首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poxviruses and gamma-2 herpesviruses share the K3 family of viral immune evasion proteins that inhibit the surface expression of glycoproteins such as major histocompatibility complex class I (MHC-I), B7.2, ICAM-1, and CD95(Fas). K3 family proteins contain an amino-terminal PHD/LAP or RING-CH domain followed by two transmembrane domains. To examine whether human homologues are functionally related to the viral immunoevasins, we studied seven membrane-associated RING-CH (MARCH) proteins. All MARCH proteins located to subcellular membranes, and several MARCH proteins reduced surface levels of known substrates of the viral K3 family. Two closely related proteins, MARCH-IV and MARCH-IX, reduced surface expression of MHC-I molecules. In the presence of MARCH-IV or MARCH-IX, MHC-I was ubiquitinated and rapidly internalized by endocytosis, whereas MHC-I molecules lacking lysines in their cytoplasmic tail were resistant to downregulation. The amino-terminal regions containing the RING-CH domain of several MARCH proteins examined catalyzed multiubiquitin formation in vitro, suggesting that MARCH proteins are ubiquitin ligases. The functional similarity of the MARCH family and the K3 family suggests that the viral immune evasion proteins were derived from MARCH proteins, a novel family of transmembrane ubiquitin ligases that seems to target glycoproteins for lysosomal destruction via ubiquitination of the cytoplasmic tail.  相似文献   

