isolation procedure. After deacylation, the protein was acylated at a 4-fold greater rate, suggesting that the original sites were reacylated. The palmitoyl-CoA concentration followed Michaelis kinetics, confirming that spontaneous acylation was not occurring. Pulse-chase experiments indicated that the reaction entails net addition of acyl groups. Although fatty acids are bound via an O-ester linkage, free SH groups are required in the reaction. Denaturation of the protein by sodium dodecyl sulfate or heat inhibits the reaction, whereas cerulenin has little or no effect. PO, the major protein in peripheral nerve myelin, is also an acylated protein, but it was not labeled upon incubation of either peripheral myelin or the isolated protein with [3H]palmitoyl-CoA, demonstrating that it is acylated by a different route. Several synthetic peptides derived from PLP sequences with sites known to be acylated in vivo as well as a series of deacylated PLP tryptic peptides were not labeled, indicating that integrity of the protein is required for acylation. Limited proteolysis and peptide mapping showed that the same sites are acylated in vitro or in vivo, suggesting that the autocatalytic acylation reaction is physiological.  相似文献   

10.
Here we investigate the molecular mechanisms that govern the targeting of G-protein alpha subunits to the plasma membrane. For this purpose, we used Gi1alpha as a model dually acylated G-protein. We fused full-length Gi1alpha or its extreme NH2-terminal domain (residues 1-32 or 1-122) to green fluorescent protein (GFP) and analyzed the subcellular localization of these fusion proteins. We show that the first 32 amino acids of Gi1alpha are sufficient to target GFP to caveolin-enriched domains of the plasma membrane in vivo, as demonstrated by co-fractionation and co-immunoprecipitation with caveolin-1. Interestingly, when dual acylation of this 32-amino acid domain was blocked by specific point mutations (G2A or C3S), the resulting GFP fusion proteins were localized to the cytoplasm and excluded from caveolin-rich regions. The myristoylated but nonpalmitoylated (C3S) chimera only partially partitioned into caveolin-containing fractions. However, both nonacylated GFP fusions (G2A and C3S) no longer co-immunoprecipitated with caveolin-1. Taken together, these results indicate that lipid modification of the NH2-terminal of Gi1alpha is essential for targeting to its correct destination and interaction with caveolin-1. Also, a caveolin-1 mutant lacking all three palmitoylation sites (C133S, C143S, and C156S) was unable to co-immunoprecipitate these dually acylated GFP-G-protein fusions. Thus, dual acylation of the NH2-terminal domain of Gi1alpha and palmitoylation of caveolin-1 are both required to stabilize and perhaps regulate this reciprocal interaction at the plasma membrane in vivo. Our results provide the first demonstration of a functional role for caveolin-1 palmitoylation in its interaction with signaling molecules.  相似文献   

11.
The human apolipoproteins are secretory proteins some of which have been shown to undergo proteolytic processing and post-translational addition of carbohydrate. Apolipoprotein A-I (apo-A-I), the predominant protein associated with high density lipoproteins, undergoes co-translational proteolytic processing as well as post-translational conversion of proapo-A-I to mature apo-A-I following cellular secretion. Utilizing the human hepatoma cell line HEP-G2, we have established that, in addition to proteolytic processing, secreted nascent apo-A-I is acylated with palmitate. Uniformly labeled [14C]palmitate and [1-14C]palmitate were each incorporated into apo-A-I when analyzed by sodium dodecyl sulfate gel electrophoresis and autoradiography. The acylation of apo-A-I with palmitate was confirmed by immunoprecipitation and gas chromatography/mass spectrometry. Hydroxylamine treatment resulted in the deacylation of apo-A-I. Although three of the apo-A-I isoforms analyzed by two-dimensional gel electrophoresis were shown to contain radio-labeled palmitate, 80% of acylated apo-A-I was in the proapolipoprotein A-I isoform. [14C]Oleate was not incorporated in secreted apo-A-I, indicating the specificity of the acylation of apo-A-I. Incubation of [14C] palmitate-acylated apo-A-I in serum and plasma under conditions in which proapo-A-I is proteolytically cleaved to mature apo-A-I did not result in deacylation. These data establish that fatty acid acylation occurs in human secretory proteins in addition to the previously reported acylation of cellular membrane proteins. These results suggest that the covalent linkage of lipids to apolipoproteins may play a critical role in apolipoprotein and lipoprotein metabolism.  相似文献   

12.
Acyl-protein thioesterase-1 (APT1) and APT2 are cytosolic enzymes that catalyze depalmitoylation of membrane-anchored, palmitoylated H-Ras and growth-associated protein-43 (GAP-43), respectively. However, the mechanism(s) of cytosol-membrane shuttling of APT1 and APT2, required for depalmitoylating their substrates H-Ras and GAP-43, respectively, remained largely unknown. Here, we report that both APT1 and APT2 undergo palmitoylation on Cys-2. Moreover, blocking palmitoylation adversely affects membrane localization of both APT1 and APT2 and that of their substrates. We also demonstrate that APT1 not only catalyzes its own depalmitoylation but also that of APT2 promoting dynamic palmitoylation (palmitoylation-depalmitoylation) of both thioesterases. Furthermore, shRNA suppression of APT1 expression or inhibition of its thioesterase activity by palmostatin B markedly increased membrane localization of APT2, and shRNA suppression of APT2 had virtually no effect on membrane localization of APT1. In addition, mutagenesis of the active site Ser residue to Ala (S119A), which renders catalytic inactivation of APT1, also increased its membrane localization. Taken together, our findings provide insight into a novel mechanism by which dynamic palmitoylation links cytosol-membrane trafficking of APT1 and APT2 with that of their substrates, facilitating steady-state membrane localization and function of both.  相似文献   

13.

