首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The responsiveness of bone to mechanical stimuli changes throughout life, with adaptive potential generally declining after skeletal maturity is reached. This has led some to question the importance of bone functional adaptation in the determination of the structural and material properties of the adult skeleton. A better understanding of age-specific differences in bone response to mechanical loads is essential to interpretations of long bone adaptation. The purpose of this study is to examine how the altered mechanical loading environment and cortical bone loss associated with total hip arthroplasty affects the structural and biomechanical properties of adult bone at the mid-shaft femur. Femoral cross sections from seven individuals who had undergone unilateral total hip arthroplasty were analyzed, with intact, contralateral femora serving as an approximate internal control. A comparative sample of individuals without hip prostheses was also included in the analysis. Results showed a decrease in cortical area in femora with prostheses, primarily through bone loss at the endosteal envelope; however, an increase in total cross-sectional area and maintenance of the parameters of bone strength, I(x), I(y), and J, were observed. No detectable differences were found between femora of individuals without prostheses. We interpret these findings as an adaptive response to increased strains caused by loading a bone previously diminished in mass due to insertion of femoral prosthesis. These results suggest that bone accrued through periosteal apposition may serve as an important means by which adult bone can functional adapt to changes in mechanical loading despite limitations associated with senescence.  相似文献   

2.
Extant birds represent the only diverse living bipeds, and can be informative for investigations into the life‐history parameters of their extinct dinosaurian relatives. However, morphological changes that occurred during early avian evolution, including the unique adoption of a nearly horizontal femoral orientation associated with a shift in center of mass (CM), suggest that caution is warranted in the use of birds as analogs for nonavian dinosaur locomotion. In this study, we fitted a group of white leghorn chickens (Gallus gallus) with a weight suspended posterior to the hip in order to examine the effects on loading and morphology. This caused a CM shift that necessitated a change in femoral posture (by 35° towards the horizontal, P < 0.001), and resulted in reorientation of the ground reaction force (GRF) vector relative to the femur (from 41° to 82°, P < 0.001). Despite similar strain magnitudes, an overall increase in torsion relative to bending (from 1.70 to 1.95 times bending, P < 0.001) was observed, which was weakly associated with a tendency for increased femoral cross‐sectional dimensions (P = 0.1). We suggest that a relative increase in torsion is consistent with a change in femoral posture towards the horizontal, since this change increases the degree to which the bone axis and the GRF vector produce mediolateral long‐axis rotation of the bone. These results support the hypothesis that a postural change during early avian evolution could underlie the allometric differences seen between bird and nonavian dinosaur femora by requiring more robust femoral dimensions in birds due to an increase in torsion. J. Morphol. 240:237–249, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

3.
Computed tomography scans of the proximal femoral shaft of the South African “robust” australopithecine, A. robustus, reveal a total morphological pattern that is similar to the specimen attributed to A. boisei in East Africa but unlike that of Homo erectus or modern human femora. Like femora attributed to H. erectus, SK 82 and 97 have very thick cortices, although they do not have the extreme increase in mediolateral buttressing that is so characteristic of H. erectus. And unlike H. erectus or modern humans, their femoral heads are very small relative to shaft strength. These features are consistent with both increased overall mechanical loading of the postcranial skeleton and a possibly slightly altered pattern of bipedal gait relative to that of H. erectus and modern humans. Am J Phys Anthropol 109:509–521, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

4.
The experiment concerned effects of immobilization and remobilization on mechanical properties of femoral shaft. Twenty-four weeks old male rats were used: two groups (I3 and I3R4) with the right hindlimb immobilized for 3 weeks by taping, and one control (C). In I3R4 immobilization was followed by 4 weeks of free remobilization. Mechanical properties in three-point bending, mass, geometry, and mineralization of bone tissue were measured post mortem in both femora in I3 and I3R4 and in right femora in control. Acoustic emission signals (AE) were recorded during the bending test. The right femora in I3, I3R4 and C did not differ significantly in size, mass and mineralization (ANOVA). The differences were significant considering mechanical parameters and AE signals. In I3 yield bending moment and stiffness were lower (p=0.013 and 0.025) and deflection was larger (p=0.030) than in C. In I3R4 maximum bending moment, yield moment, stiffness and work to failure were lower than in C (p=0.013, 0.009, 0.032, and 0.005). Paired t-test showed that remobilization resulted in worsening of properties of right femora. Side-to-side differences in I3R4 were more pronounced than in I3. Moreover, AE signals from the right femora were more numerous and burst type than from the left. The results demonstrate that strength of bone decreases during the first period of free remobilization. The decrease is accompanied by a significant decrease of bone toughness. The AE data support the hypothesis that immobilization-related degradation of bone mechanical properties is associated with increasing brittleness of cortical bone tissue.  相似文献   