2.
The regulation of cell surface receptor expression is essential for immune cell differentiation and function. At the plasma membrane ubiquitination is an important post-translational mechanism for regulating expression of a wide range of surface proteins. MARCH9, a member of the RING-CH family of transmembrane E3 ubiquitin ligases, down-regulates CD4, major histocompatibility complex-I (MHC), and ICAM-1 in lymphoid cells. To identify novel MARCH9 substrates, we used high throughput flow cytometry and quantitative mass spectrometry by stable isotope labeling by amino acids in cell culture (SILAC) to determine the differential expression of plasma membrane proteins in a MARCH9-expressing B cell line. This combined approach identified 13 potential new MARCH9 targets. All of the SILAC-identified targets for which antibodies were available were subsequently confirmed by flow cytometry, validating the proteomics results. A close correlation (r2 = 0.93) between -fold down-regulation as determined by SILAC and flow cytometry was found, with no false positive hits detected. The potential new MARCH9 substrates cover a wide range of functions and include receptor-type protein-tyrosine phosphatases (e.g. PTPRJ/CD148) as well as Fc γ receptor IIB (CD32B), HLA-DQ, signaling lymphocytic activation molecule (CD150), and polio virus receptor (CD155). The identification of plasma membrane targets by SILAC with confirmation by flow cytometry represents a novel and powerful approach to analyze changes in the plasma membrane proteome.The regulation of cell surface receptors is essential for the maintenance of cell homeostasis and intercellular communication. At the plasma membrane ubiquitination has emerged as a critical post-translational mechanism for regulating expression of a wide range of surface proteins, including receptors of the immune system (1, 2). The plasma membrane of immune cells hosts housekeeping receptors such as amino acid and ion transporters as well as a diverse range of proteins tailored to immune function. These include receptors for cellular and soluble ligands, antigen-presenting molecules, and adhesion molecules as well as cell-specific receptors such as NK1 cell, T cell, and B cell receptor complexes. 350 cluster of differentiation (CD) molecules have been defined by monoclonal antibodies raised against cell surface proteins, and many of these are exclusive to lymphocytes (3). The prominent role of transmembrane proteins in cellular function is emphasized by the observation that ∼20% of the genome codes for proteins with at least one hydrophobic α helix (4).The ability of receptors at the cell surface to respond to ligand stimulation is particularly important when the duration and intensity of signaling must be limited. The expression of cell surface proteins therefore undergoes constant turnover by endocytosis and recycling. For example the constitutively recycling T cell receptor is ubiquitinated and degraded following receptor stimulation (5). Endocytosed membrane proteins either recycle back to the plasma membrane or are degraded. The conjugation of ubiquitin to a receptor leads to the recruitment of ubiquitin-binding proteins, adaptors that mediate transport of the substrate to the proteasome or lysosome for degradation. The ubiquitination cascade requires monomeric ubiquitin to be activated by the ubiquitin E1 enzyme, transferred to one of ∼40 E2 ubiquitin conjugases, and targeted to the acceptor residue, usually a lysine, of the target protein. This last reaction is catalyzed by one of around 400 ubiquitin E3 ligases that associate with the substrate and thus confer specificity to the ubiquitin reaction (6). The ligases are therefore the critical components of the reaction. The receptor tyrosine kinases were the first mammalian receptors shown to be ubiquitinated in a ligand-dependent manner (7, 8). Upon ligand binding the receptor tyrosine kinase is autophosphorylated, leading to recruitment of Cbl, a RING-type E3 ligase, which results in receptor ubiquitination, internalization, and lysosomal degradation. Mutation of the ubiquitin-targeted lysine residues in the cytoplasmic tail of the epidermal growth factor receptor (EGFR) prevents degradation and partially restores surface expression (9). Conversely overexpression of Cbl leads to reduced surface expression and ubiquitination of EGFR (10).The membrane-associated RING-CH (MARCH) E3 ligases are a subfamily of the RING E3 ligases (11). Originally identified by viral E3 ligases involved in γ-herpesvirus immunoevasion, the defining feature of this family is the presence of a RING-CH domain, a modification of the zinc-binding module seen in classical RING E3 ligases, which is essential for recruitment of the E2 ubiquitin-conjugating enzyme (12). The RING-CH family is characterized by an unusual spacing of the metal-binding ligands in the C4HC3 orientation as opposed to the more common C3HC4 arrangement, and the majority of family members contain two transmembrane domains connected by a short extracellular loop. The canonical members of this group, the K3 and K5 viral E3 ligases of Kaposi sarcoma-associated herpesvirus, down-regulate a number of critical immunoreceptors (13, 14). In contrast, substrates of the 11 cellular MARCH proteins remain only partially characterized (11), but two MARCH proteins, MARCH1 and MARCH8, down-regulate MHC class II molecules as well as CD86 expressed on antigen-presenting cells including dendritic cells and B cells (15, 16).MARCH9 is predominantly expressed in B and T lymphocytes as well as dendritic cells (Genomics Institute of the Novartis Research Foundation SymAtlas (17)). Three potential MARCH9 substrates have been identified as overexpression of MARCH9 leads to down-regulation of CD4 and MHC class I molecules (11) as well as ICAM-1 (18). Because MARCH9 down-regulates three cell surface receptors of a limited number examined, we hypothesized that MARCH9 is likely to have additional substrates. However, identifying the substrates of E3 ligases remains challenging. The interaction between a ligase and its substrate is transient and difficult to trap, particularly so for integral membrane proteins as with MARCH9 and its potential substrates. We therefore chose to compare the cell surface expression of proteins in the presence and absence of MARCH9. Although this approach cannot prove whether a differentially expressed cell surface protein is a direct or indirect target for MARCH9, it does give a preliminary guide to the identification of potential substrates.In this report we describe two approaches to analyze the effects of MARCH9 expression in a human B cell line. These include (i) high throughput flow cytometry using a panel of antibodies for proteins expressed on B cells and (ii) quantitative mass spectrometry of the plasma membrane proteome. Flow cytometry has the advantage of rapidly yielding quantitative data for those surface molecules where suitable and well characterized antibodies are available. In contrast, mass spectrometry allows a more objective comparison of the relative abundance of proteins between different cell types. We used stable isotope labeling by amino acids in cell culture (SILAC) (19) and looked for differentially expressed proteins from enriched plasma membranes of B cells overexpressing the MARCH9 E3 ligase. The mass spectrometry approach identified 12 potential MARCH9 substrates, six of which were subsequently confirmed by flow cytometry. Taken together our results demonstrate that the combined approach of flow cytometry and mass spectrometry provides a powerful way for identifying differentially regulated cell surface proteins and suggest an important role for MARCH9 in the regulation of lymphocyte function.  相似文献   