Background

H-rev107, also called HRASLS3 or PLA2G16, is a member of the HREV107 type II tumor suppressor gene family. Previous studies showed that H-rev107 exhibits phospholipase A/acyltransferase (PLA/AT) activity and downregulates H-RAS expression. However, the mode of action and the site of inhibition of H-RAS by H-rev107 are still unknown.

Results

Our results indicate that H-rev107 was co-precipitated with H-RAS and downregulated the levels of activated RAS (RAS-GTP) and ELK1-mediated transactivation in epidermal growth factor-stimulated and H-RAS-cotransfected HtTA cervical cancer cells. Furthermore, an acyl-biotin exchange assay demonstrated that H-rev107 reduced H-RAS palmitoylation. H-rev107 has been shown to be a PLA/AT that is involved in phospholipid metabolism. Treating cells with the PLA/AT inhibitor arachidonyl trifluoromethyl ketone (AACOCF3) or methyl arachidonyl fluorophosphate (MAFP) alleviated H-rev107-induced downregulation of the levels of acylated H-RAS. AACOCF3 and MAFP also increased activated RAS and ELK1-mediated transactivation in H-rev107-expressing HtTA cells following their treatment with epidermal growth factor. In contrast, treating cells with the acyl-protein thioesterase inhibitor palmostatin B enhanced H-rev107-mediated downregulation of acylated H-RAS in H-rev107-expressing cells. Palmostatin B had no effect on H-rev107-induced suppression of RAS-GTP levels or ELK1-mediated transactivation. These results suggest that H-rev107 decreases H-RAS activity through its PLA/AT activity to modulate H-RAS acylation.

Conclusions

We made the novel observation that H-rev107 decrease in the steady state levels of H-RAS palmitoylation through the phospholipase A/acyltransferase activity. H-rev107 is likely to suppress activation of the RAS signaling pathway by reducing the levels of palmitoylated H-RAS, which decreases the levels of GTP-bound H-RAS and also the activation of downstream molecules. Our study further suggests that the PLA/AT activity of H-rev107 may play an important role in H-rev107-mediated RAS suppression.  相似文献   

14.
15.
Fatty acylation of proteins on cysteine residues is a common post-translational modification that plays roles in protein-membrane and protein-protein interactions. Recently, we described a lysosomal palmitoyl-protein thioesterase that removes long-chain fatty acids from lipid-modified cysteine residues in proteins. Deficiency in palmitoyl-protein thioesterase results in a human lysosomal storage disorder, infantile neuronal ceroid lipofuscinosis (INCL), which primarily affects the central nervous system. The pathological hallmark of the disorder is the accumulation of granular osmiophilic deposits (GROD) that resemble lipofuscin, or aging pigment. In previous work, we have shown that [35S]cysteine-labeled lipid thioesters derived from fatty acylated proteins accumulate in cultured cells derived from palmitoyl-protein thioesterase-deficient patients. In the present work, we show that the lipid cysteine thioesters accumulate in the lysosomal fraction, and we further show that the appearance of these compounds in the organic phase is blocked by inhibitors of lysosomal proteolysis, demonstrating through biochemical means the lysosomal nature of the site of palmitoyl-protein thioesterase action. Furthermore, substrates for palmitoyl-protein thioesterase accumulate even in normal cells after leupeptin or chloroquine treatment. This was demonstrated by subjecting extracts of treated cells to exhaustive proteolysis to release protein-bound cysteine lipid for analysis. Cysteamine, a lysosomotropic drug recently proposed for the treatment of INCL, was found to have effects similar to leupeptin and chloroquine, suggesting that its mechanism of action may be more complex than previously understood.  相似文献   

16.
The SH4 domain of Fyn, a member of the Src family of tyrosine kinases, though rich in polar amino acid residues, anchors to the cytosolic face of membranes upon fatty acylation. In order to probe the requirement of specific fatty acylation at the N-terminus and at the side-chain of this domain for membrane-association, we have studied the interaction of peptides corresponding to the polar segment of the SH4 domain of Fyn and its mono- and dually fatty acylated analogs with model membranes. While the polar segment without covalently linked fatty acids (KDKEATKLTEW-amide) does not interact with lipid vesicles, peptides with one covalently linked fatty acid at the N-terminus or in the side-chain, associate with zwitterionic and anionic lipids to varying degrees. The interaction of dually acylated peptides (Myr-GK(ε-myr)KDKEATKLTEW-amide and Myr-GC(S-pal)KDKEATKLTEW-amide) with lipids depends on the linkage between fatty acyl side-chain and peptide backbone. The peptide chain associates with membranes only when the side-chain acylation is via an amide bond and not via a thioester bond. Our investigations indicate that acylation is essential for membrane targeting and unacylated polar stretch of the SH4 domain does not have a role in membrane-anchoring. Side-chain acylation via a thioester bond not only provides membrane anchorage but also directs the peptide chain away from the bilayer which might be important to enable the full length protein to interact with other signaling partners.  相似文献   