5.
In a series of specimens extending from fossil material through recent vertebrates including man there occurs a gradual phylogenetic increase in the degree of humeral torsion. A further (ontogenetic) torsion is superimposed upon the phylogenetic one in man which increases from birth until the proximal epiphysial cartilage of the humerus disappears and bony fusion occurs. There is a distinct correlation between the calculated strength of humeral rotator muscles inserting above and below the proximal epiphysis; this suggests that they provide the forces involved in the production of humeral torsion. It is shown that ontogenetic or secondary torsion occurs proximally and not along the shaft of the bone. Differences in the degree of humeral torsion in either sex of adult Whites and Negroes are given and discussed.  相似文献   

6.
《Comptes Rendus Palevol》2013,12(4):223-231
Within the limits imposed by a number of developmental and rheological factors, endostructural arrangement of the appendicular skeleton is consistent with the functional patterns of stress, where cortical bone topographic thickness variation in long bones primarily reflects the nature, direction, intensity, and frequency of the locomotion-related biomechanical loads. By applying techniques of cross-sectional geometric analysis and 3D morphometric mapping to a (micro)tomographic record consisting of 12 modern human and 10 chimpanzee adult femora, we have shown two distinct patterns (functional “signatures”) of cortical bone arrangement along the shaft (20–80% portion of the biomechanical length) specifically associated to the bipedal (Homo) and the quadrupedal modes (Pan). In particular, the inner structure of the human femoral diaphysis is adapted to antero-posterior loadings and presents a greater rigidity against posterior bending, while that of Pan is characterized by the presence of strong medial and lateral bony reinforcements positioned above its femoral midshaft.  相似文献   

7.
The metabolic adaptation of the hindlimb in the fetus to a reversible period of adverse intrauterine conditions and, subsequently, to a further episode of acute hypoxemia has been examined. Sixteen sheep fetuses were chronically instrumented with vascular catheters and transit-time flow probes. In nine of these fetuses, umbilical blood flow was reversibly reduced by 30% from baseline for 3 days (umbilical cord compression), while the remaining fetuses acted as sham-operated, age-matched controls. Acute hypoxemia was subsequently induced in all fetuses by reducing maternal fractional inspired oxygen concentration for 1 h. Paired hindlimb arteriovenous blood samples were taken at appropriate intervals during cord compression and acute hypoxemia, and by using femoral blood flow and the Fick principle, substrate delivery, uptake, and output were calculated. Umbilical cord compression reduced blood oxygen content and delivery to the hindlimb and increased hindlimb oxygen extraction and blood glucose and lactate concentration in the fetus. However, hindlimb glucose and oxygen consumption were unaltered during umbilical cord compression. In contrast, hindlimb oxygen delivery and uptake were significantly reduced in all fetuses during subsequent acute hypoxemia, but glucose extraction, oxygen extraction, and hindlimb lactate output significantly increased in sham-operated control fetuses only. Preexposure of the fetus to a temporary period of adverse intrauterine conditions alters the metabolic response of the fetal hindlimb to subsequent acute stress. Additional data suggest that circulating blood lactate may be derived from sources other than the fetal hindlimb under these circumstances. The lack of hindlimb lactate output during acute hypoxemia in umbilical cord-compressed fetuses, despite a significant fall in oxygen delivery to and uptake by the hindlimb, suggests that the fetal hindlimb may not respire anaerobically after exposure to adverse intrauterine conditions. hypoxia  相似文献   

8.
Experimental hyperthyroidism had a negative effect on bone mineral density, but did not significantly alter mechanical properties of femur and femoral bone thickness. Estradiol at a dose used in humans for the treatment of osteoporosis decreased seminal vesicle weight and concentration of testosterone but increased bone density in male rats compared to intact animals. In these rats, the mechanical analysis revealed an increased mechanical femur strength higher than the increase in bone density and femoral cortical thickness. When hyperthyroid male rats with low bone density were treated with estradiol in spite of a low plasma testosterone, the changes in bone density resulting from hyperthyroidism were entirely prevented. Estrogens protect the male skeleton against resorbing action of T (3). Treatment with estradiol in male rats with hyperthyroidism did not increase mechanical bone strength or femoral cortical thickness as it did with estradiol administration alone. Our results suggest that exogenously administered estrogens may have therapeutic value in preventing bone loss accompanying triiodothyronine administration, even in male rats with a low testosterone levels. At the concentration studied, estradiol increased in spite of low plasma testosterone, bone mineral density, mechanical strength of femur, and femoral cortical thickness.  相似文献   