3.
4.
Protein modification by one or more ubiquitin chains serves a critical signalling function across a wide range of cellular processes. Specificity within this system is conferred by ubiquitin E3 ligases, which target the substrates. Their activity is balanced by deubiquitylating enzymes (DUBs), which remove ubiquitin from both substrates and ligases. The RING-CH ligases were initially identified as viral immunoevasins involved in the downregulation of immunoreceptors. Their cellular orthologues, the Membrane-Associated RING-CH (MARCH) family represent a subgroup of the classical RING genes. Unlike their viral counterparts, the cellular RING-CH proteins appear highly regulated, and one of these in particular, MARCH7, was of interest because of a potential role in neuronal development and lymphocyte proliferation. Difficulties in detection and expression of this orphan ligase lead us to search for cellular cofactors involved in MARCH7 stability. In this study, we show that MARCH7 readily undergoes autoubiquitylation and associates with two deubiquitylating enzymes – ubiquitin-specific protease (USP)9X in the cytosol and USP7 in the nucleus. Exogenous expression and short interfering RNA depletion experiments demonstrate that MARCH7 can be stabilized by both USP9X and USP7, which deubiquitylate MARCH7 in the cytosol and nucleus, respectively. We therefore demonstrate compartment-specific regulation of this E3 ligase through recruitment of site-specific DUBs.  相似文献   

5.
PDZ domain containing molecular scaffolds plays a central role in organizing synaptic junctions. Observations in Drosophila and mammalian cells have implicated that ubiquitination and endosomal trafficking, of molecular scaffolds are critical to the development and maintenance of cell-cell junctions and cell polarity. To elucidate if there is a connection between these pathways, we applied an integrative genomic strategy, which combined comparative genomics and proteomics with cell biological assays. Given the importance of ubiquitin in regulating endocytic processes, we first identified the subset of E3 ligases with conserved PDZ binding motifs. Among this subset, the MARCH family ubiquitin ligases account for the largest family and MARCH2 has been previously implicated in endosomal trafficking. Next, we tested in an unbiased fashion, if MARCH2 binds PDZ proteins in vivo using a modified tandem affinity purification strategy followed by mass spectrometry. Of note, DLG1 was co-purified from MARCH2, with subsequent confirmation that MARCH2 interacts with full-length DLG1 in a PDZ domain dependent manner. Furthermore, we demonstrated that MARCH2 co-localized with DLG1 at sites of cell-cell contact. In addition, loss of the MARCH2 PDZ binding motif led to loss of MARCH2 localization at cell-cell contact sites and MARCH2 appeared to localize away from cell-cell junctions. In in vivo ubiquitination assays we show that MARCH2 promotes DLG1 ubiquitination. Overall, these results suggest that PDZ ligands with E3 ligase activity may link PDZ domain containing tumor suppressors to endocytic pathways and cell polarity determination.  相似文献   

6.
Misfolded or damaged proteins are typically targeted for destruction by proteasome‐mediated degradation, but the mammalian ubiquitin machinery involved is incompletely understood. Here, using forward genetic screens in human cells, we find that the proteasome‐mediated degradation of the soluble misfolded reporter, mCherry‐CL1, involves two ER‐resident E3 ligases, MARCH6 and TRC8. mCherry‐CL1 degradation is routed via the ER membrane and dependent on the hydrophobicity of the substrate, with complete stabilisation only observed in double knockout MARCH6/TRC8 cells. To identify a more physiological correlate, we used quantitative mass spectrometry and found that TRC8 and MARCH6 depletion altered the turnover of the tail‐anchored protein heme oxygenase‐1 (HO‐1). These E3 ligases associate with the intramembrane cleaving signal peptide peptidase (SPP) and facilitate the degradation of HO‐1 following intramembrane proteolysis. Our results highlight how ER‐resident ligases may target the same substrates, but work independently of each other, to optimise the protein quality control of selected soluble and tail‐anchored proteins.  相似文献   