17.
The inositol moiety of mammalian glycosylphosphatidylinositol (GPI) is acylated at an early step in GPI biosynthesis. The inositol acylation is essential for the generation of mature GPI capable of attachment to proteins. However, the acyl group is usually absent from GPI-anchored proteins (GPI-APs) on the cell surface due to inositol deacylation that occurs in the endoplasmic reticulum (ER) soon after GPI-anchor attachment. Mammalian GPI inositol-deacylase has not been cloned, and the biological significance of the deacylation has been unclear. Here we report a GPI inositol-deacylase-deficient Chinese hamster ovary cell line established by taking advantage of resistance to phosphatidylinositol-specific phospholipase C and the gene responsible, which was termed PGAP1 for Post GPI Attachment to Proteins 1. PGAP1 encoded an ER-associated, 922-amino acid membrane protein bearing a lipase consensus motif. Substitution of a conserved putative catalytic serine with alanine resulted in a complete loss of function, indicating that PGAP1 is the GPI inositol-deacylase. The mutant cells showed a clear delay in the maturation of GPI-APs in the Golgi and accumulation of GPI-APs in the ER. Thus, the GPI inositol deacylation is important for efficient transport of GPI-APs from the ER to the Golgi.  相似文献   

18.
A chimeric myristoyl-ACP thioesterase with much higher catalytic efficiency than the parental enzymes has been generated by ligating the N-terminal half of the lux-specific thioesterase (LuxD) from Photobacterium phosphoreum with the C-terminal half of LuxD from Vibrio harveyi. The LuxD chimera had the same rate-limiting step and specificity, but cleaved esters and thioesters over eight times faster than the native enzymes. LuxD, along with acyl-protein synthetase (LuxE) and reductase (LuxC), comprise a multienzyme complex channeling activated fatty acids into the aldehyde substrate for the bacterial bioluminescence reaction. As P. phosphoreum LuxD and LuxE modulate each of their respective activities, the effects of mixing V. harveyi and the chimeric LuxD with P. phosphoreum LuxE were investigated. The chimeric LuxD stimulated acylation of LuxE to the same extent as V. harveyi LuxD, but to a lower level than that caused by P. phosphoreum LuxD. Conversely, P. phosphoreum LuxE stimulated the thioesterase activity of V. harveyi LuxD by 30% and the chimeric LuxD by 20% while the activity of P. phosphoreum LuxD was increased by over 140%. These results show that the stimulatory effects are unrelated to the level of thioesterase activity and indicate that the carboxyl terminal region of LuxD interacts with LuxE and causes a conformational change.  相似文献   

19.
Selective conservation of GAP-43 structure in vertebrate evolution   总被引:7,自引:0,他引:7  
M E LaBate  J H Skene 《Neuron》1989,3(3):299-310
GAP-43 (a.k.a. B-50, F1, pp46, or neuromodulin) is a major growth cone membrane protein whose expression is widely correlated with successful axon elongation, but whose function remains unknown. To distinguish the structural features of GAP-43 most relevant to its cellular functions, we have determined features of the protein that are most highly conserved in vertebrate evolution. Comparison of fish and mammalian GAP-43 distinguishes two domains of the protein. A strictly conserved amino-terminal domain contains the putative site for fatty acylation and membrane attachment, a calmodulin binding domain, and a proposed phosphorylation site. In the much larger carboxy-terminal domain, amino acid composition is strongly conserved without extensive sequence conservation. This amino acid composition predicts an extended, negatively charged rod conformation with some similarity to the side arms of neurofilaments. The results suggest that the biological roles of GAP-43 may depend on an ability to form a dynamic membrane-cytoskeleton-calmodulin complex.  相似文献   

20.
Steady-state kinetic parameters were determined for the human leukocyte elastase catalyzed hydrolysis of a series of peptide-based thiobenzyl esters and p-nitroanilides. The peptide units are MeOSuc-Val, MeOSuc-Alan-Pro-Val (n = 0-2), and MeOSuc-Alan-Pro-Ala (n = 1 or 2). The results of this study suggest five important mechanistic features for HLE. Few important remote subsite contacts are established in the Michaelis complex. Full recognition and tight binding of the substrate occurs in the transition state for acylation. The P3-S3 interaction is critical during acylation. Subsite contacts are unimportant in deacylation. P1 specificity is regulated by peptide length. An important steady-state kinetic consequence of this specificity is that the rate-limiting step of kc for p-nitroanilide hydrolysis changes from acylation to deacylation as the peptide chain is lengthened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号