9.
目的:探讨双胎妊娠中一胎宫内死亡的原因、对母亲和存活胎儿的影响及临床处理方法。方法:对2001年1月至2011年10月分娩的双胎妊娠之一胎宫内死亡的18例产妇临床资料进行回顾性分析。结果:双胎妊娠一胎宫内死胎的发生率占双胎的1.08%,其中单绒毛膜双羊膜囊双胎(monochorionic-diamniotic twin,MCDA)11例(61.11%),双绒毛膜双羊膜囊双胎(dichorionic-diamniotic twin,DCDA)7例(38.89%)。胎儿死因:胎盘脐带因素3例(16.67%),胎儿畸形1例(5.56%),妊娠并发症3例(16.67%),双胎输血综合征(twin-twin transfusion syndrome,TTTs)3例(16.67%),宫内感染3例(16.67%),不明原因5例(27.78%)。另一胎选择剖宫产者13例,阴道分娩3例。双胎一胎死亡后对母体的凝血功能影响不大(P>0.05)。结论:单绒毛膜双胎较双绒毛膜双胎母儿结局存在差别;双胎一胎宫内死亡对母体及存活儿有一定影响。对于孕周小,胎儿尚不成熟的病例,可严密监测存活胎儿宫内情况,行期待治疗延长孕龄至足月再分娩。  相似文献   

10.
In a collection of 274 monkeys (Macaca mulatta) the relative weight of the dry, fat-free skeleton, expressed as a proportion of total body weight, increases significantly throughout the gestational period to approximately 6% with only random variation after birth. The weight of the fetal skeleton increases exponentially with age. In the postnatal period the skeletal weight increases asymptotically to adulthood, which is considered to be 6.5 years of age. Equations for estimating skeletal weight are presented. Of four subdivisions of the skeleton, the skul contributes the greatest proportion of total skeletal weight in the fetal stage with the proportion decreasing to adulthood. The contributions of the other subdivisions, postcranial axial, superior limb, and inferior limb, and inferior limb, are nearly equal in the fetal stage, with that of only the inferior limb increasing to adulthood, when it makes up the greatest proportion of total skeletal weight. Until the last third of the gestational period, the humerus is longer than the femur and the radius longer than the tibia. Thereafter, the inferior limbs grow at a faster rate than the superior limbs, resulting in an intermembral index of approximately 95% by birth and less than 90% by adulthood.  相似文献   

11.
The transverse growth of long bones during intrauterine development was studied in rat fetuses subjected to experimental oligohydramnios in order to determine whether the skeletal changes, if any, in extrinsic fetal akinesia were similar to those observed in curarized rat fetuses with the fetal akinesia deformation sequence. Oligohydramnios was induced by daily extraction of amniotic fluid from day 17 of gestation until term. Experimental fetuses were compared with a sham-operated control group. The total area and perimeter, the absolute and relative amount of periosteum and bone trabeculae, the major and minor axes, and the elongation factor were measured in histological cross sections of the femoral metaphysis and diaphysis with an IBAS 1 image analysis system. Rat fetuses in the experimental group showed multiple articular contractures, redundant skin, and lung hypoplasia, a phenotype consistent with the oligohydramnios sequence. No alterations in femoral shape and transverse growth of the metaphysis and diaphysis were noted in these fetuses. These results suggest that the main mechanical factor related to fetal bone modeling is muscular strength, while motion would be mainly involved in fetal joint development.  相似文献   

12.
Thyroid hormones show fluctuating levels during the post-hatching development of birds. In this paper we report the results of the first mechanical tests to quantify the effect of hypothyroidism, during post-natal development, on the skeletal properties of a precocial bird, the barnacle goose, as determined by microhardness testing. The effect of hypothyroidism is tissue-specific; bone from the femora of birds is not significantly affected by induced hypothyroidism, however, there is a strong positive relationship between the levels of circulating thyroid hormones and the mechanical properties of bone from humeri. In the barnacle goose the development of the wing skeleton and musculature depends on an increase in circulating thyroid hormones and our analysis shows that, in its absence, the mechanical competence of the bone mineral itself is reduced in addition to the decreased bone length and muscle development previously reported in the literature.  相似文献   