7.
The eleven members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family are relatively unexplored. Upon exogenous (over)expression, a number of these ligases can affect the trafficking of membrane molecules. However, only for MARCH-1 endogenous functions have been demonstrated. For the other endogenous MARCH proteins, no functions or substrates are known. We report here that TRAIL-R1 is a physiological substrate of the endogenous MARCH-8 ligase. Human TRAIL-R1 and R2 play a role in immunosurveillance and are targets for cancer therapy, because they selectively induce apoptosis in tumor cells. We demonstrate that TRAIL-R1 is down-regulated from the cell surface, with great preference over TRAIL-R2, by exogenous expression of MARCH ligases that are implicated in endosomal trafficking, such as MARCH-1 and -8. MARCH-8 attenuated TRAIL-R1 cell surface expression and apoptosis signaling by virtue of its ligase activity. This suggested that ubiquitination of TRAIL-R1 was instrumental in its down-regulation by MARCH-8. Indeed, in cells with endogenous MARCH expression, TRAIL-R1 was ubiquitinated at steady-state, with the conserved membrane-proximal lysine 273 as one of the potential acceptor sites. This residue was also essential for the interaction of TRAIL-R1 with MARCH-1 and MARCH-8 and its down-regulation by these ligases. Gene silencing identified MARCH-8 as the endogenous ligase that ubiquitinates TRAIL-R1 and attenuates its cell surface expression. These findings reveal that endogenous MARCH-8 regulates the steady-state cell surface expression of TRAIL-R1.  相似文献   

8.
9.
A novel family of membrane-bound E3 ubiquitin ligases   总被引:1,自引:0,他引:1  
A novel E3 ubiquitin ligase family that consists of viral E3 ubiquitin ligases (E3s) and their mammalian homologues was recently discovered. These novel E3s are membrane-bound molecules that share the secondary structure and catalytic domain for E3 activity. All family members have two transmembrane regions at the center and a RING-CH domain at the amino terminus. Forced expression of these novel E3s has been shown to reduce the surface expression of various membrane proteins through ubiquitination of target molecules. Initial examples of viral E3s were identified in Kaposi's sarcoma associated herpesvirus (KSHV) and murine gamma-herpesvirus 68 (MHV-68) and have been designated as modulator of immune recognition (MIR) 1, 2 and mK3, respectively. MIR 1, 2 and mK3 are able to down-regulate MHC class I molecule expression, and mK3 is required to establish an effective latent viral infection in vivo. The first characterized mammalian homologue to MIR 1, 2 and mK3 is c-MIR/MARCH VIII. Forced expression of c-MIR/MARCH VIII down-regulates B7-2, a co-stimulatory molecule important for antigen presentation. Subsequently, several mammalian molecules related to c-MIR/MARCH VIII have been characterized and named as membrane associated RING-CH (MARCH) family. However, the precise physiological function of MARCH family members remains as yet unknown.  相似文献   

10.
11.
Following endocytosis, internalized plasma membrane proteins can be recycled back to the cell surface or trafficked to late endosomes/lysosomes for degradation. Here we report on the trafficking of multiple proteins that enter cells by clathrin-independent endocytosis (CIE) and determine that a set of proteins (CD44, CD98, and CD147) found primarily in recycling tubules largely failed to reach late endosomes in HeLa cells, whereas other CIE cargo proteins, including major histocompatibility complex class I protein (MHCI), trafficked to both early endosome antigen 1 (EEA1) and late endosomal compartments in addition to recycling tubules. Expression of the membrane-associated RING-CH 8 (MARCH8) E3 ubiquitin ligase completely shifted the trafficking of CD44 and CD98 proteins away from recycling tubules to EEA1 compartments and late endosomes, resulting in reduced surface levels. Cargo affected by MARCH expression, including CD44, CD98, and MHCI, still entered cells by CIE, suggesting that the routing of ubiquitinated cargo occurs after endocytosis. MARCH8 expression led to direct ubiquitination of CD98 and routing of CD98 to late endosomes/lysosomes.  相似文献   