13.
Proximal femoral dimensions were measured from radiographs of 80 living subjects whose current body weight and body weight at initial skeletal maturity (18 years) could be ascertained. Results generally support the hypothesis that articular size does not change in response to changes in mechanical loading (body weight) in adults, while diaphyseal cross-sectional size does. This can be explained by considering the different bone remodeling constraints characteristic of largely trabecular bone regions (articulations) and largely compact cortical bone regions (diaphyses). The femoral neck shows a pattern apparently intermediate between the two, consistent with its structure. When the additional statistical "noise" created by an essentially static femoral head size is accounted for, the present study supports other studies that have demonstrated rather marked positive allometry in femoral articular and shaft cross-sectional dimensions to body mass among adult humans. Body weight prediction equations developed from these data give reasonable results for modern U.S. samples, with average percent prediction errors of about 10%-16% for individual weights and about 2% for sample mean weights using the shaft dimension equations. When predicting body weight from femoral head size in earlier human samples, a downward correction factor of about 10% is suggested to account for the increased adiposity of very recent U.S. adults.  相似文献   

14.
Type XIII collagen is a type II transmembrane protein found in adhesive structures of mature tissues. We describe here its expression and spatio-temporal localization during mouse fetal development. Type XIII collagen mRNAs were expressed at a constant rate during development, with an increase of expression towards birth. Strong type XIII collagen expression was detected in the central and peripheral nervous systems of the developing mouse fetus in mid-gestation. Cultured primary neurons also expressed this collagen, and it was found to enhance neurite outgrowth. The results suggest that type XIII collagen is a new member among the proteins involved in nervous system development. Strong expression during early development was also detected in the heart, with localization to cell-cell contacts and accentuation in the intercalated discs perinatally. During late fetal development, type XIII collagen was observed in many tissues, including cartilage, bone, skeletal muscle, lung, intestine and skin. Clear developmental shifts in expression suggest a role in endochondral ossification of bone and the branching morphogenesis in the lung. Notable structures lacking type XIII collagen were the endothelia of most blood vessels and the endocardium. Its initially unique staining pattern began to concentrate in the same adhesive structures where it exists in adult tissues, and started to resemble that of the beta1 integrin subunit and vinculin during late intrauterine development and in the perinatal period.  相似文献   

15.

Background  

Studying mechanical properties of canine trabecular bone is important for a better understanding of fracture mechanics or bone disorders and is also needed for numerical simulation of canine femora. No detailed data about elastic moduli and degrees of anisotropy of canine femoral trabecular bone has been published so far, hence the purpose of this study was to measure the elastic modulus of trabecular bone in canine femoral heads by ultrasound testing and to assess whether assuming isotropy of the cancellous bone in femoral heads in dogs is a valid simplification.  相似文献   

16.
A Aminot  J Roffi 《Enzyme》1979,24(1):3-7
The evolution of adrenal tyrosine hydroxylase activity has been measured in the rat fetus from 18 1/2 days of gestation until 24 h after birth. This activity increases gradually in the fetal adrenals with a sudden and transient increase between 0 and 6 h postpartum. It is suggested that a nervous mechanism related to the stress of birth is responsible for this increase. Fetal decapitation reduces adrenal tyrosine hydroxylase activity at term. This reduction can be partially prevented by administering adrenocorticotropic hormone (ACTH) to the decapitated fetus; cortisol administration has no effect. The results indicate that ACTH has a direct action on adrenal tyrosine hydroxylase in the fetus as it does in the adult.  相似文献   

17.
During the perinatal period, calcium metabolism is stressed. As intestinal Ca-binding protein is considered as a molecular expression of the hormonal effect of 1,25-dihydroxycholecalciferol (1,25(OH)2D3), Ca-binding protin measurements may document the vitamin D roles during this period. We describe the variations of Ca-binding protein concentrations in the rat during the last 5 days of gestation, in the maternal duodenum, placentas, fetal membranes and fetal intestines. We also report intestinal Ca-binding protein changes from birth until weaning. The evolution of the maternal intestinal Ca-binding protein, which increases on day 19.5 of gestation, is consistent with that of calcium intestinal absorption and may be explained by increased 1,25(OH)2D3 production. Placental Ca-binding protein rises from day 17.5 until the end of gestation, and may be related to the profile of calcium transfer from mother to fetuses. It is noteworthy that the placental Ca-binding protein is predominantly found in the fetal part of the organ where materno-fetal exchanges occur. The yolk sac synthesizes substantial amounts of Ca-binding protein. In the fetal membranes, Ca-binding protein plateaus from day 17.5 until day 20.5 and decreases on day 21.5. The Ca-binding protein presence in the fetal placenta and in the yolk sac may suggest that these tissues are also targets for vitamin D. In the fetus the intestinal Ca-binding protein s is detected as early as day 17.5 of gestation and increases markedly during the last day of gestation. From birth and during the first 3 weeks of postnatal life, the intestinal Ca-binding protein concentration does not change. It undergoes a sharp rise just at the time of weaning. We have also shown that the specific distribution of Ca-binding protein along the intestine is acquired during intrauterine life and does not change with sucking or weaning. The two main changes of intestinal Ca-binding protein, observed just before birth and at weaning, may reflect the intestinal maturation and/or variations in vitamin D metabolism.  相似文献   