12.
BAP31, a resident integral protein of the endoplasmic reticulum membrane, regulates the export of other integral membrane proteins to the downstream secretory pathway. Here we show that cell surface expression of the tetraspanins CD9 and CD81 is compromised in mouse cells from which the Bap31 gene has been deleted. CD9 and CD81 facilitate the function of multiprotein complexes at the plasma membrane, including integrins. Of note, BAP31 does not appear to influence the egress of alpha5beta1 or alpha(v)beta3 integrins to the cell surface, but in Bap31-null mouse cells, these integrins are not able to maintain cellular adhesion to the extracellular matrix in the presence of reduced serum. Consequently, Bap31-null cells are sensitive to serum starvation-induced apoptosis. Reconstitution of wild-type BAP31 into these Bap31-null cells restores integrin-mediated cell attachment and cell survival after serum stress, whereas interference with the functions of CD9, alpha5beta1, or alpha(v)beta3 by antagonizing antibodies makes BAP31 cells act similar to Bap31-null cells in these respects. Finally, in human KB epithelial cells protected from apoptosis by BCL-2, the caspase-8 cleavage product, p20 BAP31, inhibits egress of tetraspanin and integrin-mediated cell attachment. Thus, p20 BAP31 can operate upstream of BCL-2 in living cells to influence cell surface properties due to its effects on protein egress from the endoplasmic reticulum.  相似文献   

13.
MARCH11, a RING-finger transmembrane ubiquitin ligase, is predominantly expressed in spermatids and localized to the trans-Golgi network (TGN) and multivesicular bodies (MVBs). Because ubiquitination acts as a sorting signal of cargo proteins, MARCH11 has been postulated to mediate selective protein sorting via the TGN–MVB pathway. However, the physiological substrate of MARCH11 has not been identified. In this study, we have identified and characterized SAMT1, a member of a novel 4-transmembrane protein family, which consists of four members. Samt1 mRNA and its expression product were found to be specific to the testis and were first detected in germ cells 25 days after birth in mice. Immunohistochemical analysis further revealed that SAMT1 was specifically expressed in haploid spermatids during the cap and acrosome phases. Confocal microscopic analysis showed that SAMT1 co-localized with MARCH11 as well as with fucose-containing glycoproteins, another TGN/MVB marker, and LAPM2, a late endosome/lysosome marker. Furthermore, we found that MARCH11 could increase the ubiquitination of SAMT1 and enhance its lysosomal delivery and degradation in an E3 ligase activity-dependent manner. In addition, the C-terminal region of SAMT1 was indispensable for its ubiquitination and proper localization. The other member proteins of the SAMT family also showed similar expression profile, intracellular localization, and biochemical properties, including ubiquitination by MARCH11. These results suggest that SAMT family proteins are physiological substrates of MARCH11 and are delivered to lysosomes through the TGN–MVB pathway by a ubiquitin-dependent sorting system in mouse spermatids.  相似文献   