18.
Mothers and fetuses are expected to be in some degree of conflict over the allocation of maternal resources to fetal growth in the intrauterine environment. Variation in placental structure and function may be one way a fetus can communicate need and quality to its mother, potentially manipulating maternal investment in its favor. Whereas common marmosets typically produce twin litters, they regularly give birth to triplet litters in captivity. The addition of another fetus is a potential drain on maternal resource availability and thus a source of elevated conflict over resource allocation. Marmoset littermates share a single placental mass, so that differences in the ratio of fetal to placental weight across litter categories suggest the presence of differential intrauterine strategies of resource allocation. The fetal/placental weight ratio was calculated for 26 marmoset pregnancies, representing both twin and triplet litters, to test the hypothesis that triplet fetuses respond to intrauterine conflict by soliciting placental overgrowth as a means of accessing maternal resources. In fact, relative to fetal mass, the triplet marmoset placenta is significantly undergrown, with individual triplets associated with less placental mass than their twin counterparts, suggesting that the triplet placenta is relatively more efficient in its support of fetal growth. There still may be an important role for maternal-fetal conflict in the programming of placental structure and function. Placental adaptations that solicit potential increases of maternal investment may occur at the microscopic or metabolic level, and thus may not be reflected in the size of the placenta as a whole.  相似文献   

19.
The purpose of this study was to evaluate the effects of isolated alterations in mineral content on mouse bone torsional properties. The femora and tibiae from 25 eight-week-old male A/J strain mice were divided into five groups and selectively decalcified from 5% to 20%. The right femora were then tested to failure in torsion while the tibiae were ashed to determine final mineral content of the decalcified bones. Contralateral femora were serially cross-sectioned to determine geometric properties, and effective material properties were then calculated from the geometric and structural properties of each femoral pair. We found that the relationship between ash content and effective shear modulus or maximum effective shear stress could best be characterized through a power law, with an exponential factor of 6.79 (R2 = 0.85) and 4.04 (R2 = 0.67), respectively. This indicates that in a murine model, as with other species, small changes in ash content significantly influence effective material properties. Furthermore, it appears that (in adolescent A/J strain mice) effective shear modulus is more heavily affected by changes in mineralization than is maximum effective shear stress when these properties are derived from whole bone torsional tests to failure.  相似文献   

20.
Remarkable changes occur in the mammalian skeleton prior to, during and after the reproductive cycle. Skeletal changes occur with ovarian maturation and initiation of menses and estrus in adolescence, which may result in a greater accumulation of skeletal mineral in the female vs the male skeleton. There is also some evidence to suggest an excess skeletal mass in young female experimental animals. In early pregnancy, growth, modeling and perhaps suppressed remodeling promote the accumulation of calcium. Some changes may also occur with the transition from pituitary to placental control of the pregnancy. In later pregnancy, an increase in bone turnover appears to coincide with fetal skeletal mineralization. Rapid and important changes occur in the skeleton and mineral metabolism in the transition from pregnancy to lactation as the mammary gland rather than the uterus draws on the maternal calcium stores. Lactational demands are met at least partially by a temporary demineralization of the skeleton, which is associated with increased bone modeling and remodeling. Endochondral growth almost ceases during lactation, but envelope-specific bone modeling and remodeling are greatly increased. This is generally associated with a loss of skeletal mass and density, more apparent at sites with less of a mechanical role (e.g. central metaphysis regions and the endocortical envelope). The post-lactational period is profoundly anabolic with substantial increases in bone formation, but blunted resorption at almost all skeletal envelopes. Skeletal mass is increased during this period and it is associated with improved skeletal mechanical properties. There are several important observations. 1) The nulliparous animal appears to have an excess skeletal mass to perhaps compensate for maternal metabolic inefficiency of the first reproductive cycle. 2) Changes in growth, modeling and remodeling occur at different times and at different skeletal envelopes during the reproductive cycle. These site-specific, temporal changes appear to be adaptations that facilitate the use of skeletal mineral while preserving mechanical competence. 3) After the first reproductive cycle, modeling and remodeling optimize the existing skeletal mass into a structure that better accommodates the prevailing mechanical environment. 4) The post-lactational period is profoundly anabolic and may provide new strategies for preservation of skeletal mass when reproductive capacity ceases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号