14.
A plethora of ubiquitin ligases determine the intracellular location and fate of numerous proteins in a substrate-specific manner. However, the mechanisms for these functions are incompletely understood. Most ligases have structurally related RING domains that are critical for ligase activity including the recruitment of ubiquitin conjugating enzymes. Here we probe the function of the RING-CH domain of murine γ-herpesvirus-68 ligase mK3 that functions as an immune evasin by targeting major histocompatibility complex (MHC) class I heavy chains for endoplasmic reticulum-associated degradation (ERAD). Interestingly, mK3 mediates ubiquitin conjugation via ester bonds to S or T residues in addition to conventional isopeptide linkages to K residues. To determine the mechanism of non-K ubiquitination of substrates, we introduced into an mK3 background the RING-CH domains of related viral and cellular MARCH ( m embrane a ssociated R ING- CH ) ligases. We found that although a conserved W present in all viral RING-CH domains is critical for mK3 function, sequences outside the RING-CH domain determine whether and which non-lysine substrate residues can be ubiquitinated by mK3. Our findings support the model that viral ligases have evolved a highly effective strategy to optimally orient their RING domain with substrate allowing them to ubiquitinate non-K residues.  相似文献   

15.
Immune-stimulatory ligands, such as major histocompatibility complex molecules and the T-cell costimulatory ligand CD86, are central to productive immunity. Endogenous mammalian membrane-associated RING-CHs (MARCH) act on these and other targets to regulate antigen presentation and activation of adaptive immunity, whereas virus-encoded homologs target the same molecules to evade immune responses. Substrate specificity is encoded in or near the membrane-embedded domains of MARCHs and the proteins they regulate, but the exact sequences that distinguish substrates from nonsubstrates are poorly understood. Here, we examined the requirements for recognition of the costimulatory ligand CD86 by two different MARCH-family proteins, human MARCH1 and Kaposi''s sarcoma herpesvirus modulator of immune recognition 2 (MIR2), using deep mutational scanning. We identified a highly specific recognition surface in the hydrophobic core of the CD86 transmembrane (TM) domain (TMD) that is required for recognition by MARCH1 and prominently features a proline at position 254. In contrast, MIR2 requires no specific sequences in the CD86 TMD but relies primarily on an aspartic acid at position 244 in the CD86 extracellular juxtamembrane region. Surprisingly, MIR2 recognized CD86 with a TMD composed entirely of valine, whereas many different single amino acid substitutions in the context of the native TM sequence conferred MIR2 resistance. These results show that the human and viral proteins evolved completely different recognition modes for the same substrate. That some TM sequences are incompatible with MIR2 activity, even when no specific recognition motif is required, suggests a more complicated mechanism of immune modulation via CD86 than was previously appreciated.  相似文献   

16.
Means RE  Lang SM  Jung JU 《Journal of virology》2007,81(12):6573-6583
Kaposi's sarcoma-associated herpesvirus encodes two highly related membrane-associated, RING-CH-containing (MARCH) family E3 ubiquitin ligases, K3 and K5, that can down regulate a variety of cell surface proteins through enhancement of their endocytosis and degradation. In this report we present data that while K5 modulation of major histocompatibility complex class I (MHC-I) closely mirrors the mechanisms used by K3, alternative molecular pathways are utilized by this E3 ligase in the down regulation of intercellular adhesion molecule 1 (ICAM-1) and B7.2. Internalization assays demonstrate that down regulation of each target can occur through increased endocytosis from the cell surface. However, mutation of a conserved tyrosine-based endocytosis motif in K5 resulted in a protein lacking the ability to direct an increased rate of MHC-I or ICAM-1 internalization but still able to down regulate B7.2 in a ubiquitin-dependent but endocytosis-independent manner. Further, mutation of two acidic clusters abolished K5-mediated MHC-I degradation while only slightly decreasing ICAM-1 or B7.2 protein destruction. This same mutant abolished detectable ubiquitylation of all targets. These data indicate that while K5 can act as an E3 ubiquitin ligase to directly mediate cell surface molecule destruction, regulation of its targets occurs through multiple pathways, including ubiquitin-independent mechanisms.  相似文献   

17.
A mechanism by which ubiquitinated cargo proteins are sorted into multivesicular bodies (MVBs) from plasma and trans-Golgi network (TGN) membranes is well established in yeast and mammalian somatic cells. However, the ubiquitin-dependent sorting pathway has not been clearly defined in germ cells. In this study we identified a novel member of the transmembrane RING-finger family of proteins, termed membrane-associated RING-CH (MARCH)-XI, that is expressed predominantly in developing spermatids and weakly in brain and pituitary. MARCH-XI possesses an E3 ubiquitin ligase activity that targets CD4 for ubiquitination. Immunoelectron microscopy of rat round spermatids showed that MARCH-XI is localized to TGN-derived vesicles and MVBs. Fluorescence staining of rat round spermatids and immunoprecipitation of rat testis demonstrated that MARCH-XI forms complexes with the adaptor protein complex-1 and with fucose-containing glycoproteins including ubiquitinated forms. Furthermore, the C-terminal region of MARCH-XI mediates its interaction with mu1-adaptin and Veli through a tyrosine-based motif and a PDZ binding motif, respectively. Our data suggest that MARCH-XI acts as a ubiquitin ligase with a role in ubiquitin-mediated protein sorting in the TGN-MVB transport pathway, which may be involved in mammalian spermiogenesis.  相似文献   

18.
MARCH E3 ligases play a key role in controlling MHC class II surface expression by regulated ubiquitination of a lysine residue in the β-chain. Little is known concerning how these enzymes target their specific substrates. Here we show that recognition of HLA-DR by MARCH proteins is complex. Several features associated with the transmembrane domain and bordering regions influence the overall efficiency of receptor internalization. A cluster of residues at the interface of the lipid bilayer and the cytosol plays the most important role in MARCH8 recognition of HLA-DRβ. Variation in this sequence also determines specificity of MARCH9 for HLA-DQ. Residues located in helical face four of HLA-DRβ together with a charged residue at the boundary with the stalk region also contribute significantly to recognition. Truncation analysis suggested that a dileucine-like motif in the DRβ cytoplasmic tail influences the efficiency of co-localization of HLA-DR with MARCH8. The DRβ-encoded acceptor lysine functioned optimally when placed in its natural location relative to the bilayer. In the DRα/DRβ dimer most other amino acids in the cytoplasmic tail could be substituted for alanine with minimal influence on function. Our data support a model whereby multiple features of HLA-DR are involved in substrate recognition by MARCH8. The single most important region is located at the interface between the transmembrane domain and the cytosol. Variation in sequence in this location between different class II isotypes controls efficiency of recognition by different MARCH E3 ligases.  相似文献   

19.
The hyaluronan receptor CD44 undergoes sequential proteolytic cleavage at the cell surface. The initial cleavage of the CD44 extracellular domain is followed by a second intramembranous cleavage of the residual CD44 fragment, liberating the C-terminal cytoplasmic tail of CD44. In this study conditions that promote CD44 cleavage resulted in a diminished capacity to assemble and retain pericellular matrices even though sufficient non-degraded full-length CD44 remained. Using stable and transient overexpression of the cytoplasmic domain of CD44, we determined that the intracellular domain interfered with anchoring of the full-length CD44 to the cytoskeleton and disrupted the ability of the cells to bind hyaluronan and assemble a pericellular matrix. Co-immunoprecipitation assays were used to determine whether the mechanism of this interference was due to competition with actin adaptor proteins. CD44 of control chondrocytes was found to interact and co-immunoprecipitate with both the 65- and 130-kDa isoforms of ankyrin-3. Moreover, this interaction with ankyrin-3 proteins was diminished in cells overexpressing the CD44 intracellular domain. Mutating the putative ankyrin binding site of the transiently transfected CD44 intracellular domain diminished the inhibitory effects of this protein on matrix retention. Although CD44 in other cells types has been shown to interact with members of the ezrin/radixin/moesin (ERM) family of adaptor proteins, only modest interactions between CD44 and moesin could be demonstrated in chondrocytes. The data suggest that release of the CD44 intracellular domain into the cytoplasm of cells such as chondrocytes exerts a competitive or dominant-negative effect on the function of full-length CD44.  相似文献   

20.
Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号